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P.O. Box 4, Klong Luang, Pathumthani 12120 Thailand.

Abstract

In this paper, we present a method for secret key generation and recovery based on
iris verification that, unlike typical systems which store iris templates persistently,
stores recovery information on a smart card carried by the user. The scheme uses
error-correcting codes to overcome the noisiness inherent in biometric readings. Our
iris template incorporates reliable region selection, reliable bit estimation and one-
sided masking techniques that provide for both robust verification and large key
sizes. An implementation and experiments with the University of Bath iris dataset
indicate that our scheme provides for generation and recovery of 260-bit keys with
an EER of 0%.

Key words: iris verification, biometric authentication, error-correcting codes,
reliable bit selection, one-sided masking, key management, biometric key
generation

1 Introduction

Modern cryptosystems require the use of one or more large uniform random
secret keys to achieve their security goals. Since it is impossible in practice to
remember large keys, users typically record them on paper or store them on
an easily accessible file system. In the first case, stealing a key may simply re-
quire opening a drawer or sneaking into an office, and in the second case, if the
system storing a user’s keys is compromised, all of the user’s keys are compro-
mised. To mitigate risk in the latter case, some key management systems store
keys on a file system but encrypt them with a key derived from a user-selected
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passphrase. Unfortunately, typical passphrases are short and may be suscep-
tible to dictionary attacks, in which attackers repeatedly attempt decryption
using the entries from a list of common passphrases. Further compounding
the problem, users oftentimes reuse the same passphrase for multiple keys, so
an attacker that succeeds in obtaining one passphrase may be able to compro-
mise multiple systems. When its keys are easy to steal, any security guarantees
offered by a cryptosystem are null and void.

We avoid the problem of dictionary attacks against passphrase-encrypted se-
cret key stores using biometric authentication and access control. The idea
is to authenticate the user using an iris scan and to only provide access to
the stored key if the biometric authentication is successful. This solution has
several benefits over passphrase-based systems:

- Biometric traits cannot easily be stolen, forged, or guessed.
- There is no need to remember one’s biometric traits.
- Biometrics are difficult to repudiate.
- In contrast to user-selected passphrases, the entropy of a biometric template

is comparable from person to person.

But systems based on biometrics have their own set of problems. The first
problem is the noisiness of biometric scans. Readings from the same user will
almost always be different; for example, independent readings of the same
person’s iris typically differ by 10–20% (Daugman, 2003). Consider a naive
design in which we encrypt the secret with the user’s enrollment-time biometric
template, then decrypt the secret with the user’s verification-time biometric
template. With noisy biometric scans, this scheme will not work. A biometric-
based key management scheme should allow a user to unlock his or her secret
so long as the biometric scans presented for locking (enrollment) and unlocking
(verification) are sufficiently similar.

The second problem with biometrics is that they are irrevocable. Losing a bio-
metric template is akin to losing one’s identity. Consider another naive design
in which we first compare the verification-time biometric template with the
enrollment-time biometric template, which is stored in the clear. If the two
templates are sufficiently similar, we return the stored secret. This scheme
is extremely dangerous. Because of the irrevocability of biometric informa-
tion, an ideal biometric-based key management scheme should avoid storing
biometric templates in the clear.

On the one hand, the first constraint, that we must allow for noisy matching at
verification time, would be satisfied if we could store the enrollment-time tem-
plate in the clear and compare it with the verification-time template. However,
as discussed, it is not appropriate to store biometric templates in the clear. On
the other hand, the second constraint, that we not store biometric templates
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in the clear, would be satisfied if we could, as in many password authentication
systems, store the hash of the scan presented at enrollment time and compare
it with the hash of the scan presented at verification time. However, since each
independent biometric scan is in general different, we cannot compare hashed
templates.

In this paper, we present and empirically evaluate a scheme that solves both
problems, using noisy biometrics for secret key management without persistent
storage of biometric templates. After providing some background on previous
work in this area, we introduce our scheme.

1.1 Related Work

There has been considerable research in recent years on the use of biometric
information to reliably generate (not necessarily cryptographic-quality) keys
that can be put to use for authentication, access control, and private commu-
nication. They fall into two groups.

The first group of approaches generate keys directly from the biometric mea-
surements. Among these approaches, Tomko et al. (1997) were the first to use
biometric information for cryptographic key generation. Their system gener-
ates a key directly from a fingerprint reading. As a more recent example, Goh
and Ngo (2003) generate cryptographic keys by discretizing random projec-
tions of images of the user’s face. Since these schemes derive keys directly from
the biometric measurements, their main limitation is that they do not provide
any assurance about the cryptographic quality of the generated key.

The second group of schemes recognize that uniform random keys should be
generated using standard cryptographic methods. These schemes allow the use
of arbitrary keys at enrollment time then use a verification-time biometric scan
and some form of error correction in the key recovery process. Monrose et al.
(1999) introduce the concept of hardened passwords, which combine users’
passwords with information about their keystroke patterns (e.g. durations of
and time intervals between keystrokes) that must be reproduced at login time
to gain access to a system. In a follow up paper, Monrose et al. (2001) use
similar techniques to combine passwords with information about users’ voices,
which are recorded as they speak their password. The hardened password
approach allows for storage and recovery of an arbitrary secret, but the main
limitation of the existing schemes is the relatively low entropy of the biometric
information used to recover the secret (approximately 15 bits for Monrose et al.
(1999) and 46 bits for Monrose et al. (2001)).

Beyond hardened passwords, all of the recent biometric key management
schemes published thus far make use of the seminal theoretical contributions

3



ACCEPTED MANUSCRIPT 

of the fuzzy commitment technique by Juels and Wattenberg (1999) and the
fuzzy vault technique by Juels and Sudan (2002). Uludag et al. (2005) imple-
ment a fuzzy vault using fingerprint biometrics. Their system requires images
that are aligned by a human expert. It allows a 128-bit key size with a FRR
of 21%. Hao et al. (2006) present a smart card-based system using fuzzy com-
mitment and iris scans. For error correction, they use a concatenated coding
scheme comprised of Reed-Solomon and Hadamard codes. They allow key sizes
up to 140 bits with a FRR of 0.45%. Santos et al. (2006) give a handwritten
signature-based implementation of the fuzzy vault scheme. They perform auto-
matic alignment of signatures (in contrast to the manual alignment of minutiae
points by Uludag et al. (2005)). The system allows 128-bit keys with a FRR of
57%. The FAR is 1.18% for skilled forgeries and 0.32% for random forgeries.
In a more recent work, Yang and Verbauwhede (2007) present a system based
on iris scans and fuzzy commitment. They allow 92-bit keys with a FRR of
0.8%.

1.2 Our Scheme

Although modern key management schemes based on iris scanning achieve im-
pressively low error rates, they are still limited by short key lengths. For exam-
ple, Advanced Encryption Standard (NIST, 2001), the international standard
cipher, provides for key sizes of 128, 192 or 256 bits. Yang and Verbauwhede
(2007) generate 92-bit keys, which are too short for use with AES. Though
Hao et al. (2006) produce 140-bit keys, which are sufficient for AES-128, they
are not long enough for AES-192 or AES-256. More importantly, in the case of
smart card theft, these systems’ effective key sizes are much lower than their
actual key length, making brute force attacks nearly tractable. This vulnera-
bility will be further discussed in section 6.

Why is it difficult to build biometric key management systems that allow
storage of long keys? For schemes based on error-correcting codes, the answer
lies in an intriguing set of tradeoffs between error correction capability, key
size, and biometric verification accuracy. We will discuss these issues in detail
in the rest of this paper, but intuitively, regardless of the code, as the key
size grows, the error correction region for each codeword necessarily shrinks,
requiring a less noisy biometric to maintain the same biometric accuracy.

To address this problem, we propose a method for cryptographic key man-
agement using biometrics that achieves substantially greater key lengths than
previous systems without compromising biometric verification accuracy. Our
scheme relies first on an error-correcting code that allows fine-tuning of the
key size in relation to the error correction capability and second on new meth-
ods for reducing biometric noise that include reliable region selection, reliable
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K′RC C′R

Enrollment Verification

Fig. 1. Overview of proposed system. K is the secret key, W and W ′ are biomet-
ric readings at enrollment and verification times respectively. R represents secret
recovery string. K and K ′ are equal if W and W ′ are from the same person.

bit selection and one-sided masking. The combined scheme allows the use of
260-bit keys with no errors on the University of Bath iris data set (University
of Bath, 2004).

The system generates a secret key using traditional cryptographic methods
and then encodes it using the user’s iris template. The key and the template
are bound monolithically in such a way that it is difficult to retrieve either
the key or the template from the bound value. We encode the key using a
Bose-Chaudhuri-Hocquenghem (BCH) code and this encoded key is XORed
with the biometric template as suggested by the fuzzy commitment scheme
of Juels and Wattenberg (1999). We store the output on a smart card, and
at verification time, we use the data stored on the smart card to recover the
original key. Figure 1 gives an overview of the system.

In our scheme, obtaining long keys without sacrificing verification accuracy
means that biometric noise must be minimized. As in many pattern recogni-
tion problems, feature selection can reduce the effects of biometric noise and
increase biometric verification accuracy. Many systems thus mask out cor-
rupted or unreliable regions of the biometric pattern at enrollment as well
as verification time. But since BCH codes require full-length codewords for
decoding, we cannot apply this approach directly. We therefore introduce one-
sided masking, in which masks are calculated and incorporated for enrollment
images but not for verification images.

The rest of this paper is organized as follows. In Section 2, we introduce
readers to error correction coding, provide an overview of BCH codes, and
describe the fuzzy commitment scheme of Juels and Wattenberg (1999). The
proposed system is presented in Section 3. Section 4 describes an experimen-
tal evaluation of our scheme. Section 5 gives a comparison of our scheme with
existing work. In Section 6, we analyze the security of our scheme. In Sec-
tion 7, we introduce a slight modification of the proposed scheme for use on
more challenging datasets. The practical implementation issues are discussed
in Section 8. Finally, Section 9 concludes the paper and discusses directions
for further research.
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2 Background

2.1 Error-Correcting Codes for Biometrics

Error-correcting codes are widely used in the field of telecommunications.
Their role is normally to correct errors introduced during transmission over a
noisy channel. Researchers in biometrics and cryptography have suggested the
use of error-correcting codes for overcoming the noisiness typical of biometric
data. Biometric readings acquired from the same user at enrollment and verifi-
cation time can be treated as data transmitted and received, respectively, over
a noisy channel. Depending on the characteristics of the noise for a particular
biometric measurement, error-correcting codes may be useful for eliminating
the differences between enrollment and verification readings.

In coding theory, the original data to be transmitted is called an information
word or a message. Before transmission, some redundancy is added to each
information word, resulting in a larger codeword. This redundant data helps
in reconstructing the transmitted codeword from the received codeword. Each
error-correcting code has a bound on the number of errors it can correct in a
received codeword. This bound is a code’s error correction capability or error
correction distance. Any block code can be described by a tuple (n, k , t), where
n is the size of each codeword, k is the size of each information word, and t is
the error correction capability of the code.

Bose-Chaudhuri-Hocquenghem (BCH) codes form an important class of cyclic
block error-correcting codes that can correct multiple random errors in a re-
ceived codeword. BCH codes are among the most widely used block codes be-
cause their algebraic structure makes encoding and decoding simple. Efficient
decoding algorithms exist for BCH codes; the most popular is the Berlekamp-
Massey algorithm. BCH codes exist for a wide range of parameters, and they
typically perform better than other block codes when the code rate k/n is
large. For a detailed treatment of error-correcting codes, there are many good
texts, e.g., Berlekamp (1984); Blahut (1983); Lin and Costello (1983).

2.2 Fuzzy Commitment

The fuzzy commitment scheme Juels and Wattenberg (1999) is an error-
tolerant version of conventional cryptographic bit commitment schemes. In
a bit commitment scheme, a sender possesses a secret bit and generates an
encryption or commitment of that bit using a key called a witness. The re-
ceiver can retrieve the bit from the commitment (open it) using the witness.
A cryptographic bit commitment scheme is concealing if it is difficult for the
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receiver to open the commitment without the witness. A scheme is binding
if it is difficult to provide a witness that, when paired with a commitment,
allows opening to a bit different from the originally committed bit.

Fuzzy commitment differs from the conventional cryptographic bit commit-
ment in two ways:

(1) The scheme commits a binary string instead of a single bit.
(2) The commitment can be opened with a witness that is sufficiently close

to the original witness rather than identical to it.

The fuzzy commitment scheme contains two functions: the commitment func-
tion F and the decommitment function f . The commitment function is defined
by

F (c, x) = (h(c), (c⊕ x)) = (h(c), δ)

where c ∈ {0, 1}n is a randomly selected codeword from an error-correcting
code (secret), x ∈ {0, 1}n is the biometric reading of the user (witness),
h(c) is the hashed value of the secret obtained through some hash function
h : {0, 1}n 7→ {0, 1}l and δ is the commitment of the secret. The decommit-
ment function is defined by

f(x′, δ) = f(x′ ⊕ δ) = f(c⊕ (x⊕ x′) = c′

where x′ is the new witness. The decommitment is successful if the values h(c)
and h(c′) are equal.

3 Proposed System

We propose a system for biometric key management where we avoid cleartext
storage of both keys and biometric templates. Instead we generate secret re-
covery information and store it on a smart card. In our system, the user has
two secrets, 1) the secret recovery information stored on the smart card, and
2) a biometric secret. This makes it difficult for an adversary to obtain the
user’s key unless he or she acquires both of these secrets.

3.1 Biometric Enrollment Process

During the enrollment phase, four important procedures are performed. First,
we generate iris templates using existing template generation methods. Sec-
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Fig. 2. Iris template generation process. The eye image is from the Bath dataset.

ond, we mask out those regions of the template that correspond to unreliable
parts of the iris image. Third, we analyze the reliability of the individual bits
in the template. Fourth, we generate a key using existing cryptographic tech-
niques then encode it using a BCH code, the iris templates, and the reliable
bit information. We describe each of these procedures in turn.

3.1.1 Iris Template Generation

Our scheme uses iris scans to encode keys. In an iris recognition system, the
user presents his or her eye to an iris sensor, which images the user’s iris and
generates a template from this image. Most iris scanners use near infrared
illumination with normal monochrome CMOS or CCD camera sensors that
are sensitive to near infrared light.

After image acquisition, we use Masek and Kovesi’s algorithm (Masek, 2003;
Masek and Kovesi, 2003) for iris template generation with some modifications.
The algorithm is based primarily on the methods given by Daugman (2003).
Generating an iris template from a raw eye image involves three steps, namely
iris segmentation, iris normalization, and iris feature encoding. Figure 2 shows
the iris template generation process schematically.

The goal of the iris segmentation procedure is to segment the annular iris
region from the rest of the image. First, it finds the circular inner and outer
boundaries (the iris-pupil and iris-sclera boundaries) of the iris using a circular
Hough transform. Then it marks the region of the annular iris ring that is not
visible due to eyelids and eyelashes. Masek and Kovesi’s method uses a linear
Hough transform to find the eyelids. They find the single best-fitting lines for
the upper and lower eyelids. We, on the other hand, find two lines for each of
the upper and lower eyelids. We first find the area of interest for the upper
eyelid and then divide it horizontally into two equal-width parts. For each of
these parts, we find the best-fitting line and join the two lines. We repeat the
same process for the bottom eyelid. Figure 3 illustrates the two methods on
the same iris image. Eyelashes covering the iris region are detected using a
simple thresholding technique.

The iris normalization procedure transforms the segmented iris region into
a rectangular shape with fixed dimensions. Iris images taken under different
conditions can have different sizes due to differences in camera focal length,
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(a) Masek and
Kovesi’s method

(b) Proposed
method

Fig. 3. Eyelid detection.

distance to the subject, contraction or expansion of the pupil, or orientation
of the eye with respect to the camera. To eliminate the effects of these factors,
iris normalization transforms the iris annular region to a rectangular grid of
fixed size using a polar to Cartesian transformation and bilinear interpolation.
In our work, we use a rectangular grid of 240×20 pixels. Since the subsequent
steps described below include convolution with Gaussian and log-Gabor ker-
nels, to minimize the effect of detected corrupted regions on convolution results
for neighboring valid pixels, we set the intensity of corrupted regions to the
neighborhood’s mean intensity.

The feature encoding procedure encodes the normalized iris image as a bi-
nary string. To encode the normalized iris image, we first apply Gaussian
blur. We find that blurring the image at this stage reduces intra-class as well
as inter-class Hamming distances. This is a desirable property in biometric
key generation systems because lower error correction thresholds mean larger
key sizes. At each pixel in the 240× 20 image, the feature encoding procedure
extracts information about local texture characteristics as described by convo-
lution with a horizontal one-dimensional log-Gabor wavelet filter 1 whose real
and imaginary components form a quadrature pair. Field (1987) describes the
frequency response of a log-Gabor function as

G(f) = exp

(
−(log(f/f0))

2

2(log(σ/f0))2

)

where f0 is the base frequency and σ is the bandwidth of the filter. Figure 4
shows an example of a 1D log-Gabor wavelet filter.

Following Daugman (2003), the method discards the amplitude of the complex-
valued response and quantizes the phase so that only its quadrant in the
complex plane is retained, using a two-bit grey code. The result is a 9600-
bit template (240 × 20 × 2), which is combined with the corrupted bit mask

1 Log-Gabor filters are Gaussian on a logarithmic spatial frequency scale whereas
Gabor filters (Daugman, 1985) are Gaussian on a linear spatial frequency
scale (Daugman, 1985; Field, 1987). Masek uses the log-Gabor filter mainly to elim-
inate the Gabor filter’s DC response.

9



ACCEPTED MANUSCRIPT 

−150 −100 −50 0 50 100 150

−0.04

−0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

Position

A
m

pl
itu

de

Real Component

−150 −100 −50 0 50 100 150
−0.1

−0.05

0

0.05

0.1

Position

A
m

pl
itu

de

Imaginary Component

Fig. 4. Real and imaginary components of a 1D log-Gabor wavelet.
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computed in the segmentation stage.

3.1.2 Iris Template Comparison

For iris template matching, the most common metric used is the Hamming
metric. The normalized Hamming distance between two binary strings is the
number of positions in which the strings differ from each other divided by the
size of each string (Daugman, 2003):

HD(T1, T2) =
‖T1 ⊕ T2‖1

9600
, (1)

where T1 and T2 represent the two templates to be matched and ‖·‖1 represents
the L1 norm.

When information about masked (corrupted) bits is incorporated, the Ham-
ming distance excludes bits in the template that are marked as corrupted by
the corresponding mask:

HD(T1, M1, T2, M2) =
‖(T1 ⊕ T2) ∩M1 ∩M2‖1

‖M1 ∩M2‖1
, (2)

where T1 and T2 represent the two templates to be matched, M1 and M2

represent corresponding masks, and ‖ · ‖1 represents the L1 norm. Our system
does not incorporate the Hamming metric directly, but as we shall see in
Section 4.4, it is straightforward to relate a particular chosen BCH code’s
error correction capability to a threshold on the Hamming distance between
enrollment and verification templates.

3.1.3 Selection of Reliable Regions

Some regions of a given person’s iris tend to be more reliable than others for
template generation. Less reliable regions include those that are close to the
pupil-iris boundary and the iris-sclera boundary. These regions are unreliable
due to imperfect detection of the inner and outer iris circles. Iris regions close
to the upper and lower eyelids are also less reliable because they are often
occluded by eyelids and eyelashes. During the reliable region selection phase,
we add these less reliable regions to the corrupt bit mask previously calcu-
lated during the template generation stage. Figure 5 shows an image with less
reliable regions marked.
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Fig. 5. Reliable region selection. Unreliable regions are masked out and shown in
red. Regions close to the pupil circle, iris circle, upper eyelid and lower eyelid are
not reliable.

3.1.4 Selection of Reliable Bits

When a user wishes to enroll in the system, he or she presents n independent
iris scans. In our experiments, we use n = 3. For each iris scan, we generate a
9600-bit template and mask as described in Sections 3.1.1 and 3.1.3. We call
these n templates base templates.

To derive a unified final template W , we first determine which bits are re-
liable in that they are both unmasked (not corrupted) and equal over all n
base templates. Yang and Verbauwhede (2007) use a similar technique without
considering any corrupt bit information. We found that the recognition per-
formance is significantly improved when masking information is incorporated
in reliable bit selection. Among these reliable bits, we select the first 4095 bits
for the final template. In addition to final template, we create a 9600-bit flag
vector F indicating the positions of these reliable bits.

After the system creates a user’s final template W and flag vector F , it stores
the flag along with an encoded version of the final template (see next section)
on the user’s smart card. The reliable bit selection process is illustrated in
Figure 6.

3.1.5 Key encoding using BCH and the iris template

As previously discussed, our scheme provides for generation and recovery of
260-bit keys. At enrollment time, we pick 260 bits at random as the user’s
secret key K . We then compute the hash H ← H(K ), where H() is a collision-
resistant hash function, and store H on the user’s smart card. H is used to
verify K when it is later regenerated.

In parallel, we compute C ← E(K ), where E() is a (4095, 260, 696)-BCH
encoder. This BCH code has an information word size of 260 bits, a codeword
size of 4095 bits, and an error correction distance of 696 bits. We XOR the
4095-bit encoded value C with the final template W resulting in a recovery
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Fig. 6. Generation of final template. For purpose of illustration, we use 12-bit tem-
plates. There are 10 bits that are identical in all three base templates. Among these
10 bits, 3 are corrupted (as indicated by a value of 0 in the mask) in at least one of
the scans. Therefore the final template contains 7 reliable bits and the flag specifies
the locations of these reliable bits.

Smart 
Card

BCH 
Encoding

Base 
Template 

Generation

K
C

Base Template 1 + Mask 1

R

H

Reliable Bit 
Selection

Base Template 2 + Mask 2

Base Template 3 + Mask 3

Base Template n + Mask n

Iris Scan 1

Iris Scan 2

Iris Scan 3

Iris Scan n

W
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Hashing

Fig. 7. Enrollment process. The user’s secret key K is hashed to obtain H and
encoded to obtain C . C is XORed with iris template W to obtain recovery infor-
mation R. H and R are stored on the user’s smart card with reliable bit flag vector
F .

string R that is used to regenerate K at verification time using a fresh iris
scan. The resulting string R is stored on the smart card along with F and H .
Figure 7 shows the entire enrollment process schematically.

3.2 Biometric Verification Process

The verification process is in some ways similar to the enrollment process.
The user presents his or her eye to the iris sensor along with his or her smart
card. We generate a verification-time iris template W ′ from the user’s iris
image. Then we XOR W ′ with the recovery information R, decode it to get a
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Fig. 8. Reliable bit selection during verification. We copy bits from the base template
to the final template W ′ if the corresponding flag bit is 1.

candidate key K ′, and finally verify that K ′ = K using the stored hash H .

To compute W ′, we first generate a base template from the user’s iris scan
using the procedure described in Section 3.1.1. However, the reliable bit selec-
tion process is necessarily different from the process used for enrollment. The
user only presents one template, and no mask is generated. The reason we do
not use the verification-time mask is that the recovery string R stored on the
smart card was generated using the enrollment-time reliable bits and cannot
be changed at verification time. Therefore, to align the verification template
bits with the bits of R, we simply select 4095 reliable bits from the 9600-bit
verification-time base template as indicated by the flag vector F stored on
the smart card. The procedure for verification-time reliable bit selection is
demonstrated in Figure 8.

To recover the user’s secret key, we XOR W ′ with R to get the string C ′

and compute K ′ ← D(C ′), where D() is a (4095, 260, 696)-BCH decoder. We
next compute H ′ ← H(K ′). Finally, we compare H ′ with the enrollment-time
hash H stored on the smart card. If H ′ = H , the user is accepted; otherwise
he or she is rejected. If the user is accepted, K ′ can be used in the targeted
cryptosystem. It must be noted that head tilt and camera angle often cause
rotational inconsistencies. To overcome this problem, we perform 8 rotations
of 2 bits each in the clockwise as well as the counterclockwise direction on
the verification-time iris template and, each time, try to generate the hashed
secret H after performing reliable bit selection, BCH decoding and hashing.
If there is no rotation for which H = H ′, we reject the user.

Since our BCH code is able to correct up to 696 corrupted bits, and the iris
template W is 4095 bits, the error correction capability of our system is 17%.
This means that if the Hamming distance between two iris templates is less
than 17%, our system will treat the two templates as belonging to the same
user. If the Hamming distance between two templates is more than 17%, the
system will be unable to recover K from C ′ and will reject the user as an
intruder. Figure 9 shows the verification process schematically.
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Fig. 9. Verification process. The reliable bit flag vector F , recovery information R,
and hashed key H are stored on the user’s smart card. W ′ is constructed from the
user’s iris scan and F . W ′ is XORed with R to obtain codeword C ′. The recovered
key K ′ is hashed to obtain H ′, which is compared to H for verification. The user is
accepted and K ′ is usable if H ′ = H .

4 Experimental Evaluation

4.1 Iris Database

We performed an experiment using the University of Bath iris dataset (Uni-
versity of Bath, 2004) to evaluate the key size and biometric accuracy of our
scheme. The free version of the University of Bath iris dataset consists of 1000
high resolution iris images acquired from 25 subjects. There are 40 images for
each subject, taken in one session, 20 each for both left and right eyes. We
tested our algorithm on the right eye images of all 25 subjects. For each sub-
ject, we used the first three images for training and the remaining 17 images
for testing. Therefore our training set contains 75 images while our testing set
has 425 images.

4.2 Base Templates

We ran Masek and Kovesi’s segmentation algorithm (Masek and Kovesi, 2003)
on each of our 500 Bath images. The algorithm accurately located the pupil
and iris in 81% of the images. We manually located the pupil and iris in the
remaining images then performed the rest of the base template extraction
procedure as described in Section 3.1.1.
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4.3 Final Enrollment Templates

We first computed base templates for each of the images. Then we performed
reliable bit selection using each subject’s 3-image training set as described in
Section 3.1.4. This resulted in generation of a final template along with a flag
vector for each of the 25 Bath subjects.

4.4 Verification Results

We performed all 425 possible within-class comparisons and all 10,200 possible
between-class comparisons using the methods described in Section 3.2. We
observed a perfect recognition rate of 100% with no false positives or false
negatives.

Traditional biometric authentication systems based on iris templates compare
enrollment-time and verification-time templates using Hamming distance. By
varying the Hamming distance threshold at which two templates are deemed
from the same person, the tradeoff between false accept rates and false reject
rates can be manipulated.

In our scheme, on the other hand, we verify by generating a candidate key K ′,
hashing it to obtain H ′, and comparing it with the hashed key H stored on
the user’s smart card, rather than comparing the enrollment and verification
templates directly. However, H and H ′ will be equal whenever the Hamming
distance between the enrollment template W and the verification template
W ′ is below a threshold determined by the error correction capability of the
specific BCH code we use.

Table 1 shows how the effective Hamming distance threshold can be manip-
ulated by varying the error correction capability of the BCH code. The table
shows that the scheme is flexible enough to allow a number of practical thresh-
olds.

5 Comparison with Existing Systems

The results reported in the previous section compare favorably with the best
existing systems. Ours is the first biometric key management scheme allowing
key lengths long enough for 256-bit AES. It is the first system that achieves
an EER of 0%, and the results reported here form the first experimental
evaluation of a biometric key management scheme published using a public
iris dataset. In contrast to previous systems, it also achieves a higher level of
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Error Correction HD Key Size FRR FAR
Capability Threshold (Bits) % %

(Bits)

573 0.14 322 1.88 0

614 0.15 322 0.47 0

655 0.16 322 0.24 0

696 0.17 260 0 0

737 0.18 176 0 0

778 0.19 98 0 0

819 0.2 98 0 0.058

860 0.21 98 0 0.167

901 0.22 47 0 0.35
Table 1
Verification results using different error-correcting codes. The Hamming distance

(HD) threshold is the ratio of error correction capability to the iris template
size (4095 bits). We select error correction capabilities that correspond to desired
rounded-off HD threshold values. The key size decreases as the error correction ca-
pability increases, and vice versa. We obtain the best performance, shown in bold
face, with an error correction capability of 696 bits, corresponding to a HD threshold
of 0.17.

Researcher(s) Biometric Trait Key Size FRR
Used (Bits) (%)

Monrose et al. (1999) Keystroke patterns 15 18

Monrose et al. (2001) Voice 46 17

Goh and Ngo (2003) Face recognition 80 0.93

Uludag et al. (2005) Fingerprints 128 21

Hao et al. (2006) Iris recognition 140 0.47

Santos et al. (2006) Handwritten signatures 128 57

Yang and Verbauwhede (2007) Iris recognition 92 0.8

Ziauddin and Dailey (2009) Iris recognition 260 0

Table 2
Comparison of proposed scheme with past work. The proposed system allows the

longest key so far, with perfect verification accuracy on a publicly available dataset.

security against brute force attacks, as we will explain in Section 6. Table 2
compares our system to existing key management schemes.
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In Table 2, there are three systems that use iris recognition for key generation.
All three systems are based on the theory of the fuzzy commitment scheme and
use error correcting codes for error removal. Hao et al. use concatenated codes,
Yang and Verbauwhede use a two-block BCH code, and we use a single-block
BCH code. Due to the similarity of these systems, we find it appropriate to
compare our system with the other two in more detail. One major advantage
of our scheme over the other two schemes is generation of much larger keys.
Further advantages are listed below.

5.1 Comparison with Hao et al.

We use a single-block BCH code in contrast to the concatenated error-correction
coding scheme used by Hao et al. Using a single block code is important be-
cause it gives us error correction that is uniform over the codeword and fine-
grained control of the tradeoff between error correcting capability and key size.
In the concatenated coding scheme of Hao et al., there are two coding layers,
where the inner coding layer is dependent on the outer layer and vice versa. It
is therefore more difficult to tune their scheme, and the method’s actual error
correction capability depends on the type and location of the errors.

To verify this claim, we implemented and conducted an experiment using Hao
et al.’s concatenated coding scheme with the Bath dataset. Hao et al. state that
their system is able to correct errors between enrollment- and verification-time
iris templates in up to 27% of the bits. We performed a total of 475 intra-class
comparisons using raw templates of size 2048 bits, without our masking or
other error reduction techniques. Among these comparisons, the true positive
comparison with the largest bit error rate had an error of 25.39%, while the
false negative with the smallest bit error rate had an error of 19.87%. Our
implementation was able to correct errors in only 5 out of 48 comparisons
in which the error rate was between 25% and 27%, and in some cases, even
though the error rate was far below 27%, the concatenated code was unable
to correct the errors.

This experiment shows that although the Hao et al. scheme works very well
for their experimental setup, the concatenated error-correcting code is not
necessarily suitable for the error distributions in all datasets, at least with our
implementation of the scheme. We thus argue that a single block code that
provides precise control on the amount of random error correction capability
is more generally applicable.
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5.2 Comparison with Yang and Verbauwhede

Besides the larger key size highlighted in Table 2, the main differences between
the proposed scheme and that of Yang and Verbauwhede are listed below.

(1) To reduce the intra-class bit error rate, Yang and Verbauwhede use re-
liable bit selection. We, in addition to reliable bit selection, use reliable
region selection, Gaussian blur, and one-sided masking techniques. To
gauge the relative merits of these approaches, we performed a small ex-
periment, using 10 images for each of 5 randomly selected subjects in the
Bath dataset and comparing the bit error rates output by both schemes.
With no special technique used for error reduction, the mean bit error
rate was 17.6%. This decreased to 9.6% with reliable bit selection and
3.6% with all of the proposed enhancements. This demonstrates that the
improvement achieved by our method is substantial.

(2) Yang and Verbauwhede use a two-block BCH code whereas we use a
single-block BCH code. The motivation for the two-block code is appar-
ently efficiency and a larger code rate (k/n) but has the drawback that
it provides a non-uniform error correction. Our design gives us flexibility
to select code parameters to achieve a desired error threshold without
making any assumption about equal error distributions in the two halves
of the template.

(3) Most importantly, Yang and Verbauwhede do not provide any security
analysis of their system. As the generated keys are intended for use in
cryptographic applications including encryption, message authentication,
and identity authentication schemes, key secrecy must be protected. We
find two vulnerabilities in the Yang and Verbauwhede system that could
potentially be exploited by an adversary.
(a) As we will show in Section 6, an expert attacker, having obtained

a user’s smart card, could potentially extract the user’s key in 211

attempts using a brute force attack. The same attack against our
scheme would require 290 attempts. To translate this into time, con-
sider an attacker able to generate and test one key per second. The at-
tack would take 34 minutes (211 seconds) for Yang and Verbauwhede’s
system or 3.9 ∗ 107 trillion years (290 seconds) for our system.

(b) Yang and Verbauwhede use 1096 iris bits for their system. To equate
the number of iris bits with the codeword size, they append 950 zero
bits to their iris template. We understand that, for datasets having
large bit error rates, the error correction bounds on the binary block
codes dictate the use of smaller template size as compared to the
codeword size. But the zero-padding means that if an attacker gains
access to the smart card, he or she can examine the recovery informa-
tion (which is simply a codeword XORed with the iris template) to
determine 46% of the codeword bits. This partial information about
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the codeword could potentially be used by an expert attacker to re-
trieve the information word. To give a more secure solution to this
problem, in Section 7, we present a modification of the proposed
scheme for iris data containing large bit error rates.

6 Security Analysis

Here we perform an informal security analysis to establish upper bounds on
the security of the proposed system.

One straightforward brute force attack against our system would be to sys-
tematically search the 260-bit key space for the correct key. This step would
depend on the application; for example, if the application incorporated an en-
cryption scheme using the information word as a key, the step might amount
to encrypting an arbitrary message with the key and submitting the message
to a decryption oracle.

We emphasize that as long as the recovery information stored on the smart
card and the user’s iris code are kept private, the brute force attack or a more
sophisticated attack on the cryptosystem itself is the best an attacker can do.
Since our keys are up to 260 bits and they are generated by the cryptosystem
itself, the security of the cryptosystem will not be affected by our scheme.
For example, if our scheme was used with 256-bit AES, we would obtain the
security of 256-bit AES.

If, however, an attacker obtains the recovery information we store on the smart
card, his or her job could be substantially easier. As the recovery information is
the result of XORing a biometric template with a randomly-chosen codeword,
an attacker can guess either of the two to extract the other. We consider a
powerful attacker who has complete knowledge of the correlations present in
iris template space as well as complete knowledge of the BCH codeword space.

The degrees of freedom in iris templates has been estimated to be 249 bits (Daug-
man, 2003). This means that 249 bits of information is sufficient to reconstruct
a valid iris template for one person, and likewise, iris templates are capable of
representing the eyes of no more than 2249 unique individuals. If an attacker
had complete knowledge of the structure of the iris template space, he or she
could simply search the 249 bit iris space, each time generating a valid iris
template for an individual, using the generated iris template and the recovery
information from the smart card to retrieve the corresponding information
word, and then checking the correctness of the information word. However,
since our code corrects error rates up to 17%, in the worst case, the attacker’s
task becomes that of finding a 249-bit string within 42 bits of the target bit
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string. Following Hao et al.’s analysis based on the sphere-packing bound (also
called the Hamming bound), this would require as few as 290 computations.
Although 290 is much smaller than 2260, it is far better than any previously
reported system — a similar analysis for Hao et al.’s system and Yang and
Verbauwhede’s system results in attacks requiring only 244 and 211 attempts,
respectively.

7 A Modified Scheme for Noisier Iris Data

In this section, we present a slight modification of the proposed scheme use-
ful for overcoming the limitations of error control codes when the iris data
is noisier. As previously discussed, in cryptographic key generation systems,
it is not feasible to use masking information at verification time. This is a
problem, however, because in some cases, iris scans can be severely occluded.
For example, the CASIA dataset (CAS, 2004) contains images in which up
to half of the iris is not visible due to occlusions caused by eyelids and eye-
lashes. Obviously, when iris regions that were reliable at enrollment time are
compared with corresponding occluded regions at verification time, intra-class
Hamming distances will be increased. It is possible to get good equivalent er-
ror rates despite large intra-class distances in conventional iris recognition
systems, as long as the inter-class distances are even larger. For example,
a typical threshold for differentiating intra-class and inter-class comparisons
is around 40% for the CASIA dataset (Masek and Kovesi, 2003; Yang and
Verbauwhede, 2007). However, it is not possible to work with such high error
rates in systems using random block error correcting codes. There is no known
random error correcting code, other than trivial ones (k = 1 or k = 2), that
can correct even 25% bit errors in received codewords. To solve this dilemma,
the current state of the art is to either to use a maximum distance separable
(MDS) burst error control code to increase the error correction capability or
to use a larger codeword and append fixed number of zero bits to the iris
template to reduce the number of relative errors. Hao et al. use an MDS burst
error control code (a Reed-Solomon code) along with the Hadamard code. But
unfortunately, as mentioned earlier, their scheme is not universally applicable.
Yang and Verbauwhede use the zero-padding approach but unfortunately, as
mentioned earlier, this approach has repercussions from a security point of
view.

In this section, we briefly present a modification of our scheme along with an
experiment using CASIA version 3 dataset. Instead of appending the template
with a fixed-length string of zero bits, we generate a unique random string for
each user and append it to his or her template. As we will show, this technique
gives the same biometric accuracy as zero-padding without exposing any secret
data.
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The scheme is the same as the one presented in Section 3 with one small
change. At enrollment time, the n bit final template W is built by concatena-
tion of x reliable bits selected from the base templates and an n−x-bit random
string r generated by a pseudorandom number generator. The random string
is then stored on the server along with the user id. At verification time, the
n-bit final template W ′ is built by concatenating the x reliable bits selected
from the verification time template (using the flag F ) and the random string
r stored on the server. The rest of the process remains the same.

In order to evaluate the performance of this technique, we conducted an exper-
iment using the CASIA version 3 dataset (Interval). We used all 249 subjects
from the dataset and conducted the experiment using all right eye images of
those subjects. We used the same size for the base template and flag (9600
bits) and the same (4095, 260, 696) BCH code. We let x be 2048, making the
length of r equal to 2047 bits. Our experiments resulted in a FRR of 0.79%
and a FAR of 0.002%. The results show that it is practical to use the proposed
scheme with noisier iris data and still achieve very good recognition accuracy.

Next we briefly discuss the security of this modified version of the proposed
scheme. The user has two major secrets: the cryptographic key and the bio-
metric template. These secrets are not stored anywhere. Instead, we store some
side information which is split into two parts such that one part is stored on
the smart card and the other on the server. If an attacker steals the smart
card, he or she will get some partial information about the user’s secrets but,
as we have shown in Section 6, this information is insufficient for a practi-
cal brute-force attack against the system. On the other hand, if the attacker
breaks into the server and gets the user’s random string, it does not give him
any useful information as the random string is uniform and independent of the
key and template. Therefore, the attacker would have to not only break into
the server but also steal the smart card in order to obtain useful information
about the key or the template (getting both the smart card and the random
string would reveal half of the codeword, then the attacker would still have to
make some effort to recover the actual key).

Another possibility not requiring additional storage on the server would be to
use a password and generate the random string using the password as a seed.
However, this would not be user friendly, and it might introduce the possibility
of successful dictionary attacks. The approach based on server-side storage of
the random string allows processing of noisy iris data without requiring the
user to remember any password, and it is also not susceptible to dictionary
attacks.

22



ACCEPTED MANUSCRIPT 

8 Practical Considerations

We implemented the BCH encoder and decoder in Java by rewriting a C
implementation by Morelos-Zaragoza (2002). The implementation is quite ef-
ficient. On average, running on a Pentium 2.66 GHz processor with 2.5 GB
of RAM, the encoder takes 20 ms to encode a 260-bit key while the decoder
takes 240 ms to decode a 4095-bit codeword. After image segmentation, the
complete enrollment and verification processes take less than one second each.
Therefore, the system is practical in terms of time. The Masek Matlab seg-
mentation implementation we used in the experiments described here is quite
slow, but it could easily be replaced by a more efficient implementation, e.g.,
that of Ziauddin and Dailey (2009).

The key is generated using a pseudorandom number generator. For pseudo-
random number generation, we use the SecureRandom class of the Java API,
which uses SHA-1 as its foundation. Alternatively, we could use the well known
Blum Blum Shub PRNG (Blum et al., 1986) or any of the more efficient block
cipher-based PRNGs, e.g., Fortuna (Ferguson and Schneier, 2003).

On the issue of space utilization, the system stores 4095 bits of recovery in-
formation along with a 9600 bit flag on the smart card. In addition, the smart
card stores the hash of the generated key. We can use any cryptographic hash
function for this purpose, e.g., SHA-1 or SHA-2 (NIST, 1993). Using SHA-2
with a 256-bit message digest size, the total data storage required on the smart
card is 1.7 KB. Many modern smart cards have storage capacities in hundreds
of KBs so the storage requirement of the proposed scheme is quite practical.

9 Conclusion

In this paper, we presented a scheme for secret key generation and recov-
ery based on iris verification that, rather than storing keys or iris templates
persistently, stores recovery information on a smart card carried by the user.
Compared to traditional key management schemes, which are susceptible to
dictionary attacks, an attacker attempting to obtain a user’s secret key must
not only obtain the information encoded on his or her smart card, but must
also forge the user’s iris template. Properly integrated into a larger cryptosys-
tem, the approach could provide the basis of a practical and convenient means
to achieve authenticity and privacy for digital communications.

The system’s first main contribution is its generation of 260-bit cryptographic
keys which is, by far, the largest among all biometric key generation systems.
Second, it is the first biometric key generation system using iris scan which
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reports its results on a public iris dataset and achieves recognition accuracy of
100%. Third, we introduce reliable region selection, reliable bit selection and
one-sided masking techniques that can significantly decrease the intra-class
Hamming distances. Finally, we show that the system is secure if the smart
card is compromised and the attacker must still expend a substantial amount
of resources to recover the secret key or iris template.

In this paper, we have only considered the fuzzy commitment approach to
biometric key management with iris scanning. Another promising direction
for future research is the applicability of iris codes in Monrose and colleagues’
hardened password scheme (Monrose et al., 1999, 2001).
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