
Thai Voice Application Gateway
Dararat Kaitrungrit∗, Matthew N. Dailey∗, and Chai Wutiwiwatchai†

∗Computer Science and Information Management
Asian Institute of Technology

P.O. Box 4, Klong Luang, Pathumthani 12120 THAILAND
Email: u41dkr@hotmail.com, mdailey@ait.ac.th

†Human Language Technology Laboratory
National Electronics and Computer Technology Center (NECTEC)

Thailand Science Park, Klong Luang, Pathumthani 12120, Thailand
Email: chai.wutiwiwatchai@nectec.or.th

Abstract—Voice gateways enable the construction of interactive
applications that combine the telephone system with speech
recognition, speech synthesis, and information systems. A voice
gateway is an enabler that has the potential to broaden access
to the resources available on the Internet to include users that
have no computer, IP network connection, or Web browser.
However, commercial voice gateway technology is expensive,
and applying speech recognition and text-to-speech technology
to local languages is beyond the capabilities of most small
and medium-sized enterprises that could benefit from voice-
enabled applications. Towards solving this problem, we propose,
implement, and evaluate a low-cost Thai-language voice gateway
system based on open standards for speech technology and
existing open source software projects. Our system supports
the VoiceXML markup language for voice dialogs, the MRCP
protocol for communication with a speech engine provider, and
effectively recognizes and synthesizes Thai speech. The system
uses a client/server architecture separated into 3 main modules:
the VoiceXML interpreter, the speech engine interface, and the
telephone integration system. The current prototype still needs
improvement but is functional enough to provide a basis for
future enhancement and localization to other languages. We
have released the system as open source software for interested
developers.

I. INTRODUCTION

With modern speech recognition and text-to-speech technol-
ogy, the dream of talking naturally to computers is gradually
materializing. Voice recognition and synthesis technology is
already prevalent in interactive call center systems; to provide
a standard for voice-based applications that integrate with
the Web, the W3C has released VoiceXML [1]. VoiceXML
makes voice interfaces as easy to build, deploy, and use as
the browser-based interfaces that currently dominate the Web.
By combining telecommunications with the Web, developers
can take advantage of Web technologies within telephone-
based applications. This means that Web developers can in-
vent applications that can be accessed via many platforms.
However, existing VoiceXML development and deployment
platforms are either commercial or do not support the Thai
language. In this paper, we propose an architecture for an
open-source Thai Voice Gateway system, describe a prototype
implementation based on customization and integration of

existing open source software packages, and evaluate the
prototype on a simple example Thai-language enabled voice
application. The resulting open source software package,
available at http://webeng.cs.ait.ac.th/oslwiki/voicegateway, is
usable and ready for further enhancement by developers.

II. SYSTEM ARCHITECTURE

Our Thai Voice Gateway integrates speech, telephony, and
the Web to create conversation systems. Its client/server ar-
chitecture allows users to communicate from the telephony
system to a web application server and vice versa. It acts
as a central hub for communication among components via
VoiceXML (a markup language), which consists of XML tags
to instruct each component what command to execute and in
what order to execute them. Fig. 1 shows the broad architecture
of the system. The main components in the gateway involve
telephone management, the VoiceXML interpreter, and the
speech recognition and synthesis engines. The voice gateway
connects to back-end web applications using the HTTP pro-
tocol. This system allows an enterprise to develop business
logic one time, but allows that logic to be used from a variety
of devices such as web browsers, mobile phones, traditional
phones, and e-mail clients.

Here we describe the voice gateway’s implementation. It
integrates three components: a VoiceXML interpreter, a tele-
phony interface, and a speech engine interface. We began with
existing open source software, added necessary glue code, and
customized each module to support the Thai language.

A. VoiceXML Interpreter Interface

VoiceXML is a standard language released by the W3C
in 2001. It is used for the development of voice-based user
interfaces over telephones. It is an XML dialect for scripting
voice interactions between humans and computers. It allows
the developer to develop voice applications in the same way
as writing a web application. The basic element of interaction
is a spoken dialog. VoiceXML should be used with a speech
interface. This interface allows the system to generate prompts
using speech synthesis. It also processes spoken user responses



Fig. 1. Broad architectural view of our Thai Voice Gateway system.

Fig. 2. Architecture of a VoiceXML interpreter server. Adapted from [1].

by using automatic speech recognition (ASR) and grammars
defined in the VoiceXML program. Web application develop-
ers can output a VoiceXML script from the server side, and
the script can then be rendered on a browser that supports
the VoiceXML language, or by a voice application gateway.
Fig. 2 shows that a VoiceXML application is responsible
for processing requests from users by detecting incoming
calls, answering those calls, and downloading the appropriate
VoiceXML documents from the Internet. The document server
replies to the VoiceXML interpreter, which processes the
dialogs in the returned VoiceXML document. The VoiceXML
interpreter is responsible for controlling the implementation
platform to interact with the user through actions such as
numeric or spoken input and system events such as recording
timeouts and client disconnects.

Our VoiceXML interpreter component is implemented by
the open source JVoiceXML library. JVoiceXML is written
entirely in Java. The main function of JVoiceXML is to inter-
pret VoiceXML tags and process instructions according to the
specified dialog flow by receiving input and returning output
through the telephony interface. Our version of the module
enhances the original JVoiceXML package by customizing the
Menu class to support auto-generated grammars, customizing

Fig. 3. An example XML grammar prompting the caller to speak one of
four ice-cream flavors, “vanilla,” “strawberry,” “cookie and cream” or “green
tea,” in Thai. For more details on the XML grammar format, refer to [2].

Fig. 4. An example grammar written in ABNF notation, for a drink ordering
application. The speech engine accepts user utterances such as “I would like
a small Pepsi” in Thai. For more details, refer to [2].

the Audio class to stream audio files back to the telephone,
and implementing a grammar plugin to support both of the
standard grammar specification formats, XML and BNF. With
our modifications, JVoiceXML XML and BNF grammar files
now support the Thai character set, as shown in Fig. 3 and
Fig. 4.

B. Telephony Interface

This module uses the open source Asterisk PBX to han-
dle telephone system interaction. Asterisk not only supports
traditional phone equipment, but it also enhances them with
additional capabilities. Users use Asterisk by making a call.
Asterisk provides internal management capabilities for infor-
mation such as personal data and business data. One advantage
of building on Asterisk is that it supports multimodal inter-
action. SIP (the Session Initiation Protocol), defined by an
IETF standard, comes from the VOIP community. It defines
the establishment of multimedia sessions. These sessions are
used for real-time data communication sessions such as audio,
video, or instant messaging. SIP signaling uses a text-based
protocol similar to the HTTP protocol. It is one of the most
important protocols built into Asterisk because it supports
mobility. The media stream is associated with the user, and
not with the specific devices currently being used. A SIP user
can register his location from a variety of devices.

To connect Asterisk and JVoiceXML, we use the Asterisk-
Java library to communicate with JVoiceXML over TCP. The
Asterisk-Java library allows developers to write Java programs
to manage an Asterisk PBX through an API including com-
mands to answer, hang up, record audio, or play audio [3].



C. Speech Engine Interface

The last module in our system is the speech processing
engine, which provides JVoiceXML with synthesis and recog-
nition services according to a VoiceXML dialog. To support
the Thai speech engines provided by NECTEC, we must
implement or customize two components: the Thai speech
engine interface and the MRCP protocol interface. In the voice
gateway, JVoiceXML acts as a client and makes requests to
the speech engine server through the MRCP protocol [4]. The
MRCP specification is defined by the IETF as a standard
protocol for speech interfacing. It uses text to send and receive
messages between client and server resources, with additional
mechanisms to transmit embedded binary data. It is used to
control and communicate with a speech engine by defining the
requests, responses, and events to process the stream.

The MRCP open standardized protocol allows VoiceXML
platforms to communicate with speech resource engines. It
is used to manage media processing resources that provide
speech services such as automatic speech recognition (ASR),
speech synthesis (TTS), speaker verification, and speaker iden-
tification. It enables the VoiceXML platform to be deployed
separately from the speech resources and allows a VoiceXML
platform to integrate components from multiple speech engine
providers. For example, a VoiceXML platform can use ASR
and TTS engines from one provider for one set of languages,
and use another provider for another set of languages. Speech
technology providers can add value to their products without
changing the user interface.

We built a MRCP server wrapping NECTEC’s Thai speech
recognition and synthesis engines using Cairo [5], an open
source MRCP server. Here we describe the design and imple-
mentation of our MRCP-compliant Thai speech recognition
and synthesis resource server.

1) Thai speech recognition resource: To create the Thai
speech recognition resource, we implemented the following
classes:

• iSpeechReceiverResource: This is the main
class for the speech recognition server. After
iSpeechReceiverResource is started, it listens
on a port defined in the configuration files and
registers its service with the ResourceServerImpl
class. ResourceServerImpl acts as the media
resource pool; it waits for requests from the client
and sends each request to a responsible resource.
iSpeehReceiverResource invokes the Thai speech
engine class to interpret the input speech, encapsulate
the result text in a MRCP message, and send the MRCP
response message back to the client. Developers have
to implement their own version of this class anytime
they want to deploy additional resources on the MRCP
server.

• iSpeechRecEngine: This class recognizes the input
wave form by invoking the iSpeech implementation class.
It handles the entire recognition process including getting
the result from the Thai speech recognizer. A schematic

Fig. 5. Process diagram for speech recognition. On the server we need two
input parameters: wav file and a grammar file. The server process validates
the input files, loads the dictionary, and generates the result text.

of the speech recognition process is shown in Figure 5.
• MrcpRecognitionClient: This class acts as the

client making recognition requests to the MRCP server.
One instantiation of this class supports one recognizer
session. It has to send a grammar file and write the speech
wave form into the voice channel.

• NativeMediaClient: This utility class is used for
sending or receiving media streams in each session. We
implemented this class using the Java Media Framework
(JMF). It can read a media file, play a received audio
stream, and sink a stream to a sound file.

2) Thai speech synthesis resource: To create the Thai
speech synthesis resource, we implemented the following
classes:

• TransmitterResource: This is the main class
for the speech synthesis server. We created the
TransmitterResource class in the same man-
ner as iSpeechReceiverResource. It invokes the
MrcpSpeechSynthChannel class to synthesize the



Fig. 6. Process diagram for speech synthesis or text-to-speech (TTS). The
TTS engine converts normal input text into a speech file at a specific location.

speech when requested by a client.
• MrcpSpeechSynthChannel: This class synthesizes

speech and sends an audio stream back to a session
media channel. The speech synthesis process is shown
in Figure 6.

• MrcpSpeechSynthClient: This class acts as the
client sending speech synthesis requests to the MRCP
server. The role of MrcpSpeechSynthClient is to send
input text, handle the MRCP response event, and convert
the synthesized speech to an audio file.

III. EVALUATION

To evaluate the proposed architecture, design, and prototype
implementation, we developed a small voice application. The
application runs under the voice gateway with the integrated
Thai speech engine provided by NECTEC. As an experiment,
we provided 60 short sentences consisting of 7 or 8 continuous
words, and stored them in the dictionary. Approximately 70%
were correctly recognized over 20 trials. The performance
of the system is limited in terms of speed, due to time
consumed in the recognition process. Currently, the time for
recording is fixed at 10 seconds for every recording. After
speech is recorded as a WAV file, there is another delay for
transferring the WAV file from the speech engine server, to
the JVoiceXML interpreter server, then to the Asterisk server.
In our experiments, approximately 20 seconds on average is
spent for this transfer. Therefore, in practice, approximately
30 seconds are required to complete one round of recognition.
The main reason for this latency is that the speech engine
tools do not support stream input/output. Thus, a large amount
of time is required for storing then transferring WAV files
to Asterisk. We plan to improve on the end-to-end media
streaming capabilities of the system in future work.

IV. CONCLUSION

We propose a standard architecture for an open source voice
gateway and provide technical details on how to integrate Thai
speech tools from NECTEC with open source modules avail-
able on the Internet. Our system fully supports VoiceXML,
speech standards, and telephony. We have developed a simple
voice application using the platform to show that the voice
gateway provides a practical means to create voice-accessible
Thai-language services with today’s technology. The Thai
speech engines are usable and intelligible. Although the system
still needs improvement, it is functional enough to provide
a basis for future enhancement. The system is available as
open source software at http://webeng.cs.ait.ac.th/∼oslwiki/
voicegateway.

ACKNOWLEDGMENTS

We thank Sumanta Guha for helpful comments on this work.

REFERENCES

[1] D. Burke et al., “Voice extensible markup language (VoiceXML) 2.1,”
W3C Recommendation, 2007. [Online]. Available: http://www.w3.org/
TR/2007/REC-voicexml21-20070619/

[2] M. Brown et al., “Speech recognition grammar specification version
1.0,” W3C Recommendation, 2004. [Online]. Available: http://www.w3.
org/TR/speech-grammar

[3] Digium, Inc., “Asterisk: The open source technology platform,” 2008.
[Online]. Available: http://www.asterisk.org

[4] S. Shanmugham, P. Monaco, and B. Eberman, “A media resource control
protocol (MRCP) developed by Cisco, Nuance, and Speechworks,” IETF
Request for Comments RFC 4463, April 2006. [Online]. Available:
http://www.ietf.org/rfc/rfc4463.txt

[5] SpeechForge, “Cairo MRCP-compliant speech server,” 2007. [Online].
Available: http://www.speechforge.org


