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Abstract Category-level object recognition, segmentation,
and tracking in videos becomes highly challenging when
applied to sequences from a hand-held camera that fea-
tures extensive motion and zooming. An additional chal-
lenge is then to develop a fully automatic video analysis sys-
tem that works without manual initialization of a tracker or
other human intervention, both during training and during
recognition, despite background clutter and other distract-
ing objects. Moreover, our working hypothesis states that
category-level recognition is possible based only on an er-
ratic, flickering pattern of interest point locations without
extracting additional features. Compositions of these points
are then tracked individually by estimating a parametric mo-
tion model. Groups of compositions segment a video frame
into the various objects that are present and into background
clutter. Objects can then be recognized and tracked based
on the motion of their compositions and on the shape they
form. Finally, the combination of this flow-based represen-
tation with an appearance-based one is investigated. Besides
evaluating the approach on a challenging video categoriza-
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tion database with significant camera motion and clutter, we
also demonstrate that it generalizes to action recognition in
a natural way.
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1 Introduction

Object recognition in images and videos poses a long stand-
ing key challenge for computer vision and the complex-
ity of this problem heavily depends on the constraints and
restrictions that can be imposed on the data. Significant
progress has been made in scenarios of limited complexity
(e.g. exemplar detection Lowe 2004, fully supervised learn-
ing Felzenszwalb and Huttenlocher 2005, videos that allow
for background subtraction Stauffer and Grimson 1999 as
in the training of Seemann and Schiele 2006, etc.). How-
ever, the much more general and less constraint setting of
category-level object recognition in videos from a hand-held
camera (featuring motion and zoom) without heavy super-
vision during training still poses a highly ambitious com-
puter vision task and the required algorithms are situated at
the forefront of modern vision research. Although recent re-
search has pushed this frontier considerably (cf. the large
body of work on still image categorization), the problem in
its general form still remains one of the great challenges
of machine vision. When multiple complex subtasks have
to be jointly solved—as in automatic video analysis—the
untertaking becomes even more ambitious. The vision sys-
tem described in this contribution addresses this challenging
recognition problem and it also allows us to investigate if ob-
ject recognition in videos is feasible based only on an erratic
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Fig. 1 Only based on interest points (a), which jitter between frames,
and on optical flow (b), objects are recognized (c) despite zooming
and camera panning. Therefore, compositions of points are established,
tracked over time, and segmented (c), (d)

pattern of interest point locations without having to extract
complex features (see Fig. 1 for an illustration).

In order to build a complete system for video analy-
sis, several other tasks have to be dealt with besides
category-level recognition—most prominently segmenta-
tion and tracking. These subtasks are all directly coupled
with each other: Segmentation yields object shape and is
thereby directly linked to shape-based recognition, while
tracking of local object regions provides the basis for seg-
mentation. Apart from tackling these individual subprob-
lems, our paper also significantly contributes to the systems
design aspect—showing how all of these subtasks can be
combined in a computer vision system so that they mutually
benefit from another.

In detail, the following problems are investigated:
Category-level recognition The basic setting is that of

category-level object recognition (Fergus et al. 2003) for
multiple categories as opposed to single-class approaches
such as the pedestrian detectors (Seemann and Schiele 2006;
Viola et al. 2003; Dalal et al. 2006) or exemplar detection
Lowe (2004), Sivic et al. (2006), Wallraven and Bülthoff
(2001). Categorization aims at finding all the diverse in-
stances of a category, whereas exemplar recognition detects
different views of the same object instance. Due to the large
intra-class variations, categorization is generally considered
to be a harder task than exemplar detection since a single
object model has to comprise very diverse instances.

Reducing supervision during learning We study if it is
possible to learn the underlying object models without re-
quiring manual annotation of object structure or labeling in-
dividual objects in a video sequence. In the field of catego-
rization (e.g. Fergus et al. 2003), this is typically referred

to as unsupervied learning of object models. In the machine
learning community this setting is commonly called weakly
supervised learning since a global category label is given for
the training images while detailed annotations are missing.
Object categorization differs insofar as the degree of super-
vision typically refers to the user information provided for
learning the structure of objects within each category (e.g.
no segmentation, bounding boxes, accurate hand segmenta-
tion, or even precise labelling of object parts). Our learn-
ing algorithm requires only the category label of the most
prominent object of a cluttered video sequence during train-
ing but it does not need hand segmentations or other local-
ization information. So the structure (visual representation
such as shape, appearance, etc.) of objects in each category
is learned without supervision information. Also we are not
pursuing a pure query-by-example approach like Sivic et
al. (2006) where regions are identified that are similar to
a user selected one. Therefore, our approach has to auto-
matically discover what the relevant object information in
the training samples is and separate it from clutter. Segmen-
tation is, consequently, tightly coupled with recognition so
that our approach differs from a popular trend in the field
of categorization—namely models based on rigid, regular-
grid-like templates with bag-of-features descriptors in each
cell, e.g. Lazebnik et al. (2006). Such models depend on
manual supervision with bounding box segmentations dur-
ing training.

Segmentation of videos from a moving camera To learn
accurate object models, many state-of-the-art recognition
systems require accurate pixel-level segmentations, e.g.
Leibe et al. (2004), Seemann and Schiele (2006). Therefore,
the setting is typically limited to static cameras or homo-
geneously textured backgrounds. In such restricted scenar-
ios, background subtraction Stauffer and Grimson (1999)
suffices to separate objects from clutter. The approach to
action recognition (Blank et al. 2005) avoids the segmen-
tation problem by assuming that accurate object silhouettes
are available (e.g. by background subtraction). In our much
more general setting of a moving (e.g. panning or shaking)
and zooming camera a difficult object segmentation prob-
lem has to be solved where objects are segregated from each
other and from the background and we explicitly couple
recognition with segmentation. This coupling with recog-
nition advances our method beyond classical segmentation
techniques such as layered motion approaches (Wang and
Adelson 1994; Irani et al. 1994). In contrast to these meth-
ods we are computing the segmentation based on the sparse
set of compositions that are used to recognize objects, rather
than on the basis of a dense flow field. For the purpose of
exclusive video segmentation without recognition, decom-
positions of segments into subregions have been studied
in Pawan Kumar et al. (2008). In our approach, the spa-
tial arrangement of compositions, which arises from seg-
mentation and tracking, provides the basis for shape-based
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recognition. Thereby, segmentation builds on the represen-
tation used for recognition and vice versa. Other recogni-
tion approaches with moving camera (Leibe et al. 2007) use
a lot of restricting side information about the scene (e.g.
assuming that objects are only appearing in certain image
regions) and about the relative motion of the camera with
respect to the scene (based on additional sensors) that is
not available in the general setting. Perera et al. (2006)
presents an interesting approach that is specifically designed
for segmentation of aerial videos where frame stabiliza-
tion using ground-plane homographies is possible since the
background is typically very distant. Moreover, they have
also experimented with generalized PCA (Vidal et al. 2003;
Vidal and Ravichandran 2005) but obtained disappointing
results which they attribute to the lack of spatial constraints
in the approach by Vidal et al. Another weakness of general-
ized PCA is that the required number of sample points grows
exponentially with the number of subspaces. This problem
is dealt with in Yan and Pollefeys (2006) by phrasing seg-
mentation as a linear manifold finding problem which has
a linear complexity. Finally, a related, but independently
developed approach based on structure from motion point
clouds is discussed in Brostow et al. (2008). This approach
is however restricted to the case where changes between
frames are solely the result of camera motion. In contrast to
this, our system operates in the general case where objects
and camera can move arbitrarily. Obviously, this generaliza-
tion is crucial for action recognition.

Tracking without manual interaction Along with the
video segmentation problem comes that of tracking objects
from one frame into the next so that consecutive segmenta-
tions can be brought into correspondence. Powerful tracking
algorithms have been proposed that track a user specified re-
gion from one frame into the next, see for instance (Comani-
ciu et al. 2003; Avidan 2005). Manual initialization consid-
erably simplifies the underlying correspondence problem.
Our goal is, however, to build a video analysis system that
works without any manual interaction so that hand initial-
izations of a tracker are not an option. Since our approach is
not provided with an initialization on which object to track
and no manual object segmentation is given, we cannot track
the whole object directly but only various local regions of
the scene. The task of the algorithm is then to automatically
group regions that belong to the same object and to estab-
lish correspondences between segmentations of consecutive
frames.

Object models and shape representation As a result we
obtain an object representation which is a compositional
model in the spirit of Jin and Geman (2006), Ommer and
Buhmann (2007): Objects correspond to image segments
and these consist of a variable number of compositions of
simple, atomic parts. Compositions describe characteristic
object regions whereas the atomic parts are local image de-
scriptors (such as localized feature histograms Ommer and

Buhmann 2006). However, these approaches are specifically
designed for the analysis of still images and do not deal with
tracking or segmentation. Moreover, Jin and Geman (2006)
even excludes the question of model learning.

We then ask the following question: Is it possible to con-
struct robust object representations only on the basis of the
flow at interest points and the shape they describe? Such a
model has the computational advantage that no additional
appearance features have to be extracted. Moreover, it pro-
vides a natural way of dealing with object classes that are
inhomogeneous in their visual appearance (e.g. pedestri-
ans with different clothing). It turns out that we can in-
deed recognize objects based only on a flickering point pat-
tern that is learned without supervision from cluttered train-
ing images. Therefore, recognition is tightly coupled with
segmentation so that the shape of points in an object seg-
ment becomes discriminative. The key to solving the seg-
mentation problem based on ambiguous local flow measure-
ments is to restrict the space of potential transformations
between frames. Finally, we also combine this flow-based
shape model with the appearance-based compositional ob-
ject representation of Ommer and Buhmann (2007) to in-
vestigate the gain of two complementary representations
(shape/appearance). In reference to our results presented in
Sect. 4, we can summarize that the flow-based shape model
shows already state-of-the-art performance for object recog-
nition. Combining this representation with appearance in-
formation yields an additional performance gain. All in all
we can conclude that our flow-based approach leads to ro-
bust object representations that render recognition feasible.
In contrast to flow-based shape which is of course superior
to a flow-based motion representation for the task of object
recognition, action recognition obviously requires a repre-
sentation based on motion. In Sect. 4.3, we comment on
these findings in detail.

Contrary to Ommer and Buhmann (2007) where we have
applied histogram clustering for segmentation, this contri-
bution uses a parametric model for segments to cope with
complex flow fields (e.g. zooming). Moreover, the present
method explicitly represents object shape. Lastly, the system
performs in near real-time on full PAL resolution videos. We
have evaluated it on a video categorization database and in
addition we show that it is also suited for action recogni-
tion tasks that have been addressed by more restricted ap-
proaches in the literature.

Outline of the Processing Pipeline

Let us now summarize the processing pipeline (illustrated in
Fig. 2) before taking a detailed look at the individual steps
in later sections. A novel video is analyzed frame-by-frame,
while the underlying model establishes correspondences be-
tween consecutive frames. Processing starts by computing
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Fig. 2 Outline of the processing pipeline. Tracking groups interest
points spatially and over time to form compositions and feeds these
into segmentation. Segmentation feeds segments back into tracking

(line 8 of Algorithm 2) to prune compositions at segment boundaries.
Moreover, segmentation provides object shape Vt,ν and segment as-
signments of compositions for recognition

optical flow at those image locations where flow information
can be reliably estimated. Since these interest points vary
from frame to frame they cannot be tracked through a whole
image sequence. We therefore group these points spatially
to establish local ensembles of interest points. These com-
positions behave robustly with respect to individual miscal-
culated optical flow vectors or disappearing interest points
and they can, for that reason, be reliably tracked through-
out a video sequence. The goal is then to group composi-
tions that belong to the same object and separate them from
those compositions of other objects or background clutter.
This segmentation problem is solved using an expectation-
maximization approach and we choose a parametric rep-
resentation for object segments that resides in the optical
flow space, i.e. this is a flow-based segmentation procedure.
After tracking and segmentation the third task that has to
be addressed is object recognition. We therefore study dif-
ferent object representations—foremost those that are only
based on optical flow and global object shape, but we also
investigate their combination with models of local object
appearance.

In the training phase, tracking and segmentation proceed
as described above. The generated object representations are
collected over all frames and are fed as training samples into
a probabilistic classifier which learns the object model.

2 Region Tracking and Object Segmentation

2.1 Tracking Object Regions

In a first step optical flow information has to be computed in
a video frame. We use the method of Shi and Tomasi (1994)
to find interest points (IPs) at which flow can be estimated

reliably. Optical flow is then computed by tracking the in-
terest points from the preceding frame into the next using
the Lucas-Kanade tracking algorithm (Lucas and Kanade
1981). Let di

t ∈ R
2 denote the optical flow estimated at in-

terest point i in frame t , i.e. the displacement vector.

Compositions as Spatial Groupings of Parts In the initial
frame of a video (t = 0), a random subset of all detected
interest points is selected (the cardinality of this set is one-
tenth of the number of interest points). Each of these points
is grouped with the interest points in its local neighborhood
(radius of w = 30 pixel chosen using cross-validation) yield-
ing ensembles of interest points, the compositions gt

j ∈ R
2.

Let �t(j) denote the set of interest points in the local neigh-
borhood of j -th composition gt

j ,

�t(j) = {i : IP i in neighborhood of j -th comp.}. (1)

A composition represents all its constituent interest points
i ∈ �t(j) by calculating the mean of their flow vectors

gt
j := 1

|�t (j)|
∑

i∈�t (j)

di
t . (2)

We have also tested the median without observing a signifi-
cant performance gain.

Tracking Compositions The goal is then to let composi-
tions move together with the object that they cover so that
each composition can measure how its underlying object
region behaves over time (i.e. how it moves over several
frames). Thus, compositions can combine information over
multiple frames, which is not possible with the grid of sta-
tic boxes as proposed in Mahindroo et al. (2002). Given the
position xt

j ∈ R
2 of the j -th composition in frame t and the
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Fig. 3 Tracking compositions over 300 frames despite camera shake
and panning. Only the trajectories of compositions that are assigned to
the object segment are plotted

average optical flow of this image region gt
j , its predicted

position in the next frame is

xt+1
j := xt

j + 1

|�t(j)|
∑

i∈�t (j)

di
t . (3)

The initial location x0
j is set to the center of all interest points

that are assigned to a composition. The composition is then
updated in frame t + 1 by assigning all interest points in
its local neighborhood to this composition. Consequently,
the prediction (3) and the assignment step (1) are alternated
once in each new frame (see Algorithm 2 for details). Fig-
ure 3 shows the trajectories of compositions that are tracked
despite camera shake and panning.

Temporal Grouping of Compositions Whereas the previ-
ously presented grouping runs in the spatial domain (using
proximity) the following presents a grouping of composi-
tions over time. Forming ensembles of compositions over
consecutive frames increases the robustness of the represen-
tation since measurement errors in individual frames have
less influence. The temporal grouping of the j -th composi-
tion over successive frames yields temporal compositions

ht
j = ηgt

j + (1 − η)ht−1
j . (4)

For simplicity the weight is chosen to be η = 1/2 and
h1

j = g1
j . Consequently, the influence of older compositions

is decaying exponentially over time.

2.2 Joint Tracking and Segmentation of Objects Based
on Floating Image Regions

Motivation Typically, the object tracking problem is sub-
stantially simplified by manually initializing the tracker with
an object region that is to be tracked. A common state-
of-the-art approach along that line is to treat wide-baseline
feature matching as a classification-based tracking problem
(Avidan 2005; Lepetit et al. 2005; Grabner et al. 2007),
where an object model is trained on the region of interest

against background clutter. The classifier then predicts the
location of the object in new videos frames. Both off-line
(Lepetit et al. 2005) and on-line (Grabner et al. 2007) learn-
ing techniques have been applied. Moreover, distinctive fea-
tures (such as SIFT Lowe 2004 or the learned features of
Grabner et al. 2007) are used that simplify the matching pro-
cedure by providing distinctive matches even over a wide
baseline. When highly distinctive features are lacking, ob-
ject tracking is aggravated. For that reason, other purely flow
based approaches (Brostow and Cipolla 2006) depend on a
scenario where the background can be subtracted (e.g. static
camera).

Approach Since we have no information on where the ob-
jects are in a frame, we can only track local object regions
(the tracking of compositions ht

j presented in Sect. 2) as op-
posed to complete objects. The problem is then to assem-
ble the various object regions into the different objects and
into background before we can, finally, track complete ob-
jects. This is basically a segmentation problem where com-
positions have to be assigned to segments and, simultane-
ously, the segments have to be computed. At the same time,
each segment has to be brought into correspondence with
its counterpart in the previous frame, since object segments
in consecutive frames are representing the same objects.
Such mutually dependent problems are commonly solved by
adopting an expectation-maximization approach (McLach-
lan and Krishnan 1997).

Let there be K − 1 objects plus background clutter in the
scene. In Ommer and Buhmann (2007) we have investigated
how the number of objects can be automatically estimated
using a stability analysis. Moreover, the model complexity
can change within a video sequence. When K changes, the
system switches between segmentations of different com-
plexity (in our experiments K has varied in the range of 2
to 5). Therefore, the following discussion excludes the as-
pect of automatic estimation of model complexity by as-
suming that the correct K is provided as input. That way we
hope to avoid distracting from our main theme of combined
tracking, segmentation, and recognition.

Then the task of segmentation is to assign each composi-
tion ht

j to a single segment ν ∈ {1, . . . ,K}, i.e. we have to
compute the assignment matrix

Mt
j,ν = 1{j -th comp assigned to segm ν} ∈ {0,1}. (5)

Here 1{·} denotes the characteristic function. Based on all
assigned compositions, segments are computed. Since the
samples that are being clustered are flow vectors, the seg-
ment prototypes will be transformation matrices that repre-
sent all the flow vectors in a segment. Because optical flow
provides much more ambiguous correspondences between
frames than highly distinctive features such as SIFT, we
have to restrict the space of admissible correspondences to
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Algorithm 1 EM-algorithm for computing assignments
Mt

j,ν and transformation matrices Tt
ν .

COMPSEGMENTATION({ht
j }j , {Tt−1

ν }ν=1,...,K)

1 Initialization: ∀ν : Tt
ν ← Tt−1

ν

2 repeat
3 E-Step: � update assignments:

4 Mt
j,ν ← 1

{
ν = argmin̂ν R

(
Tt

ν̂ ,ht
j ,xt

j

)}

5 M-Step: � update segments:
6 for ν = 1, . . . ,K

7 do Solve with Levenberg-Marquardt
(start with T̂

t

ν ← Tt
ν ):

Tt
ν ← argminα̂,̂s,̂δx ,̂δy

∑
j Mt

j,ν R
(

T̂
t

ν ,ht
j ,xt

j

)

8 until convergence of Mt
j,ν

9 return Mt , {Tt
ν}ν=1,...,K

disambiguate the estimation problem. A reasonable assump-
tion is that similarity transformations suffice to model the
deformation of an object between two consecutive frames.
Segments ν are then represented by a similarity transfor-
mation matrix Tt

ν in homogeneous coordinates (see Hartley
and Zisserman (2003)), which is defined by the parameters
α (rotation), s (scale), δx , and δy (translation),

Tt
ν =

⎛

⎝
s cosα −s sinα δx

s sinα s cosα δy

0 0 1

⎞

⎠ . (6)

This transformation matrix yields an approximation
Tt

ν (xt
j ,1)� − (xt

j ,1)� to the flow vectors ht
j of composi-

tions in segment ν:

Tt
ν

(
xt
j

1

)
−

(
xt
j

1

)
≈

(
ht

j

1

)
, ∀j : Mt

j,ν = 1. (7)

Consequently, compositions have to be assigned to segments
and the transformation matrices of the segments have to be
computed. We then have to determine the matrices Tt

ν and
Mt

j,ν so that the following objective function of the segmen-
tation problem is minimized:

Ht
K =

K∑

ν=1

∑

j

Mt
j,ν

∥∥∥∥

(
xt
j

1

)
− Tt

ν

(
xt
j

1

)
+

(
ht

j

1

)∥∥∥∥
2

︸ ︷︷ ︸
=:R

(
Tt

ν ,ht
j ,xt

j

)

. (8)

The EM-algorithm, which updates assignments and trans-
formation matrices in alternation, is presented in Algo-
rithm 1.

One might be inclined to add an additional term into (8)
that penalizes changes in the transformation matrix from one
frame to the next (a momentum term). However, we observe
that initializing the EM-algorithm with the solution from the

Algorithm 2 Tracking compositions and segmenting the
frame into objects. x̄t

i denotes the location of interest point i

in frame t , xt
j is the location of composition j .

COMPOSITIONTRACKING({ht−1
j ,xt

j }j , {Tt−1
ν }ν=1,...,K)

1 Detect interest points i in frame t

2 for all compositions j � update comps with IP flow:
3 do �t(j) ← {i : ‖xt

j − x̄t
i‖ ≤ w}

4 gt
j ← 1

|�t (j)|
∑

i∈�t (j) di
t

5 ht
j ← ηgt

j + (1 − η)ht−1
j

6 Mt , {Tt
ν}ν ← COMPSEGMENTATION({ht

j }j , {Tt−1
ν }ν)

7 for all compositions j �update comps with segmentat.:
8 do �t(j) ← {i : i ∈ �t(j) ∧

1 = Mt

j,argmin̂ν R
(
Tt

ν ,di
t ,x̄

t
i

)

9 gt
j ← 1

|�t (j)|
∑

i∈�t (j) di
t

10 ht
j ← ηgt

j + (1 − η)ht−1
j

11 xt+1
j ← xt

j + 1
|�t (j)|

∑
i∈�t (j) di

t

12 return {ht
j ,xt+1

j }j , {Tt
ν}ν

previous frame (line 1 of Algorithm 1) yields already stable
solutions that are close to those from the previous frame (cf.
Goldberger and Greenspann 2006). Consequently, segment
ν in frame t corresponds to the ν-th segment in the frame
t−1 and we can track segments over time. In particular, the
object center can be computed by

xt,ν := 1∑
j Mt

j,ν

∑

j :Mt
j,ν=1

xt
j . (9)

Moreover, the initialization of the EM-algorithm leads to
a convergence in less than 10 iterations on average (con-
vergence is guaranteed since the E- and M-step minimize
(8) and Ht

K is bounded). The Tt
ν are estimated using the

Levenberg-Marquardt algorithm (Marquardt 1963; Hartley
and Zisserman 2003), which is initialized with the solution
from the previous M-Step. Typically, a solution for Tt

ν is
found after only 3 update steps.

Using Segmentation to Refine Object Region Tracking Al-
gorithm 2 summarizes how compositions are tracked from
frame to frame by updating them with the observed inter-
est point flows (cf. Section 2.1). Thereafter, the segmenta-
tion of the previous frame is updated using Algorithm 1. Fi-
nally, in line 8 of Algorithm 2, all those interest points are
removed from a composition whose flow fits better to that
of another object in the image. This pruning removes outlier
points in compositions which occur at segment boundaries,
for instance.

Determining the Background Segment Finally, we assume
that objects are basically forming holes in the background
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segment. Therefore, the segment with largest spatial extend
(i.e. we compare the length of the vectors from (10)) is la-
beled as background. As an estimate for the height and width
of the segment we use the standard deviations in x- and
y-direction (the rectangular hull is by definition too sensi-
tive w.r.t. outliers)

(bt,ν
x ,bt,ν

y )� := 2λ · (σx, σy)
�

= 2λ · Std
({xt

j : Mt
j,ν = 1}). (10)

λ = 2 is a reasonable choice that yields a sufficiently large
covering of an object.

In our experiments this method for determining the back-
ground segment has worked reliably. The only noticeable
failure we have observed occurred when an object was cov-
ering nearly all of a video frame and there was no back-
ground on two adjacent sides of the object, i.e. the object
was zoomed in so far that it filled nearly all of the frame
and was clipped at the bottom and the left. However, in the
datasets we have used so far this problem was a rare ex-
ception and one could explicitly test for this case should it
actually be a real problem.

3 Object Representations for Category-Level
Recognition

Object recognition amounts to a classification task where an
object segment is classified as showing an instance of one of
several object categories. The underlying object model for
each category must then be learned from the training sam-
ples for that class. In the training phase compositions are
tracked and objects are segmented (Algorithm 2). The ob-
jects in all training frames are then represented using an ob-
ject description (presented in the next sections) before train-
ing a classifier on all the samples.

3.1 Recognition Using the Shape of a Dot Pattern

Motivation Let us first investigate an object representa-
tion that is entirely based on optical flow. Now the follow-
ing question arises: How can we recognize object categories
based only on a set of ambiguous points (interest points with
flows di

t ) that move through the scene when background or
other objects are moving, simultaneously? Obviously, an in-
dividual point does not characterize an object class. How-
ever, the pattern of all points that are collectively moving
with an object shows characteristic structure—the object
shape. Therefore, an object can only be represented by a
model that jointly describes the locations of all the points
on the object.

The approach of Leibe et al. (2004) that is based on a
Hough voting of visual parts is not suited since it depends

Fig. 4 Object shape is represented using a grid Vt,ν ∈ R
u×u and

the object is categorized by maximizing the category posterior
P (ct,ν |Vt,ν )

on characteristic features and does not describe dependen-
cies between the parts. Constellation models (Fergus et al.
2003), which describe such relationships, are only applica-
ble to small numbers of parts for complexity reasons. Shape
descriptions such as Zhang et al. (2006) establish coher-
ent spatial mappings between a probe image and all train-
ing samples which leads to unfavorable computational costs
in the recognition phase. At the other end of the modeling
spectrum are bag-of-features models (Csurka et al. 2004) or
approaches based on latent semantic analysis (Sivic et al.
2005) that do not represent any spatial information.

Approach The object in segment ν is represented by laying
a regular grid of u × u cells (we choose u = 30 to generate
a sufficiently accurate representation) over the quadratic im-
age region with diagonal length ‖bt,ν‖ around the segment
center xt,ν . Each cell indicates the distance to the nearest
composition that was assigned to segment ν. The object is
then represented by a matrix Vt,ν ∈ R

u×u, see Fig. 4. Mod-
els similar to Vt,ν have typically been learned from manu-
ally segmented data and commonly rely on appearance in-
formation in the grid cells, cf. Pontil et al. (1998).

The segment can then be classified as containing an ob-
ject of class ct,ν by maximizing the category posterior,

ct,ν = argmax
c

P (Ct,ν = c|Vt,ν). (11)

We solve this classification problem using a multi-class
SVM (RBF kernel and one-vs-one classification setting
Chang and Lin 2001). Additionally, the dimensionality of
the grid representation can be reduced by applying PCA.
However, our experiments indicate that the implicit feature
selection of SVMs is already sufficient so that no additional
performance gain could be achieved.

3.2 Compositional, Appearance-Based Model

Another approach is to describe an object with a part-based
model, where each part encodes the appearance of an ob-
ject region. We use the compositional model of Ommer
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and Buhmann (2007) which has been applied to multi-class
object categorization for more than 100 real world object
categories in Ommer and Buhmann (2007). The following
briefly summarizes the compositional approach. Local im-
age patches at interest points are represented with appear-
ance descriptors, i.e. the localized feature histograms. These
are then mapped to a codebook so that compositions of in-
terest points are represented by a histogram at

j of all the
appearance descriptors that they contain. An object is then
represented by coupling all the compositions based on their
shift St

j = xt,ν − xt
j from the object center. More precisely,

compositions at
j are assumed to be conditionally indepen-

dent, conditioned on the object category ct,ν and object loca-
tion xt,ν . Following the derivation in Ommer and Buhmann
(2007) the category posterior can be computed by

P(ct,ν |xt,ν , {at
j ,xt

j }j :Mt
j,ν=1)

∝
∏

j

[
P(ct,ν |at

j ,St
j = xt,ν − xt

j )
]Mt

j,ν
. (12)

The distribution in (12) can be estimated on the training
samples with a probabilistic classifier (we use a multi-class
SVM as in the previous section). This model has the favor-
able property that it supports an arbitrary number of compo-
sitions and it is robust against missing of individual compo-
sitions (i.e. due to occlusion).

3.3 Recognition Using the Motion of Dot Patterns

Now we can modify (12) to build an object model that em-
ploys the motion of object compositions, ht

j , relative to the
motion of the object segment. Therefore, the appearance his-
tograms at

j are substituted by ht
j − (xt,ν − xt−1,ν),

P(ct,ν |xt,ν ,xt−1,ν , {ht
j ,xt

j }j :Mt
j,ν=1)

∝
∏

j

[
P(ct,ν |ht

j − xt,ν +xt−1,ν , xt,ν − xt
j )

]Mt
j,ν

. (13)

The individual posteriors in (13) are basically functions that
map from R

4 (flow and shift are both 2-D vectors) to a
distribution over the discrete space of labels. No additional
processing is required. As before, we employ an SVM for
estimation.

3.4 Global Shape and Local Appearance Combined

Now the holistic representation for object shape in (11) and
the part-based appearance model in (12) are to be combined
in a single model, with the expectation that both models mu-
tually benefit from each other. The underlying Bayesian net-
work is presented in Fig. 5. Since the at

j and the shape de-
scriptor are conditionally independent, conditioned on ct,ν ,

Fig. 5 Graphical model that
combines global shape Vt,ν and
compositional appearance at

j at

location xt
j to infer the category

ct,ν for the object in segment ν

and center xt,ν

we obtain for the category posterior

P(ct,ν |Vt,ν ,xt,ν , {at
j ,xt

j }j :Mt
j,ν=1)

∝ P(ct,ν |Vt,ν) ×
∏

j

[
P(ct,ν |at

j ,xt,ν − xt
j )

]Mt
j,ν

. (14)

3.5 Processing Pipeline for Training

In the training phase, compositions are tracked and seg-
mented using Algorithm 2 exactly as in the recognition
phase. Each video is labeled with the most prominent cate-
gory it shows. Moreover, the number of segments in a frame
is set to two so that only the most prominent object is found
and the remaining clutter of the scene ends up in the back-
ground segment. The compositions from all foreground seg-
ments are then collected. After that, a probabilistic discrimi-
native classifier is trained on all the gathered training data in
batch mode (we use SVMs with probabilistic output (Chang
and Lin 2001) and RBF kernels). Depending on which ob-
ject model is used, a different probability has to be esti-
mated. For the model in (11) this means for instance that
P(Ct,ν = c|Vt,ν) is estimated by taking all the Vt,ν from
the training frames and using the same overall video label c

for each Vt,ν in the same video.

4 Experiments

4.1 Recognition Performance on Videos
with Substantial Camera Motion

Since the presented approach automatically segments ob-
jects in cluttered videos taken by a moving camera, we eval-
uate it on a multi-category video database that does not
support background subtraction. Therefore, we first run an
experiment on the challenging database for category-level
recognition in videos that has been presented in Ommer
and Buhmann (2007). It consists of 24 videos per cate-
gory (categories car, bicycle, pedestrian, and streetcar) re-
corded in ordinary street scenes. The videos feature large
intra-class variation and the scale and viewpoint change sig-
nificantly (cf. Fig. 6(a), (d)) even within videos. Moreover,
there is a lot of background clutter (e.g. Fig. 6(b)), occlusion
(see Fig. 6(e)), and heavy camera motion and zooming (cf.
Fig. 1(b)). To make the results comparable to Ommer and
Buhmann (2007), we also use 10-fold cross-validation and
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Fig. 6 Segmentations and object categorizations on the dataset of
Ommer and Buhmann (2007). The category label ct,ν is placed at
the location of the object center xt,ν . (a) Simultaneous recognition of

multiple objects. (e) and (f) Shows object tracking despite occlusion.
(g) Shows a bicycle that is erroneously classified as pedestrian. (h) Is
a sample from the database (Magee and Boyle 2002) labeled as cow

train on 16 randomly chosen videos per category in each run.
Testing proceeds then on the remaining videos. Object mod-
els are learned on a randomly drawn subset of 15 frames
per training video, whereas testing runs over all frames of
the test videos. Following common practice, retrieval rates
(fraction of correctly classified test frames) are averaged per
category. The overall retrieval rate ζ is, therefore, defined as

ζ := 1

|L|
∑

c∈L
{true positive rate for category c}, (15)

where L denotes the set of all categories

Baseline Performance of Appearance w/o Compositions and
Shape—Bag-of-Parts The compositional approach estab-
lishes an intermediate representation that is based on com-
positions of parts and the spatial structure of objects. In a
first experiment this hidden representation layer is neglected
to evaluate the gain of compositionality. A frame is then rep-
resented using a bag-of-parts, a histogram over all the ap-
pearance features that have been extracted at all the interest
points. This approach classifies 53.0 ± 5.6% of all frames
correctly.

Compositional Segmentation and Recognition w/o Shape
Model This experiment demonstrates the benefit of com-
bining segmentation with recognition in a compositional
model. Therefore, compositions are tracked and frames are
segmented as described in Sect. 2. A segment is then rep-
resented using a bag-of-compositions, a histogram over the

appearance descriptors at
j of all compositions in the seg-

ment. This approach filters out background using the seg-
mentation algorithm and it utilizes compositions. However,
the bag representation completely neglects the spatial lay-
out of compositions within a segment. Consequently, only
object appearance is represented but not object shape. This
model yields a retrieval rate of 64.9 ± 5.4% per frame.

Comparing the Different Compositional Object Models
Table 1 compares the retrieval rates of the different object
models presented in Sect. 3. The flow-based representation
is not suited for this dataset since these categories are pri-
marily characterized by their shape and appearance and not
by the dynamic change of articulation. In contrast to this,
shape (11) provides an appropriate object representation that
can compete against the approach of Ommer and Buhmann
(2007). Moreover, this model yields significantly better per-
formance than the two purely appearance-based bag repre-
sentations that have previously been evaluated as baseline
models in this section. This result underlines that it is in-
deed possible to recognize objects on a category level only
on the basis of moving interest points without extracting
additional appearance features. Nevertheless, this represen-
tation is obviously less powerful than one that uses appear-
ance and shape together: the model in (12) describes the
appearance of compositions as well as their spatial layout
within the segment. However, this model assumes that all
compositions are conditionally independent, conditioned on
the object category and location. Equation (14) presents a
combination of the models from (11) and (12). This com-
bined model yields an additional performance gain on top of
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Fig. 7 Visualization of compositions. For three frames the centers xt
j

of compositions and their flows gt
j are displayed. A segmentation with

two segments is computed and visualized by coloring the composi-
tions. The magnified regions show the same composition by visualiz-
ing the interest points assigned to the composition (circles) and those

(crosses) that are rejected (using line 8 of Algorithm 2) because they
do not fit into the segment the composition is assigned to. In (b) the
composition is partially covered by pedestrians entering from the left.
In (c) the composition was dropped from the streetcar segment because
it was completely covered by the pedestrians and moved with them

Table 1 Retrieval rates per frame and per video (percentages) of the
different object models on the dataset of (Ommer and Buhmann 2007)
and on the extended dataset (Ommer and Buhmann 2007) + (Magee
and Boyle 2002)

Object model Per frame Per video

Dataset of Ommer and Buhmann (2007)

(car, bicycle, pedestrian, streetcar):

Approach of Ommer and Buhmann (2007) 74.3 ± 4.3 87.4 ± 5.8

Compositional motion (13) 52.6 ± 1.1 68.2 ± 3.4

Appearance-only: bag-of-parts 53.0 ± 5.6 58.9 ± 6.5

Segment. w/o shape: bag-of-comps 64.9 ± 5.4 78.9 ± 5.8

Shape: P (ct,ν |Vt,ν ) (11) 74.4 ± 5.3 88.4 ± 5.2

Compositional appear + location (12) 79.6 ± 5.5 90.7 ± 5.3

Combined shape + appear (14) 81.4 ± 2.9 94.5 ± 4.9

Dataset (Ommer and Buhmann 2007) plus additional category

“cow” from (Magee and Boyle 2002):

Compositional appearance (12) 76.5 ± 2.4 88.4 ± 2.3

(12) since it models direct dependencies between the indi-
vidual compositions which (12) ignores. The dependencies
between compositions are captured in P(ct,ν |Vt,ν) because
it jointly models the locations of all compositions. Table 2
presents the confusion table for the approach from (14). The
most confused categories are bicycles and pedestrians. The
reason for this confusion is that, when viewed from the front
or back, persons riding their bike look very much like pedes-
trians as there is only little visual evidence for the bike (see
Fig. 6).

Table 2 Category confusion table (percentages) for the combined
shape and appearance model (14) per frame on the dataset (Ommer
and Buhmann 2007)

True classes → Bicycle Car Pedest Streetcar

Bicycle 74.3 3.2 13.7 2.9

Car 7.8 84.1 4.2 5.9

Pedestrian 13.3 2.5 80.0 3.9

Streetcar 4.7 10.2 2.2 87.3

Figure 7 visualizes compositions by displaying their cen-
ters xt

j and their flows gt
j . The segmentation (two segments)

is shown by drawing the xt
j in two different colors. The

magnified subwindows visualize the same composition in
all three frames (the disk in the middle is again xt

j ). There-
fore, all interest points within that composition are plotted—
those that are actually assigned to the composition are cir-
cles, whereas the crosses show the rejected points. Interest
points are rejected by line 8 of Algorithm 2 when their flow
fits better to another segment than to the one the compo-
sition is assigned to. In Fig. 7(b) the composition is par-
tially covered by pedestrians entering from the left so in-
terest points on the pedestrians are rejected by the compo-
sition. Shortly after this, the composition is fully covered
by the pedestrians. Therefore, it is no longer assigned to the
streetcar segment but to the background and starts moving
with the pedestrians, see Fig. 7(c). Now points on the street-
car are rejected by the composition as they do not belong
to the segment the composition is assigned to. Obviously,
one could reduce the impact occlusion has on compositions
using a momentum term at the expense of making composi-
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Fig. 8 (Color online) (a)–(c) show recognition and segmentation un-
der occlusion. (d) and (e) present segmentation errors due to reflection
(the reflections have the same apparent motion as the background be-
cause they mirror the background). (f) shows shadow regions that end

up in the object segment due to their apparent motion. Note that the
flow vectors point from locations in the previous frame to locations in
the current. See text for details. The figure is best viewed in color

tions less flexible. However, this is actually not problematic
since the streetcar has now itself accumulated compositions
from the background.

Figure 8 shows object recognition under occlusion and
presents cases where segmentation produces incorrect re-
sults. Figure 8(a)–(c) present a two-class segmentation for
two frames of a video where a pedestrian is temporarily oc-
cluded by a passing car. While the pedestrian is covered,
the segmentation switches to segment the car from the back-
ground but it resumes to segment the pedestrian once the
occlusion is over. This shows that it is possible to detect ob-
jects that appear or reappear in the middle of a sequence.
Whereas Fig. 8(a) and (b) show the centers of composi-
tions, Fig. 8(c) visualizes the segmentation for the frame of
Fig. 8(b) by plotting all interest points and their optical flows
and coloring the points according to the segmentation. Fig-
ure 8(d) shows segmented compositions and (e) shows the
corresponding interest points. The reflections on the street-
car end up in the background segment, since their apparent
motion is that of the background (the tiny area to the right
of the tram is actually the mirror of the tram that is correctly
put into the tram segment). A segmentation failure due to re-
flection can also be seen in Fig. 8(a) (the car window reflects
a building). Figure 8(f) shows the interest points in the fore-
ground segment of a two-class segmentation. The shadow

region moves with the pedestrians and is thus put into the
same segment.

Figure 9 shows tracking, segmentation, and recognition
of multiple, independently moving objects while the cam-
era is also moving. For the same frame (a) shows the cen-
ters and flows of compositions and (b) the corresponding
interest points and the color indicates the segment assign-
ment (K = 3). (c) and (d) present the same visualization for
another video sequence. Note the intensive camera panning
and zooming in (c), (d).

We have also extended the dataset by adding the addi-
tional category cows (videos from Magee and Boyle 2002).
Retrieval rates for model (12) are shown in Table 1. The
relative performances of the other models w.r.t. (12) are ap-
proximately as before. It is interesting to see that although
the complexity of the classification task has increased with
the additional category, the performance of our system is
not significantly affected. Moreover, it underlines that our
approach generalizes well to new classes and is not tuned to
any particular dataset. Section 4.2 will further investigate the
general applicability of the proposed approach in the com-
pletely different setting of action recognition.

Computational Demands The system tracks, segments,
and recognizes objects in videos of full PAL resolution
(768 × 576 pixel) using the combined shape and appearance
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Fig. 9 (Color online) Tracking, segmentation, and recognition of mul-
tiple, independently moving objects. (a) Compositions and (b) interest
points for the same frame showing two streetcars. Similarly (c) and (d)

show a car and a streetcar that move independently while the camera
is also heavily panning and zooming (best viewed in color)

model at the order of 1 fps on a 3 GHz Pentium 4 desktop PC
(videos in the standard MPEG resolution of 352 × 288 pixel
are processed at roughly 4 fps). However, there should be
still a considerable margin for optimization, e.g. by initial-
izing the flow estimation with the solution found on the pre-
vious frame. The overall system is implemented in MatLab
but all computationally demanding procedures are actually
C code that is called through the MEX-interface.

Table 3 summarizes how the overall processing time is
split up among the different subtasks. The computationally
most demanding steps are interest point and flow compu-
tation as well as the computation of localized feature his-
tograms to represent compositions at

j . The EM-algorithm in
Algorithm 1 is efficient since it is initialized with the solu-
tion of the previous frame. Thus, the initialization leads to
rapid convergence in less than 10 iterations since the algo-
rithm is basically only updating a previous solution.

In the training phase, tracking and segmentation proceed
exactly as during recognition. In this case, however, the
compositions from all frames are just collected instead of
using them directly to recognize objects in each frame, as
in the test phase. Once all compositions have been gathered,
SVM learning is conducted in batch mode on this data. This
learning takes approximately 13 minutes on the database of
Ommer and Buhmann (2007) for the combined shape and
appearance model of (14).

4.2 Action Recognition

KTH Action DB Can we turn the object categorization sys-
tem into a recognition system for human action? In fact, we
only have to replace the object category training samples
with a database that shows different human actions. There-
fore, we use the KTH human action database (Schüldt et al.
2004) which comprises six action types (boxing, hand clap-
ping, hand waving, jogging, running, and walking) repeat-
edly performed by 25 subjects in indoor and outdoor envi-
ronments. Moreover, there are also videos with scale varia-
tion and all the 600 videos (all recorded in grayscale) have
a resolution of 160 × 120 pixels which differs significantly

Table 3 Using the combined shape and appearance model, the ap-
proach processes full PAL video at the order of 1 fps. The table lists
how much of this time is invested for the individual subprocesses

Processing step Comp. demand

Tracking and segmentation, Algorithm 2:

IPs i, flow di
t (Algorithm 2, line 1) 27.7%

Updating comps (Algorithm 2, line 2–5) 5.2%

EM estimation Algorithm 1, i.e. (Algorithm 1, line 6) 4.9%

Updating comps with segm. (Algorithm 2, line 7–11) 0.3%

Feature extraction and recognition:

Computing loc feat hists to represent at
j (Sect. 3.2) 36.5%

Computing all individual probs in (14) 12.3%

Eval. GM of Fig. 5, i.e. calc. product in (14) 0.09%

Video stream ops, writing of results, etc. 12.9%

from the 768 × 576 pixel color videos in the previous exper-
iment.

Since the task is action recognition we utilize the shape
and motion based object model from Sect. 3.1. Appearance
information would not be appropriate as it distinguishes dif-
ferent objects but not different actions performed by the
same subject. All these videos feature one person perform-
ing an action, so we segment the person from the back-
ground by setting K = 2. The model from Sect. 3.1 does
then represent actions by modeling how the individual com-
positions are moving with respect to the object. The confu-
sion table for the compositional motion model (13) is pre-
sented in Table 4. The most confused actions are hand clap-
ping and hand waving and there are nearly no confusions
between the locomotion classes (last three) and the hand mo-
tions (first three). Combining motion with shape in the pos-
terior P(ct,ν |Vt,ν ,xt,ν ,xt−1,ν , {ht

j ,xt
j }) (cf. Sect. 3.4) does

not significantly improve the performance (gain of 1%). Our
investigation of this effect has shown that only small re-
gions of the human body are actually characteristic for ei-
ther of these action categories and that these distinguishing
features are already captured by the motion model. Repre-
senting the complete object shape does then not yield signif-
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Table 4 Category confusions per video (percentages) for all scenarios
of the KTH action dataset using the model of (13)

True classes → Box Hclp Hwav Jog Run Walk

Boxing 84.5 0.0 5.5 0.0 0.0 0.0

Hand clapping 1.0 87.0 16.5 0.0 0.0 0.0

Hand waving 12.5 13.0 75.5 0.0 0.0 0.0

Jogging 0.0 0.0 0.5 93.0 0.0 0.0

Running 2.0 0.0 0.0 3.0 92.3 5.0

Walking 0.0 0.0 2.0 4.0 7.7 95.0

icant extra information for discriminating the classes. The
overall retrieval rate per video on all scenarios (5-fold cross-
validation, training on videos for 16 persons and testing on
9 different persons) is 87.9 ± 6.7% (see Table 5). This re-
sult significantly outperforms the 71.7% achieved by inde-
pendent local features in Schüldt et al. (2004). Moreover, it
turns out that the performance of our object recognition sys-
tem is in the range of methods specifically designed for ac-
tion recognition and which rely on background subtraction
such as the HMAX approach (Jhuang et al. 2007), achieving
retrieval rates of up to 91.6 ± 3.0%.

Weizmann Action DB Finally, we also evaluate our ap-
proach on the Weizmann human action database (Blank et
al. 2005) which shows 9 persons, each performing 9 differ-
ent actions (running, walking, jumping-jack, jumping for-
ward on two legs, jumping in place on two legs, galloping
sideways, waving two hands, waving one hand, and bend-
ing). Subjects are roughly half as large as in the KTH set
and video resolution is 180×144 pixel. We run 5-fold cross-
validation with 6 random subjects for training and 3 for test-
ing and summarize the results in Table 5 (for Jhuang et al.
2007 we present the validated results for which error bars
are given).

Both action recognition experiments confirm that our ap-
proach is not restricted to object categorization in videos
but that it also generalizes well to other tasks such as action
recognition. Moreover, the significant variation in video res-
olution and scene environment between the datasets Ommer
and Buhmann (2007) and Schüldt et al. (2004), Blank et al.
(2005) underlines that our approach does not depend on the
specificities of a single recording scenario.

4.3 Action Recognition vs. Object Categorization

The previous experiments have demonstrated that our ap-
proach is generic and that it can be used for both action
recognition and object categorization. Let us now review
how both tasks are related and what their relative difficul-
ties are. Action recognition and object categorization deal
with the classification of visual patterns. Whereas objects

Table 5 Recognition rates per video (percentages) on the KTH human
action dataset (Schüldt et al. 2004) and on the Weizmann action dataset
(Blank et al. 2005)

Approach KTH Weizm.

Schüldt et al. (2004) 71.7 –

Niebles and Fei Fei (2007) – 72.8

Dollar et al. (2005) 81.2 86.7 ± 7.7

(see Jhuang et al. 2007)

Jhuang et al. (2007) 91.6 ± 3.0 97.0 ± 3.0

Our compositional 87.9 ± 6.7 97.2 ± 2.5

motion model (13)

are typically described by their shape and appearance, ac-
tions are best characterized by how their visual represen-
tation changes over time. Thus a visual representation for
actions captures the change of the representation of objects
(roughly speaking, actions are described by the changing of
an object descriptor). Therefore, motion (13) shows much
lower performance in the categorization task than shape or
appearance (14). Similarly, shape and appearance are inap-
propriate for action recognition where motion is actually a
suitable representation.

Which of the two tasks is then harder? In the specific
case of our compositional model and the presented datasets,
we can rank the tasks as follows: Due to its large intra-class
variations, the object categorization problem on the database
(Ommer and Buhmann 2007) appears to be the hardest. This
problem is then followed by action recognition on the KTH
dataset and finally by action recognition on the Weizmann
database. In general, the difficulty of a classification task
scales proportional to the intra-class variation and inverse
proportional to the inter-class variation of the data—in addi-
tion there are obviously several other factors such as the de-
gree of supervision. Consequently, both action recognition
as well as object categorization can become arbitrarily diffi-
cult in the limit case and neither is per se more difficult than
the other. Difficult scenarios for action recognition are for
example interactions between multiple entities (e.g. “person
A helps person B”). Similarly, functional object categories
(e.g. “seating furniture”) lead to a complex categorization
problem. The complexity of both of these problems arises
from the fact that these classes cannot be directly character-
ized by their visual representation but only by a high-level,
semantic concept. In the future, both tasks will require sev-
eral new databases, which continue to guide research step
by step towards semantic categories. Therefore, we consider
it essential to increase the complexity of the problem in a
controlled manner. When the intra-class variations of cat-
egories are increased, significantly more training samples,
which feature the additional variability, are required.
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5 Conclusion

Category-level object recognition can be accomplished by
a composition machine that processes videos in the general
setting of a moving camera. We have shown how recognition
can be based exclusively on optical flow without requiring
additional, distinctive features. Moreover, learning as well
as inference do not require human intervention. Previous re-
search has mainly focused on methods that were restricted
in one of several ways (e.g. requiring that background sub-
traction applies, depending on manual initializations of a
tracker, or being specific to only a single object class). Cru-
cial modeling aspects are the representation and tracking
based on compositions, a parametric, flow-based segmenta-
tion, and the direct link of recognition to segmentation. The
approach has shown to be generic, i.e., it is directly applica-
ble to action recognition. In this application scenario it per-
forms competitive to systems that are specifically designed
for action recognition and for situations where background
subtraction works.
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