
Int J Comput Vis (2008) 80: 72–91
DOI 10.1007/s11263-008-0136-6

Particle Video: Long-Range Motion Estimation Using Point
Trajectories

Peter Sand · Seth Teller

Received: 23 February 2007 / Accepted: 27 March 2008 / Published online: 10 May 2008
© Springer Science+Business Media, LLC 2008

Abstract This paper describes a new approach to motion
estimation in video. We represent video motion using a
set of particles. Each particle is an image point sample
with a long-duration trajectory and other properties. To op-
timize particle trajectories we measure appearance consis-
tency along the particle trajectories and distortion between
the particles. The resulting motion representation is use-
ful for a variety of applications and cannot be directly ob-
tained using existing methods such as optical flow or feature
tracking. We demonstrate the algorithm on challenging real-
world videos that include complex scene geometry, multiple
types of occlusion, regions with low texture, and non-rigid
deformations.

Keywords Video motion estimation · Optical flow ·
Feature tracking

1 Introduction

Video motion estimation is often performed using feature
tracking (Shi and Tomasi 1994) or optical flow (Beauchemin
and Barron 1995). Feature tracking follows a sparse set of
salient image points over many frames, whereas optical flow
estimates a dense motion field from one frame to the next.
Our goal is to combine these two approaches to produce
motion estimates that are both long-range and moderately

P. Sand (�) · S. Teller
MIT Computer Science and Artificial Intelligence Laboratory,
Cambridge, MA 02139, USA
e-mail: sand@csail.mit.edu

S. Teller
e-mail: teller@csail.mit.edu

dense (Fig. 1). For any image point, we would like to know
where the corresponding scene point appears in all other
video frames (whenever the point is within the field of view
and not occluded).

This form of motion estimation is useful for a variety
of applications. Multiple observations of each scene point
can be combined for super-resolution, noise removal, seg-
mentation, and increased effective dynamic range. The cor-
respondences can also improve the temporal coherence of
image filters that operate independently on each frame. Ad-
ditionally, long-range motion estimation can simplify inter-
active video manipulation, including matting, rotoscoping,
labelling, and object removal. For example, Goldman et al.
(2007) demonstrate interactive particle-based video annota-
tion applications that would be difficult to create using stan-
dard motion representations.

1.1 Particle Video Representation

Our approach represents video motion using a set of parti-
cles that move through time. Each particle denotes an inter-
polated image point sample, in contrast to a feature patch
that represents a neighborhood of pixels (Shi and Tomasi
1994). Particle density is adaptive, so that the algorithm can
model detailed motion with many fewer particles than pix-
els.

The algorithm optimizes particle trajectories using an
objective function that combines point-based appearance
matching and inter-particle distortion. The algorithm ex-
tends and truncates particle trajectories to model motion
near occlusion boundaries.

Our contributions include posing the particle video prob-
lem, defining the particle video representation, and present-
ing an algorithm for particle motion estimation. We provide
a new motion optimization scheme that combines variational

mailto:sand@csail.mit.edu
mailto:teller@csail.mit.edu

Int J Comput Vis (2008) 80: 72–91 73

Fig. 1 Each diagram represents
point correspondences between
frames of a hypothetical
sequence. Feature tracking is
long-range but sparse. Optical
flow is dense but short-range.
Our particle video
representation is denser than
feature tracking and longer
range than optical flow

techniques with an adaptive motion representation. The al-
gorithm uses weighted links between particles to implic-
itly represent grouping, providing an alternative to discrete
layer-based representations.

1.2 Design Goals

The particle video problem can be described as dense feature
tracking or long-range optical flow. We want to track the
trajectory of each pixel through a given video. Ideally each
trajectory would correspond to the motion of a physical real-
world surface point.

A primary goal is the ability to model complex mo-
tion and occlusion. We want the algorithm to handle gen-
eral video, which may include close-ups of people talking,
hand-held camera motion, multiple independently moving
objects, textureless regions, narrow fields of view, and com-
plicated geometry (e.g. trees or office clutter).

A particle approach provides this kind of flexibility. Par-
ticles can represent complicated geometry and motion be-
cause they are small; a particle’s appearance will not change
as rapidly as the appearance of a large feature patch, and it is
less likely to straddle an occlusion boundary. Particles repre-
sent motion in a non-parametric manner; they do not assume
that the scene consists of planar or rigid components.

This flexibility in modelling complex motion can also
be achieved by optical flow, but the optical flow represen-
tation is best suited to successive pairs of frames, not to
long sequences. Frame-to-frame flow fields can be concate-
nated to obtain longer-range correspondences, but the result-
ing multi-frame flow must be refined at each step to reduce
drift.

In contrast, the particle representation allows a form of
random-access motion evaluation: given a set of particles,
we can easily find correspondences between any pair of
frames (assuming the frames have a sufficient number of
particles in common). Furthermore, unlike a sequence of
motion fields, the particle representation provides discrete
motion primitives, which are valuable for subsequent use
of the motion information, such as interactive video mat-
ting (Sand 2006) and interactive video annotation (Goldman
et al. 2007).

1.3 Overview

Section 2 describes related work in motion estimation. We
combine several of these methods to create an optical flow
algorithm described in Sect. 3 (with details in Appendix A).
Optical flow is used as an input to our particle-based motion
estimation.

The particle algorithm is described in Sect. 4, which ex-
plains how particles are added, propagated, linked, opti-
mized, and pruned. These steps are performed as the algo-
rithm sweeps back and forth across a video, constructing a
complete particle representation of the video’s motion.

Section 5 includes an evaluation of the particle video al-
gorithm on a variety of real-world videos. We quantify the
performance of the algorithm and possible alternatives. We
provide mechanisms for visualizing the algorithm’s results
and measuring its performance.

This paper supersedes our CVPR paper (Sand and Teller
2006) that introduced the particle video approach and a the-
sis (Sand 2006) that covers our particle video algorithm in
more detail. After the CVPR version, we removed the flow
terms from the particle objective function (for simplicity)
and added a mechanism for handling slow particle appear-
ance change over time (Sect. 4.5.5).

2 Related Work

Finding correspondences between two or more images is
one of the most studied subjects in computer vision. Prior
work in optical flow estimation is closely related to our ap-
proach.

2.1 Multi-Frame Optical Flow

Most optical flow algorithms estimate correspondences be-
tween a pair of images, but some use more than two images.
These methods may better disambiguate motion boundaries
and may be more computationally efficient than computing
flow independently for each frame pair.

Most multi-frame optical flow methods rely on some
form of temporal coherence assumption (Murray and Bux-
ton 1987; Barron et al. 1994). Black and Anandan (1991)

74 Int J Comput Vis (2008) 80: 72–91

use a basic temporal smoothness constraint as part of a
method that provides robustness in the data terms and spa-
tial smoothness terms. Black (1994) subsequently presents
a method that adapts to temporal disruptions. Chin et al.
(1994) use an approximate Kalman filter to model tempo-
ral variations within a differential flow estimation algorithm.
Elad and Feuer (1998) present a differential estimation tech-
nique with decaying temporal constraints. Shi and Malik
(1998) use multiple frames to aid the segmentation and esti-
mation of distinct motions.

For real-world video sequences, the temporal smoothness
assumption is often violated. Some sharp motion changes
(e.g. due to hand-held camera operation) can be reduced by
whole-frame stabilization algorithms. However, other fast
motions (such as someone walking or talking) cannot be
stabilized. These motions violate temporal smoothness as-
sumptions because of the limited time-domain sampling
found in most videos.

Flow rank methods, in contrast, do not rely on assump-
tions of spatial or temporal smoothness. Irani (1999) shows
that matrices of flow components are geometrically re-
stricted to lie in low-dimensional subspaces. Using these
constraints, she presents an algorithm to simultaneously
estimate flow over multiple frames. Brand (2001) applies
a similar approach to non-rigid scenes by describing de-
formable objects as linear combinations of basis shapes.
However, these constraints are only valid for weak per-
spective or short windows in time. Nonetheless, rank con-
straints could be incorporated into particle video estima-
tion.

2.2 Occlusion Detection for Optical Flow

Occlusion modelling is the most difficult part of estimat-
ing optical flow. All optical flow algorithms rely on spa-
tial agglomeration of information, but this information may
be misinterpreted when combined from both sides of an
occlusion boundary. Furthermore, a core assumption of
most flow algorithms is that each pixel goes somewhere,
when in fact some pixels may disappear due to occlu-
sions.

A common way of handling occlusion boundaries is ro-
bustness in the data and smoothness terms (Black and Anan-
dan 1996; Brox et al. 2004). This robustness allows an al-
gorithm to cope with assumption violations that occur near
flow discontinuities. In the data term, a robust distance func-
tion allows occluded pixels to mismatch. In the smoothness
term, a robust distance function allows discontinuities in
the flow field. Because of this robustness, these algorithms
fail gracefully near occlusion boundaries, but they still fail.
Methods that use anisotropic regularization (whether robust
or not) (Weickert et al. 2004; Barron et al. 1994), similarly
fail to model the process of occlusion.

Amiaz and Kiryati (2005) use level sets (rather than stan-
dard regularization) to refine the localization of the Brox
et al. (2004) occlusion boundaries. By defining an explicitly
piece-wise smooth objective, optimized as a post-process to
the Brox et al. algorithm, the error near boundaries is re-
duced. However, the algorithm still does not account for pix-
els that disappear.

Thompson (1998) explores occlusion boundaries in depth,
describing several of the difficulties with traditional bound-
ary handling. He argues that, even though flow estimates
are regularized, the underlying point estimates can be se-
riously corrupted near occlusion boundaries, because they
usually have some spatial extent. (Computing a derivative
always requires more than one pixel.) Also, he explains, if
the boundary itself has good motion estimates, the maximal
flow gradient will systematically mislocate the boundary to
be over the occluded surface. Thompson proceeds by pre-
senting an algorithm that addresses some of these problems.
His algorithm explicitly identifies the direction of occlusion
at each boundary. The algorithm also uses flow and bound-
ary projection based on assumptions of temporal continuity.
The main limitation of Thompson’s method is that it esti-
mates motion only along image brightness edges, ignoring
valuable but subtle image texture.

Zitnick et al. (2005) estimate optical flow using corre-
spondences between segmented image regions. Like par-
ticles, these segments provide small, simple, discrete mo-
tion entities. The algorithm estimates blending between seg-
ments in order to model mixed pixels at occlusion bound-
aries. The segments provide well-defined occlusion bound-
aries between objects of different colors, but the algorithm
fails when motion boundaries do not coincide with segment
boundaries. Also, the algorithm does not account for seg-
ments that become fully occluded.

Because occluded pixels violate a basic assumption of
optical flow (that each pixel goes somewhere), several meth-
ods attempt to identify occluded pixels explicitly. Silva and
Victor (2001) use a pixel dissimilarity measure to detect
brightness values that appear or disappear over time. Al-
varez et al. (2002) present an algorithm that simultane-
ously computes forward and reverse flow fields, labelling
pixels as occluded where the two disagree. Strecha et al.
(2004) treat occlusion labels as hidden variables in an EM
optimization. In this case, pixel value mismatches (rather
than flow mismatches) are used to identify occlusions. The
occluded pixels modulate anisotropic regularization, such
that flow values do not diffuse across occlusion bound-
aries.

Xiao et al. (2006) also use pixel value mismatches to
detect occluded regions across which flow diffusion is re-
stricted. They regularize flow estimates using a bilateral fil-

Int J Comput Vis (2008) 80: 72–91 75

ter that incorporates flow from neighboring non-occluded
pixels that are similar in motion and appearance. The re-
sulting algorithm is relatively successful at identifying oc-
clusion boundaries and computing accurate flow on both
sides of such boundaries. We incorporate some elements
of this bilateral filter into the flow algorithm described in
Sect. 3.

Like optical flow, feature tracking has difficulty with oc-
clusion boundaries. When a feature patch lies across two in-
dependently moving surfaces, the feature cannot correctly
follow both. For example, an algorithm may track what ap-
pears to be a ‘T’ junction, but which is in fact a pair of over-
lapping edges, neither of which is tracked correctly. These
kinds of errors can be detected using correlation error (Shi
and Tomasi 1994; Fusiello et al. 1999) or geometric con-
straints such as the fundamental matrix (Hartley and Zis-
serman 2000). Another alternative is to adjust the region of
support for a feature to fall only on one side of the occlu-
sion (Sawhney et al. 2001; Liu et al. 2005).

3 Variational Optical Flow with Bilateral Filtering

Our particle video algorithm uses frame-to-frame optical
flow to provide an initial guess for particle motion. The
algorithm treats flow estimation as a black box that can
be replaced with an alternate flow algorithm. Rather than
assuming temporal smoothness, we estimate optical flow
independently for each frame pair; this enables the algo-
rithm to perform well on hand-held video with moving ob-
jects.

Our optical flow algorithm combines the variational ap-
proach of Brox et al. (2004) with the bilateral filtering ap-
proach of Xiao et al. (2006). The algorithm optimizes a flow
field over a sequence of increasing resolutions. At each res-
olution, the algorithm performs the following steps:

• optimize the flow field using a variational objective with
robust data and smoothness terms (Appendix A.1),

• identify the occluded image regions using flow field di-
vergence and pixel projection difference (Appendix A.2),

• and improve flow boundaries using an occlusion-aware
bilateral filter (Appendix A.3).

The sequence of resolutions is obtained by recursively
reducing the original resolution by a factor η. A standard
image pyramid uses η = 0.5 whereas we (following Brox
et al. 2004) use a larger factor (η = 0.9) to obtain better
results at a cost of increased computation. We set a 0.05
lower bound on the scale factor, which results in 29 reso-
lution levels from an NTSC video frame. The smallest level
is 36 by 24 pixels. (We crop the video frame from 720×480
to 712 × 480 to remove left and right boundary artifacts be-
fore estimating flow.) After scaling the image, we apply a

σ = 1 Gaussian smoothing filter (again following Brox et
al. 2004).

To handle large camera motions, we add an initializa-
tion step consisting of estimating whole-frame translation.
The algorithm uses the KLT (Lucas and Kanade 1981;
Baker and Matthews 2004) gradient-based optimization to
register the frames, in a coarse-to-fine sequence of resolu-
tions (with a factor of 2 scale change between each reso-
lution). At each step we perform 8 optimization iterations.
This initialization process takes a fraction of a second for a
full-resolution frame pair. The resulting whole-frame trans-
lational offset is used to initialize the flow field at the lowest
resolution level.

4 Particle Video Algorithm

A particle video is a set of particles corresponding to a video.
Particle i has a time-varying position (xi(t), yi(t)) that is
defined between the particle’s start and end frames. (Each
particle has its own start time and end time.)

4.1 Top-Level Particle Video Algorithm

Our algorithm builds a particle video by moving forward
and backward across the video. Moving backward, occlu-
sion boundaries become disocclusion boundaries, which are
easier to detect and interpret than occlusion boundaries. By
moving through the video in both directions, new particles
can be extended in both directions.

For each processed frame, the following steps are per-
formed (Fig. 2):

• Propagation. Particles terminating in an adjacent frame
are extended into the current frame according to the for-
ward and reverse flow fields (Sect. 4.3).

• Linking. Particle links are updated (Sect. 4.4).
• Optimization. Particle positions are optimized (Sect. 4.5).
• Pruning. Particles with high post-optimization error are

pruned (Sec. 4.6).
• Addition. New particles are added in gaps between exist-

ing particles (Sect. 4.7).

To reduce computation, the algorithm maintains a cache
of information for each video frame. This cache includes the
frame itself, color and gradient channels (and spatial deriva-
tives thereof), a scale map (Sect. 4.7), forward flow (and its
gradient magnitude), and reverse flow.

4.2 Particle Channels

The particle video algorithm uses the same 5 channels as the
flow estimation algorithm (Appendix A.1.1): image bright-
ness, green minus red channel, green minus blue channel, x

76 Int J Comput Vis (2008) 80: 72–91

Fig. 2 (Color online) Each plot
denotes a pair of consecutive
frames. The algorithm
propagates particles (black)
from one frame to the next
according to the flow field,
excluding particles (blue) that
lie within the flow field’s
occluded region. The algorithm
then adds links (red curves),
optimizes all particle positions,
and prunes particles with high
error after optimization. Finally,
the algorithm inserts new
particles (yellow) in gaps
between existing particles

gradient, and y gradient. As before, k denotes the channel
index; at time t the kth image channel is I [k](t).

The color and gradient channels are moderately insensi-
tive to changes in lighting and reflectance, which facilitates
matching particles across temporally distant frames. How-
ever, these channels depend on a wider spatial area of sup-
port, which may cause mismatches for particles near occlu-
sion boundaries. (The gradient is computed using multiple
pixels, and the color channel has low spatial resolution due
to common video color compression.)

To address this, we disable the gradient and color chan-
nels near occlusion boundaries, as determined by the filtered
flow gradient magnitude ĝ(x, y, t) (Appendix A.3). When
ĝ(xi(t), yi(t), t) > 0.01, the particle is probably near a flow
boundary, so we exclude all but the brightness channel, be-
cause the other channels may be influenced by pixels on the
other side of the boundary.

We scale the gradient and color channels by a factor of
0.1 to reduce the effects of noise in these channels. In our ex-
periments, we find that these channels provide only a small
benefit. For the sake of simplicity, others may choose to omit
these channels.

4.3 Propagating Particles

To propagate particles to a given frame, all particles defined
in adjacent frames, but not defined in the given frame, are
placed in the frame according to the flow fields between the
frames. To propagate particle i from frame t −1 to t , we use
the flow field u(x, y, t − 1), v(x, y, t − 1):

xi(t) = xi(t − 1) + u(xi(t − 1), yi(t − 1), t − 1), (1)

yi(t) = yi(t − 1) + v(xi(t − 1), yi(t − 1), t − 1). (2)

Backward propagation from frame t + 1 to t is defined anal-
ogously. (When making the first forward pass through the

video, there are no particles to propagate backward.) If the
optical flow field indicates that a particle becomes occluded,
the particle is not propagated.

4.4 Particle Links

To quantify relative particle motion, our algorithm creates
links between particles using a constrained Delaunay trian-
gulation (Lischinski 1994) (Fig. 3). The triangulation en-
sures a good directional distribution of links for each par-
ticle. This is preferable to simply linking each particle to
its N nearest neighbors (which could all be in one direction
from a given particle).

For any given frame, we create a particle link if the corre-
sponding triangulation edge exists for the frame or an adja-
cent frame. Using links from adjacent frames reduces tem-
poral linking variability, while still allowing links to appear
and disappear as particles pass by one another.

The algorithm assigns a weight to each link based on
the difference between the trajectories of the linked parti-
cles (Fig. 5). If the particles have similar trajectories, they
probably arise from the same scene surface, and thus should
be strongly linked. If the particles are separated by an occlu-
sion boundary, the weight should be zero or near zero.

Our algorithm computes the mean squared motion dif-
ference between linked particles i and j over the set T of
frames in which the link is defined:

D(i, j) = 1

|T |
∑

t∈T

(ui(t) − uj (t))
2 + (vi(t) − vj (t))

2. (3)

Here we let ui(t) = xi(t) − xi(t − 1) and vi(t) = yi(t) −
yi(t − 1). The algorithm computes the link weight using a
zero-mean Gaussian prior (σl = 1.5):

lij = N(
√

D(i, j);σl). (4)

Int J Comput Vis (2008) 80: 72–91 77

Fig. 3 For each video frame,
the algorithm computes a scale
map that determines the
placement of new particles
(Sect. 4.7). Links are added
using a particle triangulation
(Sect. 4.4). The left side shows
an entire frame. The right side
shows a magnified portion of
the frame

4.5 Particle Optimization

The core of the particle video algorithm is an optimization
process that repositions particles. As described in Sect. 4.3,
a flow field provides an initial location for each particle in
a given frame; optimization refines these positions with the
goal of reducing long-range drift.

For a given particle, this optimization can modify the par-
ticle’s position in any frame except the frame in which the
particle was first added. This original frame defines the parti-

cle’s reference position. (The original frame will be different
from the particle’s start frame if the particle was propagated
backward from the original frame.)

4.5.1 Particle Objective Function

The algorithm repositions particles to locally minimize an
objective function that includes two components for each
particle: a data term and a distortion term. This objective
function has some similarities to the variational flow func-

78 Int J Comput Vis (2008) 80: 72–91

tionals described in Sect. 3, but it operates only on the parti-
cles, not the full set of pixels.

We define the energy of particle i in frame t as:

E(i, t) =
∑

k∈Ki(t)

E
[k]
Data(i, t) + α

∑

j∈Li(t)

EDistort(i, j, t). (5)

Here Ki(t) denotes the set of active channels (Sect. 4.2),
and Li(t) denotes the set of particles linked to particle i in
frame t . We find that α = 1.5 provides a reasonable tradeoff
between the two terms.

Given a set P of particle indices and a set F of frame
indices, the complete objective function is:

E =
∑

t∈F,i∈P

E(i, t). (6)

4.5.2 Data Energy

The data term measures how well a particle’s appearance
(Sect. 4.2) matches the pixel values. We allow particle ap-
pearance to change slowly over time, to cope with non-
Lambertian reflectance and changes in scale. For particle i

at time t , the kth channel of the particle’s appearance is:

c
[k]
i (t) = I [k](xi(t), yi(t), t). (7)

Using a Gaussian kernel (σc = 5), we filter these appear-
ance values along the time axis, producing a slowly-varying
appearance denoted by ĉ

[k]
i (t). For a given frame, the data

term measures the difference between the observed appear-
ance and filtered appearance:

E
[k]
Data(i, t) = �([c[k]

i (t) − ĉ
[k]
i (t)]2). (8)

Here � is the robust norm described in Appendix A.1.1. Al-
though we assume temporal appearance smoothness, we do
not assume temporal motion smoothness. The data term sug-
gests that a particle’s appearance should change slowly, but
does not depend on the smoothness of the particle trajectory.
Alternatively, we could attempt to fit physical reflectance
models to the particle appearance changes (Haussecker and
Fleet 2001).

4.5.3 Distortion Energy

The data term alone does not uniquely constrain the par-
ticle positions. A distortion term spatially propagates data
term constraints, such that the algorithm can jointly opti-
mize particle positions. This distortion term measures the
relative motion of particles. If two linked particles move in
different directions, they will have a larger distortion term.
If they move in the same direction, they will have a smaller
distortion term.

The distortion term is defined between a pair of linked
particles i and j . As before, we let ui(t) = xi(t) −
xi(t − 1) and vi(t) = yi(t)− yi(t − 1). The larger the differ-
ence between these motion values, the larger the distortion
term:

EDistort(i, j, t) = lij�([ui(t) − uj (t)]2 + [vi(t) − vj (t)]2).

(9)

Note that this is symmetric: EDistort(i, j, t) = EDistort(j, i, t).
The distortion term is modulated by the link weight lij so

that a link across an occlusion boundary (i.e. a low-weight
link) is allowed greater distortion for an equivalent penalty.
Both the link weights and distortion term measure the rel-
ative motion of particles, but the link weights take into ac-
count entire particle trajectories whereas the distortion term
refers to a single frame. By modulating the distortion term
using link weights, the algorithm encourages particles that
have moved together to continue moving together in the cur-
rent frame, while particles that have moved differently are
allowed to move differently in the current frame.

Note that the distortion term (like the data term) does not
require or encourage temporal motion smoothness. It mea-
sures the relative motion of particles, so the global motion
does not need to be smooth (e.g. the camera motion can be
unstabilized).

The distortion term resists incorrect motions that could be
caused by the data term, especially near occlusion bound-
aries. In the case that a particle is being occluded (but is
not pruned by an occlusion mask), the data term may push
the particle into an unoccluded part of the background sur-
face (unless the particle happens to better match the fore-
ground surface). Also, the flow field may incorrectly push or
pull background pixels along with the foreground surface. In
both cases, a strong distortion term will improve the correct-
ness of the particle motion.

However, the distortion term cannot be too strong, be-
cause this rigidity would prevent certain correct motions,
such as those caused by changes in viewpoint or non-rigid
object deformation. This tradeoff can be controlled by ad-
justing the distortion factor α in (5). Limitations of this dis-
tortion approach are discussed in Sect. 6.

4.5.4 Constructing a Sparse Linear System

The algorithm optimizes (6) in a manner similar to the vari-
ational technique described in Appendix A.1, using a fixed-
point loop around a sparse linear system solver. In the fol-
lowing sections, we describe the construction of the sparse
linear system. In Sect. 4.5.7 we provide the complete opti-
mization algorithm.

Within the objective function E, we substitute dxi(t) +
xi(t) for xi(t) (and instances of y accordingly). Taking par-

Int J Comput Vis (2008) 80: 72–91 79

tial derivatives, we obtain a system of equations, which the
algorithm solves for dxi(t) and dyi(t):
{

∂E

∂dxi(t)
= 0,

∂E

∂dyi(t)
= 0

∣∣∣∣ i ∈ P, t ∈ F

}
. (10)

The dxi(t) and dyi(t) values produced by solving this
system are added to the current particle positions (xi(t) and
yi(t)).

4.5.5 Data Derivative

For the data term, we use the image linearization from Brox
et al. (2004):

I [k]
z = I [k]

x dxi(t) + I [k]
y dyi(t) + I [k] − ĉ

[k]
i , (11)

∂E
[k]
Data(i, t)

∂dxi(t)
≈ 2� ′([I [k]

z]2)(I [k]
z)I [k]

x . (12)

Here we omit the (xi(t), yi(t), t) indexing of I , Ix , Iy , and
Iz. (Ix and Iy are the spatial derivatives of I .) � ′ is the deriv-
ative of � with respect to its argument s2. Note that this lin-
earization occurs inside the fixed-point loop; the algorithm
is still optimizing the original non-linearized objective func-
tion.

4.5.6 Distortion Derivative

For the distortion term, we use dui(t) as shorthand for
dxi(t) − dxi(t − 1) and dvi(t) for dyi(t) − dyi(t − 1). This
gives the following partial derivative:

∂EDistort(i, j, t)

∂dxi(t)
= 2lij (t)�

′
Distort(i, j, t)

× (ui(t) + dui(t) − uj (t) − duj (t)).

(13)

Here we define:

� ′
Distort(i, j, t) = � ′([ui(t) + dui(t) − uj (t) − duj (t)]2

+ [vi(t) + dvi(t) − vj (t) − dvj (t)]2).

(14)

The dxi(t) variable also appears in the term for link i, j at
time t + 1:

∂EDistort(i, j, t + 1)

∂dxi(t)

= −2lij (t + 1)� ′(i, j, t + 1)[ui(t + 1) + dui(t + 1)

− uj (t + 1) − duj (t + 1)]. (15)

The dxi(t) variable also appears in the terms for particle j at
times t and t + 1. These derivatives are identical (since their
corresponding terms are identical via the i, j symmetry of
the distortion energy), so we incorporate an extra factor of
two into the distortion derivatives.

4.5.7 Fixed-Point Scheme

Like the variational flow algorithm described in Sect. 3, the
particle optimization iteratively solves for updates to the
particle positions. The iteration terminates when the mean
change in position is less than 0.005 (with an upper bound
of 10 iterations). The linear system solver performs 200 it-
erations inside each of the loop iterations. These numbers
control the tradeoff between accuracy and running time. The
solver uses the SOR algorithm (Barrett et al. 1994), with
some conditioning and smoothing (further stability analysis
would be beneficial). We limit |dxi(t)| and |dyi(t)| to be
less than 2 pixels for each step.

The algorithm uses a pair of integer matrices to keep
track of which sparse system variables correspond to which
particles. One matrix maps variable indices to (i, t) pairs.
The other matrix maps (i, t) pairs to variable indices.

4.6 Pruning Particles

After optimizing the particles, we prune particles that con-
tinue to have high energy values. These particles have high
distortion and/or a large appearance mismatch, indicating
possible occlusion.

As defined in Sect. 4.5.1, E(i, t) denotes the objective
function value of particle i in frame t (5). To reduce the
impact of a single bad frame, we filter each particle’s en-
ergy values using a Gaussian (σt = 1 frames). (Note: this
Gaussian is not strictly temporal; it filters the values for the
given particle, which is moving through image space.) If in
any frame the filtered energy value is greater than δ = 5, the
particle is deactivated in that frame.

4.7 Adding Particles Using Scale Maps

After optimization and pruning, the algorithm adds new
particles in gaps between existing particles. The algorithm
arranges for higher particle density in regions of greater vi-
sual complexity, in order to model complex motions. (Mo-
tion complexity often implies visual complexity, though the
reverse is not generally true.)

To add new particles to a given frame, the algorithm
determines a scale value s(x, y) for each pixel. The scale
values are discrete, taken from the set {σ(j) = 1.9j |0 ≤
j ≤ 5}. To compute the scale map, we start by filtering the
image using a Gaussian kernel for each scale σ(j), produc-
ing a set of images {Ij }.

Then, for each pixel, we find the range of scales over
which the blurred pixel value does not change substantially.
If the pixel has nearly the same color in a large scale im-
age as in all smaller scale images, it is a large scale pixel
(Fig. 4). Specifically, the algorithm chooses the maximum
scale index k(x, y) such that ‖Ij (x, y)− I1(x, y)‖2 < δs for

80 Int J Comput Vis (2008) 80: 72–91

Fig. 4 (Color online) The
algorithm computes a set of
blurred images (red) for a given
color channel (black). A pixel
for which all images agree is
considered a large-scale pixel. If
the images disagree, it is a
smaller-scale pixel

all j ≤ k(x, y). (Here we use (r, g, b) vector distance when
comparing pixel values.)

These scale indices are filtered with a spatial Gaussian
(σs = 2), producing a blurred scale index map k̂(x, y)

(which we round to integer values). We then set the scale
values from the indices: s(x, y) = σ(k̂(x, y)). Figure 3
shows an example scale map.

Given the scale map, we iterate over the image adding
particles. For each pixel, if the distance to the nearest parti-
cle is greater than s(x, y), we add a particle at that pixel. The
algorithm does this efficiently, in time linear in the number
of particles, by creating an occupancy map at each scale.

The same process is used to position all particles in the
first video frame. For the first video frame, the algorithm
adaptively sets the δs parameter that controls the creation
of the scale map. The parameter is initially set to 10, then
adjusted until the number of created particles falls between
8000 and 12000. The same δs is used for the remainder of
the video.

5 Evaluation

In this section we evaluate the particle video algorithm on
a variety of videos, including footage of challenging real-
world scenes and contrived cases designed to test the limits
of the algorithm. We discuss quantitative evaluation mea-
sures and compare results obtained from different algorithm
configurations.

5.1 Evaluation Measures

Objectively evaluating the algorithm’s correctness is diffi-
cult given the lack of ground-truth data. The ideal evaluation
measurement should allow comparison with future particle
video algorithms and with non-particle approaches to long-
range motion estimation.

Fig. 5 (Color online) This space-time plot shows a single particle
(green) near an occlusion boundary and other particles linked to this
particle. The linked particles are shown only for frames in which the
links are active. They are colored by link weight; red indicates a high
weight and gray indicates a low weight

Standard optical flow evaluation methods are not suitable
because our goal is not to estimate optical flow, but instead
to provide a higher-level long-range motion representation.
We seek to reduce long-range drift, but this does not im-
ply improved optical flow accuracy on a per-frame basis, in
part because we do not explicitly represent the motion of
every pixel. The optical flow evaluation presented by Baker
et al. (2007) measures per-frame flow accuracy; the publicly
available sequences are too short for long-range evaluation.

One solution is rendering synthetic videos with long-
range correspondences. To mimic challenging real-world
videos, these rendered videos should include deforming ob-
jects, complex reflectance, detailed geometry, motion blur,
unstabilized camera motion, optical artifacts, and video
compression. All of these factors can be obtained using
modern commercial rendering software, but setting up a
wide variety of photo-realistic scenes would require sub-
stantial effort. In the future we envision that creating and
rendering such scenes will be easy enough that researchers
will produce a diverse set of ground-truth videos.

For the purposes of this paper, we quantify the algo-
rithm’s performance using videos that are constructed to re-
turn to the starting frame. We replace the second half of each

Int J Comput Vis (2008) 80: 72–91 81

Table 1 The evaluation videos
include various camera motions
and object motions. R denotes
rotation and T denotes
translation

Name Camera motion Occlusion Object motion Figure Frames

VBranches Hand-held R + T Yes None Fig. 7 50

VCars Hand-held R + T Yes R + T Fig. 7 50

VHall Hand-held R + T Yes None Fig. 7 50

VHand Hand-held R + T Yes R + T; deformation Fig. 7 70

VMouth Static Yes R + T; deformation Fig. 7 70

VPerson Tripod R Yes R + T; deformation Fig. 8 50

VPlant Hand-held R + T Yes None Fig. 8 70

VShelf Crane T Yes None Fig. 8 50

VTree Hand-held R + T Yes R + T; deformation Fig. 8 70

VTreeTrunk Hand-held R + T Yes None Fig. 8 50

VZoomIn Static No None N/A 40

VZoomOut Static No None N/A 40

VRotateOrtho Static No R N/A 90

VRotatePersp Static No R N/A 90

VRectSlow Static Yes R N/A 80

VRectFast Static Yes R N/A 80

VRectLight Static Yes R N/A 80

VCylSlow Static Yes R N/A 50

VCylFast Static Yes R N/A 50

VCylLight Static Yes R N/A 50

evaluation video with a temporally reversed copy of the first

half. We then compute the fraction of particles that survive

from the start frame to the end frame (which is identical in

appearance to the start frame). For each of these particles,

we compute the distance between its (x, y) position in the

start frame and (x, y) position in the end frame. This spatial

error value should be near zero.

Like many alternative methods, this evaluation scheme

is flawed. The algorithm can easily obtain a lower spatial

error by pruning more particles (at the cost of a lower parti-

cle survival rate). Furthermore, by allocating fewer particles

near occlusions and more particles in other regions, the al-

gorithm can both increase the survival rate and decrease the

spatial error.

Another limitation of this return-to-start evaluation is that

the algorithm may be able to unfairly recover from mistakes.

This prevents a comparison with techniques that refine con-

catenated flow fields; a good refinement algorithm should

be able to find the trivial (zero flow) field mapping the first

frame to the last frame, even if it has trouble with interme-

diate frames.

Because of these issues, we provide the evaluation for de-

scriptive purposes only. These measures should not be used

to compare the algorithm with future particle video algo-

rithms.

5.2 Evaluation Videos

Our evaluation dataset consists of 20 videos, representing
a range of real-world conditions and contrived test cases.
These videos together include a variety of scenes, lighting
conditions, camera motions, and object motions.

Each video was recorded at 29.97 non-interlaced frames
per second in the MiniDV format using a Panasonic
DVX100 camera. The video frames are 720 by 480 pix-
els with a 0.9 pixel aspect ratio (width/height). Before con-
structing a particle video, we crop four pixels from the left
and right of each frame to remove camera artifacts.

The input videos are summarized in Table 1. For the
videos of planar surfaces (VZoomIn, VZoomOut, VRota-
teOrtho, and VRotatePersp), we replace optical flow estima-
tion with global parametric motion estimation.

5.3 Particle Video Configurations

We evaluate several configurations of the particle video al-
gorithm:

• PVBaseline. This uses all of the parameter settings de-
scribed in Sect. 4 and summarized in Table 2. The follow-
ing configurations are modifications, as specified, of this
configuration.

• PVSweep1. This configuration performs a single forward
sweep (whereas the baseline algorithm performs a for-
ward sweep followed by a backward sweep).

82 Int J Comput Vis (2008) 80: 72–91

Table 2 These parameter settings are used for the PVBaseline configuration

Variable Description Value Units Section

σl Motion difference prior for link weight 1.5 Pixels per frame Sect. 4.4

α Particle objective distortion factor 1.5 Unitless Sect. 4.5.1

σc Channel filter size 5 Frames Sect. 4.5.1

σt Pruning energy filter size 1 Frames Sect. 4.6

δ Pruning energy threshold 5 Unitless Sect. 4.6

Table 3 For each configuration, we evaluate the algorithm on videos
that are constructed to return to the start frame (Sect. 5.1). We report the
mean fraction of particles that survive to the end frame and the mean
spatial distance between each surviving particle’s start and end frame
positions. We also give the mean particle count, mean particle length,

and mean per-frame running time (in seconds). The running time does
not include optical flow computation; it is a pre-process shared by all
the algorithms. All statistics are averaged over the 20 videos described
in Sect. 5.2

Configuration Return Return Mean Mean Run

fraction error count length time

FlowConcat 0.81 4.05 N/A N/A N/A

PVBaseline 0.65 1.12 13260 31.68 40.53

PVSweep1 0.71 0.99 11468 28.96 15.73

PVSweep4 0.66 1.24 14644 30.51 73.65

PVNoOcc 0.66 1.17 13178 32.90 57.47

PVPruneMore 0.43 0.83 14684 23.11 71.69

PVPruneLess 0.75 1.73 13304 37.15 20.11

• PVSweep4. This sweeps forward, backward, forward
again, then backward again.

• PVNoOcc. This configuration ignores the occlusion maps
(provided by the optical flow algorithm) during particle
propagation (Sect. 4.3).

• PVPruneMore. This configuration lowers the pruning
threshold to δ = 5, resulting in more pruning.

• PVPruneLess. This configuration raises the pruning
threshold to δ = 20, resulting in less pruning.

• FlowConcat. This is a simple concatenation of flow fields
(computed as described in Sect. 3) for each particle posi-
tion in the first video frame (according to the PVBaseline
configuration). The flow trajectories are terminated when
they enter an occluded region, as determined by the flow
algorithm.

5.4 Evaluation Results and Discussion

The return-to-start evaluation is summarized in Fig. 6. In
each case, particles return to their starting positions with
lower mean error than the trajectories formed by concate-
nating flow vectors. As expected, concatenated flow vec-
tors drift. Ideally the plots should be symmetrical (since the
videos are temporally symmetrical); in some cases, parti-
cle trajectories deviate from this symmetry, suggesting oc-
casional local errors.

The yellow lines indicate the fraction of surviving parti-
cles. In each video, particles disappear because they leave
the frame boundaries or become occluded (so a 100% sur-
vival rate would be incorrect). A roughly constant survival
fraction across the second half (returning to the start) indi-
cates that few particles are lost for other (spurious) reasons.

Table 3 provides a comparison of the algorithm config-
urations described in Sect. 5.3. As expected, ignoring the
occlusion masks provided by the flow algorithm results in
higher error and a larger fraction of surviving particles. Also,
as expected, additional pruning raises accuracy while lower-
ing the survival fraction. Simple flow concatenation results
in a better survival rate, but also significantly higher error.
(These results do not conclusively show that the flow ap-
proach is inferior to the particle approach.)

Additional sweeps across the video add more particles,
mostly in areas where other particles were previously pruned
(i.e. the more difficult regions of the video). Thus, even
when a single sweep exhibits lower error, it may not nec-
essarily produce a better model of the motion. (This is why,
as discussed in Sect. 5.1, the return-to-start measure should
not be used alone to evaluate particle videos.)

Table 4 gives a breakdown of the running time for
each configuration. In each configuration, almost half the
running time is consumed by running the sparse linear

Int J Comput Vis (2008) 80: 72–91 83

Fig. 6 (Color online) Each plot
shows the fraction of surviving
particles (yellow, right axis) and
mean distance (red, left axis) of
the surviving particles from their
positions in the start frame. The
green lines denote concatenated
flow vectors. As described in
Sect. 5.2, the videos are
temporally mirrored, so we
expect all unoccluded particles
to return to their start positions

system solver. The remaining time is mostly spent con-
structing the linear system. The computational costs of
adding, linking, and pruning particles are all relatively
small.

All of the data used to generate these results, including
the videos, plots, and particle trajectories are available on-
line at http://rvsn.csail.mit.edu/pv/.

6 Future Work

The largest difficulty in creating a particle video is handling
occlusion boundaries. The current implementation repre-
sents occlusion boundaries using weighted links between
particles. This linking scheme can fail when it occasionally
allows incorrect distortion or prevents the modelling of ac-

http://rvsn.csail.mit.edu/pv/

84 Int J Comput Vis (2008) 80: 72–91

Fig. 6 (Continued)

tual distortion (such as that caused by non-rigid object de-
formation or changes in viewpoint). We hope to explore sta-
tistical and/or geometric methods for distinguishing correct
and incorrect distortion.

The best approach may involve a hybrid of flow-based
and particle-based occlusion handling. Flow methods pro-
vide the advantage of accounting for subtle image details,

while particle methods provide easier handling of long tem-

poral ranges (and indeed we expect occlusions to be clearest

over such long ranges). A single optimization could include

both flow and particle objectives, possibly estimating flow

over a range of different temporal scales. This optimization

could be directed toward occlusions by identifying high-

Int J Comput Vis (2008) 80: 72–91 85

Table 4 For each
configuration, we report the
mean per-frame running time in
seconds. Opt. time includes
optimization overhead but not
execution of the solver (which is
reported in its own column).
The total time includes some
additional overhead, such as
computing the adaptive scale
map factor (Sect. 4.7)

Configuration Add Link Opt. Solver Prune Total

time time time time time time

PVBaseline 2.99 1.02 11.57 18.54 1.39 40.53

PVSweep1 1.29 0.41 4.14 7.27 0.40 15.73

PVSweep4 6.14 2.05 21.06 31.55 3.01 73.65

PVNoOcc 3.62 0.79 17.36 27.47 2.01 57.47

PVPruneMore 4.21 3.39 21.01 32.42 3.58 71.69

PVPruneLess 2.16 0.83 4.70 8.57 0.45 20.11

Fig. 7 Each row shows a frame
pair from one test video.
Correspondences are shown for
particles in common between
the frames

error or high-flow-gradient manifolds in the spatiotemporal
video volume.

Particle motion spaces could provide an alternative ap-
proach to the occlusion problem. Each particle could be pro-
jected into a space such that particles with similar motions
are close to one another and particles with different motions

are not. This would allow efficient querying to find a set of
particles with motion similar to a given particle (extending
beyond the set of particles linked to the given particle). One
option would be assigning a particle trajectory distance to
each link (as is currently done in Sect. 4.4) then running
Isomap (Tenenbaum et al. 2000) to project all of the parti-

86 Int J Comput Vis (2008) 80: 72–91

Fig. 8 Each row shows a frame
pair from one test video.
Correspondences are shown for
particles in common between
the frames

cles into a low-dimensional (perhaps 2D or 3D) space. Inde-
pendently moving objects should appear as distinct clusters
in the space (and certain motion patterns should appear as
filaments or other manifolds through the motion space).

Another aspect of occlusion handling is deleting and cre-
ating particles in areas that become occluded or disoccluded.
We could spatially regularize addition and pruning, but this
is difficult because a slow-moving occlusion boundary may
result in only a few particles being added/deleted in any
given frame (in fact, we should allow singleton additions
and deletions). A better option may be using the gradient
of the particle motion field to modulate the density (placing
more particles near occlusions boundaries and fewer in areas
of uniform motion), rather than determining particle density
solely by image scale.

We could also explore world-space constraints for par-
ticle optimization. We have avoided geometric constraints
because the algorithm must be good at handling non-rigid
cases. However, once the non-rigid cases are well-modelled,
we can obtain further performance gains by using geometric
rules to improve the rigid cases.

In the future we would also like to develop a stronger
theoretical framework for the particle video problem. One
option is to utilize a flow-based representation, which can
be viewed as the derivative of a particle-based representa-
tion. The main goal of the particle video algorithm is to
move beyond a flow-based representation, but it may be
that our theoretical reasoning about particles will have to
occur in the derivative/flow domain. Much theoretical work
has already been done in the area of optical flow; one chal-
lenge would be augmenting this with long range constraints

Int J Comput Vis (2008) 80: 72–91 87

that make statements about video properties along trajecto-
ries obtained from integrals of flow-based representations.
This approach could borrow mathematical machinery from
differential equations and applications of differential equa-
tions, such as fluid dynamics.

Ideally a theoretical particle framework would motivate a
simple particle estimation algorithm. The current algorithm
has an unsatisfying number of steps and parameters. We
should aim to simplify the algorithm while simultaneously
improving its accuracy.

7 Conclusion

The particle video algorithm provides a new approach to
motion estimation, a central problem in computer vision.
Long-range video correspondences could improve methods
for many vision problems, in areas ranging from robotics to
filmmaking.

Our particle representation differs from standard motion
representations, such as vector fields, layers, and tracked
feature patches. Some existing optical flow algorithms in-
corporate constraints from multiple frames (often using a
temporal smoothness assumption), but they do not enforce
long-range correspondence consistency. Our approach dif-
fers from optical flow by enforcing long-range appearance
consistency and motion coherence.

Current limitations of the particle video algorithm arise
from our methods for positioning particles, rather than a fun-
damental limitation of the particle representation. Starting
with the particle tools presented in this paper, we believe re-
searchers will soon develop better particle video algorithms.
By making our data and results available online, we hope
others will explore the particle video problem.

Appendix A: Optical Flow Implementation

Our particle video algorithm uses optical flow fields as an
input. The optical flow estimation can be computed with any
optical flow method, but for completeness we give details of
our flow algorithm here.

A.1 Variational Flow Optimization

Our variational flow optimization is adapted from Brox
et al. (2004). The approach has proved successful because
it makes relatively few simplifications of the functional.

A.1.1 Objective Function

Let u(x, y, t) and v(x, y, t) denote the components of an op-
tical flow field that maps image point I (x, y, t) to an image

point in the next frame:

I (x + u(x, y, t), y + v(x, y, t), t + 1). (16)

Like many optical flow methods, the Brox et al. (2004)
objective function combines a data term and smoothness
term:

EFlow(u, v, t)

= EFlowData(u, v, t) + EFlowSmooth(u, v, t). (17)

Although these terms are motivated as functionals, for clar-
ity we give them in discrete form, in which u and v are esti-
mated at integer indices.

A.1.2 Data Term

In our algorithm, we replace the scalar-valued image I with
a multi-channel image I [k]. We also modulate the data term
by a visibility term r(x, y, t) (described in Appendix A.2):

EFlowData(u, v, t)

=
∑

x,y,k

r(x, y, t)

× �([I [k](x + u(x, y, t), y + v(x, y, t), t + 1)

− I [k](x, y, t)]2). (18)

Here k is summed over image channels. We use the same
robust norm as Brox et al. (2004):

�(s2) =
√

s2 + ε2; ε = 0.001. (19)

This function, a differentiable form of the absolute value
function, does not respond as strongly to outliers as the stan-
dard L2 norm.

The original Brox et al. (2004) formulation analytically
enforces constancy of the image gradient and optionally
other linear differential operators (Papenberg et al. 2006),
whereas we simply treat the gradient as another image chan-
nel. Specifically, we use image brightness I (range [0,255]),
the green minus red color component, the green minus blue
color component, and the x and y derivatives of brightness
(Ix and Iy). We scale the color difference channels by 0.25
to reduce the impact of color sampling/compression artifacts
common in video. These additional channels do not substan-
tially increase the algorithm’s running time because they do
not increase the number of terms in the sparse linear system
that consumes the majority of the computation.

A.1.3 Smoothness Term

As in the Brox et al. (2004) algorithm, the smoothness term
measures the variation of the flow field using the robust

88 Int J Comput Vis (2008) 80: 72–91

Fig. 9 The local smoothness image modulates the smoothness term
in the optical flow objective function. The objective discourages flow
discontinuities in uniform image regions

norm � . We modify the smoothness term to discourage flow
discontinuities at locations with small image gradients:

EFlowSmooth(u, v, t)

=
∑

x,y

(αg + αl · b(x, y, t))

× �(ux(x, y, t)2 + uy(x, y, t)2 + vx(x, y, t)2

+ vy(x, y, t)2). (20)

Here αg is a global smoothness factor (equivalent to the α

parameter in the original Brox et al. (2004)
formulation) and αl is a local smoothness factor, which is
modulated by the local smoothness b(x, y, t) (Fig. 9).

We compute local smoothness using a Gaussian prior on
the image gradient:

b(x, y, t) = N

(√
∂

∂x
I (x, y, t)2 + ∂

∂y
I (x, y, t)2;σb

)
. (21)

Here N denotes a zero-mean non-normalized Gaussian. We
set σb = 2, αl = 15, and αg = 10, based on a variety of flow
experiments.

A.1.4 Sparse Linear System

We optimize the objective function using a fixed-point
scheme, similar to the algorithms of Brox et al. (2004) and
Bergen et al. (1992). The optimizer iteratively updates the
flow field using a sparse linear system determined by the
current flow field. To construct the sparse linear system, we
take discrete derivatives of the objective function, as de-
scribed in Sand (2006).

The algorithm solves the sparse linear system using
successive over-relaxation (SOR) method (Barrett et al.
1994). At a given resolution level, the algorithm makes
3 fixed-point steps, each consisting of 500 SOR itera-
tions.

A.2 Occlusion Detection

Handling occlusions is the most challenging aspect of build-
ing a particle video. It is also the most challenging part of

Fig. 10 (Color online) In this diagram, the motion discontinuities
(red) include occluding boundaries, disoccluding boundaries, and
shear boundaries. The occluded region is the set of pixels that are not
visible in the subsequent frame

optical flow estimation, stereo reconstruction, feature track-
ing, and motion estimation in general.

Rather than solving the problem purely with particles, we
use optical flow estimation to provide information about oc-
clusions. Ideally, the flow estimates will be able to incorpo-
rate subtle details of the surface being occluded, which are
not necessarily captured by the particles.

The Brox et al. (2004) algorithm uses the robust distance
function � to handle occlusions. As discussed in Sect. 2.2,
using robustness to account for occlusion boundaries is not
ideal. Rather than properly modelling the physical behavior
of the occlusion boundary, the algorithm is simply allowed
to fail (with a small penalty due to the robust distance func-
tion). In practice, the Brox et al. (2004) algorithm produces
flow fields that incorrectly group occluded pixels with the
occluding object, because this produces a lower objective
value.

Like other approaches (Silva and Santos-Victor 2001;
Alvarez et al. 2002; Strecha et al. 2004; Xiao et al. 2006),
we model occlusion by explicitly labelling occluded pix-
els. Once the pixels are labelled, they can be excluded from
the data term, rather than incorrectly matched with non-
occluded pixels. A flow field augmented with an occlu-
sion mask correctly models the fact that some pixels dis-
appear.

Our algorithm uses a combination of flow divergence and
pixel projection difference to identify occluded pixels. The
divergence of an optical flow field distinguishes between dif-
ferent types of motion boundaries:

div(x, y, t) = ∂

∂x
u(x, y, t) + ∂

∂y
v(x, y, t). (22)

Int J Comput Vis (2008) 80: 72–91 89

Table 5 We use these optical
flow parameter settings for our
experiments

Variable Description Value Units Section

η Multi-resolution scale factor 0.9 Unitless Sect. 3

αg Global smoothness factor 10 Unitless Sect. A.1.1

αl Local smoothness factor 15 Unitless Sect. A.1.1

σb Image gradient prior 2 Pixel value gradient Sect. A.1.1

σd Flow divergence prior 0.3 Flow gradient Sect. A.2

σe Pixel mismatch prior 20 Pixel values Sect. A.2

σx Bilateral filter size 4 Image space Sect. A.3

σi Filter image difference 7.5 Pixel values Sect. A.3

σm Filter motion difference 0.5 Flow values Sect. A.3

σg Flow gradient filter 3 Image space Sect. A.3

Fig. 11 Each flow field is
generated between a video
frame (left) and the subsequent
video frame. The flow field is
visualized (right) using hue to
denote flow direction and
saturation to denote flow
magnitude. The black regions
are labelled by the algorithm as
occluded

Flow divergence is positive for disoccluding boundaries,
negative for occluding boundaries, and near zero for shear
boundaries (Fig. 10). To select occluding boundaries, but not
disoccluding boundaries, we define a one-sided divergence
function d :

d(x, y, t) =
{

div(x, y, t), div(x, y, t) < 0,

0, otherwise.
(23)

Flow divergence also occurs with visual expansion and con-
traction, but typically at a lower magnitude than arises at an
occlusion boundary.

Pixel projection difference provides another occlusion
cue:

e(x, y, t) = I (x, y, t)

− I (x + u(x, y, t), y + v(x, y, t), t + 1). (24)

We combine the one-sided divergence and pixel projection
using zero-mean non-normalized Gaussian priors:

r(x, y, t) = N(d(x, y, t);σd) · N(e(x, y, t);σe). (25)

The r(x, y, t) values are near zero for occluded pixels and
near one for non-occluded pixels. We set σd = 0.3 and σe =
20 based on experimental observation of occluded regions.

A.3 Bilateral Flow Filtering

Detecting occluded pixels is a key part of the occlusion
modelling process, but we must still handle the mixing of
pixel properties across boundaries. This mixing occurs for
all types of motion boundaries: disocclusions, occlusions,
and shear motions. To improve boundary sharpness, we use
a bilateral filter based on the work of Xiao et al. (2006).

Xiao and colleagues motivate the approach by pointing
out an equivalence between variational smoothness opti-
mization and Gaussian filtering of the flow fields. Using this
observation, they replace traditional anisotropic regulariza-
tion with a filter that better separates distinct motions.

The filter sets each flow vector to a weighted average of
neighboring flow vectors:

u′(x, y, t) =
∑

x1,y1
u(x1, y1, t)w(x, y, x1, y1, t)∑
x1,y1

w(x,y, x1, y1, t)
. (26)

90 Int J Comput Vis (2008) 80: 72–91

The update for v is analogous. The algorithm weights the
neighbors according to spatial proximity, image similarity,
motion similarity, and occlusion labelling:

w(x,y, x1, y1, t) = N(

√
(x − x1)2 + (y − y1)2;σx)

× N(I (x, y, t) − I (x1, y1, t);σi)

× N(
√

(u − u1)2 + (v − v1)2;σm)

× r(x1, y1, t). (27)

Here u denotes u(x, y, t) and u1 denotes u(x1, y1, t) (and v

similarly). We set σx = 4, σi = 7.5, σm = 0.5, and restrict
(x1, y1) to lie within 10 pixels of (x, y).

This filter computes weights for a neighborhood of pix-
els around each pixel, so it is quite computationally expen-
sive. Thus, for efficiency, we apply the filter only near flow
boundaries, which we localize using the flow gradient mag-
nitude:

g(x, y, t)

=
√

u2
x(x, y, t) + u2

y(x, y, t) + v2
x(x, y, t) + v2

y(x, y, t).

(28)

The algorithm filters g(x, y, t) using a spatial Gaussian ker-
nel (σg = 3), producing a smoothed gradient magnitude
ĝ(x, y, t). Note that, unlike the divergence, this gradient
magnitude is large for all types of motion boundaries (oc-
clusions, disocclusions, and shear boundaries). We apply the
bilateral filter (26) to pixels with ĝ(x, y, t) > 0.25.

Table 5 summarizes the parameters for our complete op-
tical flow algorithm. Figure 11 shows flow fields generated
by the algorithm.

References

Alvarez, L., Deriche, R., Papadopoulo, T., & Sanchez, J. (2002). Sym-
metrical dense optical flow estimation with occlusion detection.
In ECCV (pp. 721–735).

Amiaz, T., & Kiryati, N. (2005). Dense discontinuous optical flow via
contour-based segmentation. In ICIP (pp. 1264–1267).

Baker, S., & Matthews, I. (2004). Lucas-Kanade 20 years on: A unify-
ing framework. International Journal of Computer Vision, 56(3),
221–255.

Baker, S., Scharstein, D., Lewis, J. P., Roth, S., Black, M., & Szeliski,
R. (2007). A database and evaluation methodology for optical
flow. In ICCV.

Barrett, R., Berry, M., Chan, T. F., Demmel, J., Donato, J. M., Don-
garra, J., Eijkhout, V., Pozo, R., Romine, C., & der Vorst, H.
V. (1994). Templates for the solution of linear systems: building
blocks for iterative methods. Philadelphia: SIAM.

Barron, J. L., Fleet, D. J., & Beauchemin, S. S. (1994). Performance
of optical flow techniques. International Journal of Computer Vi-
sion, 12(1), 43–77.

Beauchemin, S. S., & Barron, J. L. (1995). The computation of optical
flow. ACM Computing Surveys, 27(3), 433–467.

Bergen, J. R., Anandan, P., Hanna, K. J., & Hingorani, R. (1992). Hi-
erarchical model-based motion estimation. In ECCV (pp. 237–
252).

Black, M., & Anandan, P. (1991). Robust dynamic motion estimation
over time. In CVPR (pp. 296–302).

Black, M. J. (1994). Recursive non-linear estimation of discontinuous
flow fields. In ECCV (pp. 138–144).

Black, M. J., & Anandan, P. (1996). The robust estimation of multiple
motions: parametric and piecewise-smooth flow fields. Computer
Vision and Image Understanding, 63(1), 75–104.

Brand, M. (2001). Morphable 3D models from video. In CVPR
(pp. 456–463).

Brox, T., Bruhn, A., Papenberg, N., & Weickert, J. (2004). High ac-
curacy optical flow estimation based on a theory for warping. In
ECCV (pp. 25–36).

Chin, T. M., Karl, W. C., & Willsky, A. S. (1994). Probabilistic and
sequential computation of optical flow using temporal coherence.
IEEE Transactions on Image Processing, 3(6), 773–788.

Elad, M., & Feuer, A. (1998). Recursive optical flow estimation–
adaptive filtering approach. Visual Communication and Image
Representation, 9(2), 119–138.

Fusiello, A., Trucco, E., Tommasini, T., & Roberto, V. (1999). Improv-
ing feature tracking with robust statistics. Pattern Analysis and
Applications, 2(4), 312–320.

Goldman, D. B., Curless, B., Salesin, D., & Seitz, S. M. (2007). Inter-
active video object annotation (Technical Report UW-CSE-2007-
04-01). University of Washington.

Hartley, R., & Zisserman, A. (2000). Multiple view geometry in com-
puter vision. Cambridge: Cambridge University Press.

Haussecker, H. W., & Fleet, D. J. (2001). Computing optical flow with
physical models of brightness variation. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 23(6), 661–673.

Irani, M. (1999). Multi-frame optical flow estimation using subspace
constraints. In ICCV (pp. 626–633).

Lischinski, D. (1994). Incremental Delaunay triangulation. In Graph-
ics gems IV (pp. 47–59). San Diego: Academic Press.

Liu, C., Torralba, A., Freeman, W. T., Durand, F., & Adelson, E. H.
(2005). Motion magnification. ACM Transactions on Graphics,
24(3), 519–526.

Lucas, B., & Kanade, T. (1981). An iterative image registration tech-
nique with an application to stereo vision. In International joint
conference on artificial intelligence (pp. 674–679).

Murray, D. W., & Buxton, B. F. (1987). Scene segmentation from vi-
sual motion using global optimization. IEEE Transactions on Pat-
tern Analysis and Machine Intelligence, 9(2), 220–228.

Papenberg, N., Bruhn, A., Brox, T., Didas, S., & Weickert, J. (2006).
Highly accurate optic flow computation with theoretically justi-
fied warping. International Journal of Computer Vision, 67(2),
141–158.

Sand, P. (2006). Long-range video motion estimation using point tra-
jectories. PhD thesis, MIT.

Sand, P., & Teller, S. (2006). Particle video: Long-range motion esti-
mation using point trajectories. In CVPR (pp. 2195–2202).

Sawhney, H. S., Guo, Y., Hanna, K., Kumar, R., Adkins, S., & Zhou,
S. (2001). Hybrid stereo camera: an IBR approach for synthesis
of very high resolution stereoscopic image sequences. In SIG-
GRAPH (pp. 451–460).

Shi, J., & Malik, J. (1998). Motion segmentation and tracking using
normalized cuts. In ICCV (pp. 1154–1160).

Shi, J., & Tomasi, C. (1994). Good features to track. In CVPR (pp. 593–
600).

Silva, C., & Santos-Victor, J. (2001). Motion from occlusions. Robotics
and Autonomous Systems, 35(3–4), 153–162.

Strecha, C., Fransens, R., & Gool, L. V. (2004). A probabilistic ap-
proach to large displacement optical flow and occlusion detection.
In Statistical methods in video processing (pp. 71–82).

Int J Comput Vis (2008) 80: 72–91 91

Tenenbaum, J. B., de Silva, V., & Langford, J. C. (2000). A global
geometric framework for nonlinear dimensionality reduction. Sci-
ence, 290, 2319–2322.

Thompson, W. (1998). Exploiting discontinuities in optical flow. Inter-
national Journal of Computer Vision, 30(3), 163–174.

Weickert, J., Bruhn, A., Papenberg, N., & Brox, T. (2004). Variational
optic flow computation: From continuous models to algorithms.
In International workshop on computer vision and image analysis
(pp. 1–6).

Xiao, J., Cheng, H., Sawhney, H., Rao, C., & Isnardi, M. (2006). Bilat-
eral filtering-based optical flow estimation with occlusion detec-
tion. In ECCV (pp. 211–224).

Zitnick, C. L., Jojic, N., & Kang, S. B. (2005). Consistent segmentation
for optical flow estimation. In ICCV (pp. 1308–1315).

	Particle Video: Long-Range Motion Estimation Using Point Trajectories
	Abstract
	Introduction
	Particle Video Representation
	Design Goals
	Overview

	Related Work
	Multi-Frame Optical Flow
	Occlusion Detection for Optical Flow

	Variational Optical Flow with Bilateral Filtering
	Particle Video Algorithm
	Top-Level Particle Video Algorithm
	Particle Channels
	Propagating Particles
	Particle Links
	Particle Optimization
	Particle Objective Function
	Data Energy
	Distortion Energy
	Constructing a Sparse Linear System
	Data Derivative
	Distortion Derivative
	Fixed-Point Scheme

	Pruning Particles
	Adding Particles Using Scale Maps

	Evaluation
	Evaluation Measures
	Evaluation Videos
	Particle Video Configurations
	Evaluation Results and Discussion

	Future Work
	Conclusion
	Appendix A: Optical Flow Implementation
	Variational Flow Optimization
	Objective Function
	Data Term
	Smoothness Term
	Sparse Linear System

	Occlusion Detection
	Bilateral Flow Filtering

	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (ISO Coated v2 300% \050ECI\051)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Perceptual
 /DetectBlends true
 /DetectCurves 0.1000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /Warning
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /Warning
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 150
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 600
 /MonoImageMinResolutionPolicy /Warning
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU <FEFF004a006f0062006f007000740069006f006e007300200066006f00720020004100630072006f006200610074002000440069007300740069006c006c006500720020003700200061006e006400200038002e000d00500072006f006400750063006500730020005000440046002000660069006c0065007300200077006800690063006800200061007200650020007500730065006400200066006f00720020006f006e006c0069006e0065002e000d0028006300290020003200300030003800200053007000720069006e006700650072002d005600650072006c0061006700200047006d006200480020000d000d0054006800650020006c00610074006500730074002000760065007200730069006f006e002000630061006e00200062006500200064006f0077006e006c006f006100640065006400200061007400200068007400740070003a002f002f00700072006f00640075006300740069006f006e002e0073007000720069006e006700650072002e0063006f006d000d0054006800650072006500200079006f0075002000630061006e00200061006c0073006f002000660069006e0064002000610020007300750069007400610062006c006500200045006e0066006f0063007500730020005000440046002000500072006f00660069006c006500200066006f0072002000500069007400530074006f0070002000500072006f00660065007300730069006f006e0061006c0020003600200061006e0064002000500069007400530074006f007000200053006500720076006500720020003300200066006f007200200070007200650066006c00690067006800740069006e006700200079006f007500720020005000440046002000660069006c006500730020006200650066006f007200650020006a006f00620020007300750062006d0069007300730069006f006e002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

