Théoretical Computer Science 105 (1992) 7-25 7
Elsevier

On the relations between stable
and well-founded semantics of
logic programs*

Phan Minh Dung

Institute of Computer Science, National Center for Scientific Research of Vietnam, Lieugiai, Badinh,
Hanoi, Vietam and Division of Computer Science, Asian Institute of Technology, Bangkok 10501,
Thailand

Abstract

Dung, P.M., On the relations between stable and well-founded semantics of logic programs,
Theoretical Computer Science 105 (1992) 7-25.

We study the relations between stable and well-founded semantics of logic programs.

(1) We show that stable semantics can be defined in the same way as well-founded semantics
based on the basic notion of unfounded sets. Hence, stable semantics can be considered as
“two-valued well-founded semantics™.

(2) An axiomatic characterization of stable and well-founded semantics of logic programs is given
by a new completion theory, called strong completion. Similar to the Clark’s completion, the strong
completion can be interpreted in either two-valued or three-valued logic. We show that
e Two-valued strong completion specifies the stable semantics. ’

e Three-valued strong completion specifies the well-founded semantics.

(3) We study the equivalence between stable semantics and well-founded semantics. At first, we
prove the equivalence between the two semantics for strict programs. Then we introduce the
bottom-stratified and top-strict condition generalizing both the stratifiability and the strictness, and
show that the new condition is sufficient for the equivalence between stable and well-founded
semantics. Further, we show that the call-consistency condition is sufficient for the existence of at
least one stable model.

1. Introduction

There are many alternative approaches to the semantics of negation in logic
programming. Kunen [14] distinguishes two main competing approaches: the logical

Correspondence to: Phan Minh Dung, Division of Computer Science, Asian Institute of Technology, G.P.O.
Box 2754, Bangkok 10501, Thailand. Email: dung@ait.th.

* A shortened version of this paper appeared in the Proceedings of the Second International Conference
on Algebraic and Logic Programming.

0304-3975/92/$05.00 © 1992 FElsevier Science Publishers B.V. All rights reserved

8 P.M. Dung

consequence approach based on program completion, and the canonical model
approach which picks out some specific models of the program.

In the logical consequence approach, the semantics may be defined by the Clark’s
completion [4]. Given a logic program P, the completion of P, comp(P), consists of
some equality axioms plus a completed definition of each predicate symbol. Roughly,
this completed definition is obtained by replacing the “if” by “iff”. The completion of
a program can be interpreted either in the two-valued logic [4] or in a three-valued
logic [117]. While the three-valued completion is always consistent, this is not the case
for the two-valued completion. But if the program is call-consistent [15, 24], then
two-valued completion is consistent, too. The three-valued semantics is weaker than
the two-valued, in the sense that every query supported in the three-valued semantics
is also supported in the two-valued semantics but not conversely. But if the program is
strict then these two semantics are equivalent [15].

However, the Clark’s completion does not always capture the intended meaning of
the program. For example, let P consist of the single clause p« p. Intuitively, we expect
that any meaningful semantics of P would imply that p is false. But since the comp(P)
is p <> p, we cannot conclude from comp(P) that p is false. To clarify once more the
shortcomings of the Clark’s completion, consider the following example taken
from [21].

Example 1.1. Let P be
edge(a, b)«
edge(c, d)«
reachable(a)«
reachable(x)«reachable(y), edge(y, x)
unreachable(x)«1reachable(x)

P can be illustrated by the following picture:

c——d

We obviously expect the vertices ¢,d to be unreachable; indeed, Clark’s semantics
implies unreachable(c), unreachable(d).

Now adding to P the clause edge(d, ¢) will result in a new program P’ which is
illustrated by the following picture:

c—d

The Clark’s completion of P’ could not imply that ¢,d are unreachable, although it
still appears to be expected from the given information.

Relations between stable and well-founded semantics 9

Two major semantics in the canonical model approach are the (two-valued) stable
semantics and the (three-valued) well-founded semantics,

The stable semantics of a program is defined by the set of its stable models. This
semantics has its root in nonmonotonic logics, where a logic program is considered as
an autoepistemic theory whose stable extensions correspond to the stable models of
the logic program [13]. In general, the stable semantics overcomes the drawbacks of
the Clark’s completion, e.g. the stable semantics of the program in Example 1.1
provides the expected conclusion. The problem of stable semantics is that it is not
defined for every logic program, e.g. the program consisting of only the clause p «—1p
has no stable models. To illustrate the seriousness of this problem, let us consider one
more example,

Example 1.2 (The Barber’s paradox). “Beardland is a small city where the barber
Noel shaves every citizen who does not shave himself.

Does Noel shave the city mayor Casanova?

Does Noel shave himself?”

The problem can be represented by a logic program consisting of the clauses

shave(Noel, x) «— shave(x, x)
mayor(Casanova)«

Despite the confusion about who shaves Noel, we expect that Noel shaves the city
mayor Casanova. But this program has no stable model, i.e. we could not conclude
anything with respect to the stable semantics.

The idea of well-founded semantics is negation as (possibly infinite) failure, i.c. the
failure (possibly in infinitary) to prove a fact (a ground atom) to be true leads to the
acceptance of this fact being false. Formally, the well-founded semantics is defined by
the well-founded model, which is defined as the least fixpoint of a monotone operator
[12]. In contrast to the stable semantics, the well-founded semantics is defined for
cvery logic program. It is interesting to note that the well-founded semantics delivers
the expected conclusion in the Barber’s paradox example. The major shortcoming of
the well-founded semantics is its inability to handle conclusions which can be reached
only by “proof by cases”. The following example illustrates this problem.

Example 1.3. Let P be

a«——b
b+«—ua
C«a

c«b

10 P.M. Dung

It is reasonable to expect that ¢ holds. But with respect to the well-founded semantics,
all a,b,c are unknown. Note that in this case the stable semantics provides the
expected conclusions.

The fact that each approach to semantics of negation has its own strength and
weakness suggests that there is probably not a “best” semantics for logic programs.
Which semantics should be used depends on concrete applications. To be able to
choose the “right” semantics among different ones, it is of great importance to
understand the inherent relations between them.

Although a logic program is a set of clauses P, its canonical model semantics is
defined by picking out some specific models of P. Here we are interested in the
question whether or not it is possible to extend P into a richer theory Th which
specifies the canonical model semantics of P in the sense that an interpretation is
a model of Th iff it is a canonical model of P. This problem is strongly related to one
open question between nonmonotonic logic and logic programming, the question
whether or not there is a circumscriptive specification of the stable semantics [22, 18].

Since stable semantics is not defined for every logic program, it is interesting to
characterize some class of programs for which the stable semantics is defined. In other
words, we are looking for syntactical conditions guaranteeing the existence of at least
one stable model.

Similar to the relation between three-valued and two-valued semantics of the
Clark’s completion, the well-founded semantics is weaker than the stable semantics.
Since many ordinary programmers will find two-valued semantics more natural and
easier to understand than a three-valued one, it is desirable to find sufficient condi-
tions to guarantee the equivalence between stable and well-founded semantics.

The purpose of this paper is to study these problems.

e We show that stable semantics can be defined in the same way as well-founded
semantics using the basic notion of unfounded sets. In other words, we show that
stable semantics can be considered as “two-valued well-founded semantics”. From
this fact, together with the result in [23], which states that well-founded semantics
can be viewed as three-valued stable semantics, we can conclude that the two
concepts of stability and well-foundedness in the semantics of logic programming
are equivalent. Thus, the difference between stable semantics and well-founded
semantics indeed results just from the difference between the logics in which these
concepts are interpreted.

e We construct for each program P a new completion theory called the strong
completion of P, written scomp(P), such that

stable semantics is specified by two-valued strong completion,

~ well-founded semantics is specified by three-valued strong completion.

e We show that the call-consistency condition is sufficient for the existence of at least
one stable model.

e We show that strictness guarantees the equivalence between stable and well-
founded semantics.

Relations between stable and well-founded semantics 11

e We introduce the bottom-stratified and top-strict condition generalizing both the
stratifiability and the strictness, and show that the new condition is sufficient for the
equivalence between stable semantics and well-founded semantics.

2. Stable models as relatively well-founded models

To illuminate the inherent relations between stable semantics and well-founded
semantics, we show in this section that both of them can be defined using the same
concept of unfounded sets.

Note that the logic we are working in in this section is the classical two-valued logic,
where a Herbrand interpretation is considered as a subset of the Herbrand base.

A logical formula is defined as usual [2, 17]. A sentence is a closed logical formula.
A logical theory is a set of sentences. A program clause is a clause of the form

A« L, ...,L, with n=0,

where A is an atom and L;s are literals. If n=0, we write A<t or just A«, where
t denotes the truth value true. For any clause C, C~ (C*) denotes the set of literals (the
atom) occurring in the body (in the head) of C. Further, the set of positive subgoals in
the body of C is denoted by pos(C) while the set of atoms under negation in C is
denoted by neg(C).

A program is a finite set of program clauses. The set of all ground instances of the
clauses in P is denoted by G,. From now on, P denotes an arbitrary, but fixed,
program. When we talk about the first-order language of P, we mean the language
defined by the alphabet consisting exactly of the constant, function and predicate
symbols occurring explicitly in P. We assume that P contains at least one constant.
The Herbrand base (the Herbrand universe) of P is denoted by HB, (HU,) (or,
shortly, HB and HU if the subscript is clear from the context). INT = {I|I < HB} is
the set of all Herbrand interpretations of P.

We recall now the definition of stable models from [13]. Let I < HB be a Herbrand
interpretation of P. The Gelfond- Lifschitz transformation of P w.r.t. I is the program
GL(I, P) obtained from G, by:

e Deleting all clauses in G which have negative premises — A4 such that Ael.

o Deleting all negative premises —1 4 from the remaining clauses.

Itis clear that GL(I, P)is a definite Horn program. [is called a stable model of Pif I is
the least Herbrand model of GL(1, P).

Example 2.1. Let P be a < a,—1h. Let I=0. Hence, GL(I, P) consists of only the
clause a < a. I is a stable model of P since the least Herbrand model of GL(1, P)is
also empty,

The following notion of unfounded set is taken from [12].

Definition 2.2. A set S of ground atoms is an unfounded set of P with respect to an

12 P.M. Dung

Herbrand interpretation 1€INT if cach atom AeS satisfies the following condition:
For each clause C from G, whose head is A, at least one of the following holds:
(1) The body of C is false in I.
(2) Some positive subgoal of the body of C occurs in §.

The following lemma reveals the inherent relations between the Gelfond Lifschitz
transformation and the unfoundedness.

Lemma 2.3. Let I < HB be a Herbrand interpretation of P. Then a set of ground atoms
S is an unfounded set of P wr.t. Iiff S is an unfounded set of GL(I, P) w.r.t. L.

Proof. Let Q denote GL(/, P). Itis to be noted that Q is a set of ground-definite Horn
clauses.

—- Let S be an unfounded set of P w.r.t. I. Let C be a clause in 0 whose head
belongs to S. We need to show that at least one of the following holds:

(1) The body of C is false in I.

(2) Some positive subgoal of the body of C occurs in S.

Assume that the body of C is true in I. This means that C~ = 1. Since C belongs
to GL(I, P), there exists a clause D in Gp such that D is of the form
Cte—C~,MA,,...,m A, and A;eHB\I for each O<i<n+ 1. Therefore, the body of
D is also true in I. Since S is an unfounded set of P w.r.t. I, there exists a positive
subgoal in the body of D which occurs in S. This means that there exists a positive
subgoal in the body of C which occurs in S. Therefore, S is an unfounded set of Q
w.r.t. L.

«- Let S be an unfounded set of Q w.r.t. I. Let D be a clause in Gp whose head
belongs to S. We need to show that at least one of the following holds:

(1) The body of D is false in I.

(2) Some positive subgoal of the body of D occurs in 8.

Assume that the body of D is true in 1. It follows immediately that pos(D)< I and
neg(D)< HB\I. Let C denote the clause D * «pos(D). Hence, C belongs to GL(I, P).
Since S is an unfounded set of Q w.r.t. I, there exists a positive subgoal in the body of
C which occurs in S. This means that there exists a positive subgoal in the body of
D which occurs in S. Therefore, S is an unfounded set of Pwrt. I. O

Definition 2.4. A Herbrand model IeINT of P is said to be relatively well-founded if
1~ S =0 for every unfounded set S of P w.r.t. I.

The following thecorem shows the correspondence between stable models and
relatively well-founded models.

Theorem 2.5. Let I be a Herbrand model of P. Then I is stable iff I is relatively
well-founded.

Proof. Let Q=GL(I, P). Define Tp: INT—INT by

To(J)={A4|3CeQ: C*=A and C"<J}.

Relations between stable and well-founded semantics 13

Note that Q is a set of ground-definite Horn clauses. Thus, T is continuous (w.r.t. set
inclusion) and the least Herbrand model M of Q coincides with the least fixpoint of T5;
which can be computed by M = J { T{(9)|i is a natural number} [17]. Further, since
I'is a model of P, I is also a model of Q. Thus, M < I since M is the least Herbrand
model of Q.

=1 Let I be a stable model of P. Let S be an arbitrary nonempty unfounded set of
P w.r.t. I. To show that [is relatively well-founded, we need only to show that S and
I'are disjoint. From Lemma 2.3, it follows that S is an unfounded set of Q w.r.t. . Since
I is stable, I is the least Herbrand model of Q, ie. I=M = U T5(0). We show by
induction that S~ T (0)=0 for any natural number i.

Initial step: SO =0. Obvious.

Induction step: If SNTy(0)=0 then SATL '(@)=0 for any natural number i,
Assume the contrary. Hence, there exists an atom AeSy Ty (D). Therefore, there is
a clause C in Q such that A=C" and C~ <= T(0). Because S T5(0)=0, we have
that C~ nS=0. Since S is an unfounded set of Q w.r.t. I, and no subgoal in the body
of C occurs in S, C~ must be false w.r.t. I. But this contradicts the fact that
C~ = Tg(0) = I. Thus, the induction hypothesis holds.

[t follows immediately that § and I are disjoint.

<=: Let I be a relatively well-founded model of P. Assume that [is not stable. Thus,
I#M. Let S=1\M. Hence, S#0 because M = I. We want to show that S is an
unfounded set of Q w.r.t. I. Let CeQ such that C "eS and C ~ is true w.r.t. I. Hence,
C~ <. Since M is a fixpoint of T, and S=I\M and C*eS, C~ is false in M.
Therefore, C ™ contains one atom from S. So, S is an unfounded set of Qw.rt. I. From
Lemma 2.3, § is also an unfounded set of P wurt. I. Thus, § is disjoint to I.
Contradiction!! Thus, =M, ie. I is a stable model of P. [

Przymusinski [23] has introduced the three-valued stable models, a natural exten-
sion of (two-valued) stable models, and showed that the well-founded model of any
logic program coincides with its least three-valued stable model. In other words,
well-founded semantics can be considered as three-valued stable semantics. From this
fact, together with our result which states that stable semantics can be viewed as
two-valued well-founded semantics, we can conclude that the two concepts of stability
and well-foundedness in the semantics of logic programming are equivalent. Thus, the
difference between stable semantics and well-founded semantics indeed results just
from the difference between the logics in which these semantics are defined.

3. The strong completion of logic programs’

In this section, we first develop a new completion theory, called strong completion,
for logic programs; then we show how the new theory specifies the stable semantics.

! Note that in this section we are still in the classical two-valued logic.

14 P.M. Dung

Let p,,...,pm be the predicate symbols occurring in P, and ¢,...,q, be the
corresponding predicate variables. Further, let S be a subset of HB, and for each
0<i<m+ 1, S; be the subset of S consisting of all those atoms in S whose predicate is
pi. Let u=[q1/S1s---qm/Sm] denote the following assignment of (two-valued) rela-
tions on the Herbrand universe of P to g;:

qi(rlw ...,fm') is true IH p['(fl, ...,I,,,-)ESi.z

Let C be a clause in P. Without loss of generality, we can assume that C is of the
form

p(I],,In}f"— pl(tlh...,[l,,l),...,pk(rkl,...,fknk), NB

where pe{py,...,pn} and NB consists of all negative subgoals in the body of C.
Define UF(C) as

Vyl---Vy,M,
where M is the following formula:
Q(rlﬂ'--srn)_)(“(-ﬁ" VQI(III:""IIHI)V"'qu(rkla---arknk))

with ¢ being the predicate variable in {q;. ..., ¢, corresponding to p, and y;'s being
the free variables in C.

The intuition behind UF(C) is that given a certain subset S of HB, UF(C) is true
w.r.t. a Herbrand interpretation I and u=[q,/S;,....4m/S»] if and only if S is
a unfounded set of C w.r.t. I. This can be explained as follows: UF(C) is true w.r.t.
I and wiff for any value assignment w=[y,/t;,.... »,/t,] (i.e. for any ground instance
D of C)if g(w(t,),....w(t,))is true w.r.t. u (ie. the head of D is in §) then either C ™ is
false w.r.t. I, w (i.e. the body of D is false in I) or the disjunction g, (w(t1y),...,w(tl,y))
Vv gu(w(tky), ..., w(tk,)) is true w.r.t. u (i.e. some positive subgoal of the body of
D is contained in S).

Hence, S is an unfounded set of P w.r.t. I if and only if UF(C) is true w.r.t. I and
wu=[q1/S1.--.qm/Sm] for each clause C of P.

Example 3.1. Let P be
Cy: py(x) < pal(x)
Ca: pa(a) «1p2(b)
Ca: pa(b) —1pal(c)

The Herbrand universe of P is {a, b, ¢}. Let I={p,(bh). p2(b)} and S={p,(a), pa(a)}.
It 1s clear that S is unfounded w.r.t. I.

2 Tt would be more exact to say that u(q,)(ty, ..., 1) is true if p;(t,, ..., 1,,)€S;. We abuse the notation here
for the sake of simplicity.

Relations between stable and well-founded semantics 15

We have
UF(Cy): Vx(gi(x) = (T1pa(x) v g2(x))
UF(C2): g2(a) = p2(b)
UF(C3): q2(b) = pa(c)

Let u=[q:/S:,492/S,], where S,={pi(a)} and S,={p,(a)}. It is clear that
u(q,)=1{a} and u(q,)="{a}. It is not difficult to see that UF(C;) is true w.r.t. I and
u for each 0<i<4,

Let Cy,...,C, be the clauses of P. Let UF(P) denote the conjunction UF(C) A --- A
UF(C,), and let WF(P) be the following second-order sentence

Vg, Vgu(UF(P) = (g1 <T1p1) A -+ A <1Pm))),

where g; <1p; denotes Vx -+ VX, (gi(X1, s Xpi) = TIPi(X 1, oy Xpi))-

> ni

It is not difficult to see that ¢;<—1p;is true w.rt. T and u=[q,/S,...,4,/S,] if and
only if §; and I are disjoint to each other. Hence, WF(P) is true w.r.t. Herbrand
interpretation 1 iff for each subset S of the Herbrand base, if' S is unfounded w.r.t. I then
S is disjoint to 1. Therefore, if' 1 is a Herbrand model of P and WFE(P), then I is
a relatively well-founded model of P.

Definition 3.2. The strong completion of P, scomp(P), is defined as the following
theory

P+WF(P)+CET,
where CET 1s Clark’s equality theory [17] of the language of P.

Example 3.3 (Continuation of Example 3.1). Let P, I be defined as in Example 3.1.
WEF(P) is the following sentence:

Vq,Vq:(UF(P) = (Vx(q,(x) = 71p1(x)) AVX(g2(X) =>71p2(X)))).

Let 7 be an arbitrary assignment of unary relations on {a, b, c} to g,, g, such that
UF(P)is true w.r.t. I and 7. Then there exists an (w.r.t. ') unfounded set R such that
t=[q,/Ry, q:/R5]. It is not difficult to see that the following properties are satisfied:

For any te{a, b, c}: p,(t)eR iff p,(t1)eR and p,(h)¢R.

Therefore, it is easy to see that if g;(t) is true w.r.t. t then ¢ # b. Since —1p;(t) is true iff
t #b, 1t follows that Vx(g;(x)—"1p;(x)) is true w.r.t. [and t.

Thus, WF(P) is true w.r.t. I. Since [is clearly a model of P, I is a relatively
well-founded model of P.

16 P.M. Dung
The following theorem follows immediately from Theorem 2.5.

Theorem 3.4. I is a stable model of P iff I is a Herbrand model of scomp(P).

Since the semantics of negation in logic programming is nonmonotonic, in the sense
that an extension to a logic program does not necessarily lead to an extension of its
consequences, the question about its relations to other nonmonotonic logics arises
naturally. In [18,13], it is shown that both default logic and autoepistemic logic
specify the stable semantics of logic programs. But there is only a partial answer in the
literature to the question about the relations between McCarthy’s circumscription
and stable semantics [6, 20]. 1f the programs are stratified then prioritized circum-
scription specifies the perfect-model semantics (another name for the stable semantics
of stratified programs) [20]. An extension of the prioritized circumscription for locally
stratified programs is given in [22]. But the problems here is that because of the
undecidability of the local stratification [3]. given a logic program it is undecidable
whether or not we could circumscribe this program. An extension of McCarthy’s
circumscription in a three-valued logic which specifies the stable semantics is given in
[6]. But the approach proposed there is a bit strange since the circumscriptive
specification is three-valued whereas the stable semantics is two-valued. Although our
strong completion theory is not directly a form of McCarthy’s circumscription [19], 1t
has the same spirit as it also circumscribes the effects of the predicates. The interesting
point is that while McCarthy’s circumscription circumscribes the “positive parts” of
the predicates, our approach circumscribes their “negative parts”. This may indicate
that, in general, a dual form of McCarthy’s circumscription may be defined based
on an appropriate generalization of the well-foundedness where, instead of cir-
cumscribing the positive informations, the negative informations should be
circumscribed.

4. Well-founded semantics: three-valued strong completion

We show in this section that three-valued strong completion specifies well-founded
semantics.

The logic for this section is three-valued with the truth values (true), f (false), and
u (undefined).
The logical operators A, V, and — are the Kleene’s operators defined by the
following truth tables:

Relations between stable and well-founded semantics 17

The operator « is defined by the following truth table:

The intuition behind “p«g” is that if g is true then p is true, too. For more about this
operator see [25].

A partial three-valued interpretation I of a program P is a pair {IT, IF), where
IT, IF are disjoint subsets of HBp. Often, if no confusion is possible, we shortly say
three-valued interpretation for partial three-valued interpretation. The set IT contains
all ground atoms true in I, the set IF contains all ground atoms false in I. The truth
value of the remaining atoms is undefined. A three-valued interpretation I is total if
HBp=ITuUIF. The set of all three-valued interpretations is denoted by PINT. It is
clear that any two-valued interpretation M < HB corresponds to (M, HB\M).
The union between two three-valued interpretations is defined by (IT, IF)>u
AT IF > =ITUIT, IFUIF’). A partial order < in PINT is defined by (IT, IF)<
(IT,IF)iff IT<IT and IF = TF".

Definition 4.1. 7'z, 7'y are mappings from PINT into INT defined as follows:
Tp(I)={A|3CeGp: C*=A and C~ is true in I},
Tp(I)={A|YCeGp:if C*"=A then C" is false in I}.

Further, let Tpo(I)=<{T#(I), T5 (I)>.

From the definition of the implication operator in our three-valued logic, Lemma
4.2 follows immediately.

Lemma 4.2. A three-valued interpretation I ={IT,1F) is a model of P iff Ty (1) = IT.

The notion of unfounded sets can be interpreted straightforwardly for any three-
valued interpretation. For the sake of readability we recall it again here.

Definition 4.3. A set S of ground atoms is a unfounded set of P with respect to an
interpretation [=<{IT, IF) if each atom AeS satisfies the following condition: For
each clause C from Gp whose head is 4, at least one of the following holds:

(1) The body of C is false in I.

(2) Some positive subgoal of the body of C occurs in S.

It is casy to see that the union of unfounded sets is again an unfounded set. So, for
any interpretation I there exists always a greatest unfounded set of P with respect to I.
This set is denoted by GU([I). Define

Ve(I)=<T#(1),GU(I)).

It is clear that F, is monotone.

18 P.M. Dung

Lemma 4.4. 1V} is monotone.

Therefore, V5 has a least fixpoint. The well-founded model of P, written as WFMp, is
defined as the least fixpoint of V, [12].

Theorem 4.5. Let I be a three-valued Herbrand interpretation of P. Then I is a model of
scomp(P) iff Vp(I)<1.
Proof. <: Let I ={IT, IF) such that Fp(I)<1I. Since [is a Herbrand interpretation,
I clearly satisfies Clark’s equality theory CET. From Vp(1)<1, it follows immediately
that Tp (I) = IT. Thus, I is a three-valued model of P (Lemma 4.2). It remains to show
that I satisfies WF(P). For each O<i<n+1, let u=[gq,/atr,,...,q,/atr,] be an
assignment of three-valued relations atr; on Herbrand universe of P to g; such that
(I, py satisfiess UF(Cy)a--- AUF(C,). We have to show that (I, u) satisfies
(g;<—p;) for each i. Let S={pi(t,,...,t,)eHB|atry(t,,...,t,) is true}. From the
definition of the three-valued implication operator and the fact that {1, u) satisfies
UF(Cy) A --- AUF(C,), it follows immediately that S is an unfounded set of P with
respect to I. Thus, S is a subset of GU(I). Hence, S < IF, i.e. if u(g;)(¢,,...,t,) 1s true
then p;(ty,...,t,;) is false in I. Therefore, { I, u) satisfies (g; <1p;).

=: Let I=IT, IF) be a Herbrand model of scomp(P). Since I is a model of P, it
follows that T'5 (1)< IT. It is easy to see that IF contains every unfounded set of
P with respect to I. Hence, GU(/) = IF. Thus, Vp(I)<I. [

Corollary 4.6 follows immediately.

Corollary 4.6. The well-founded model of P is the least three-valued Herbrand model of
scomp(P).

From Corollary 4.6, it follows immediately that the well-founded semantics of P 1s
specified correctly by the three-valued strong completion.

5. Signed dependencies and the equivalence between stable and well-founded semantics

Since not every logic program has a stable model, it is meaningful to ask for
sufficient conditions guaranteeing the existence of at least one stable model. Further,
because many ordinary programmers will find a two-valued semantics more natural
and easier to understand than a three-valued one [15], 1t i1s desirable to find sufficient
conditions for the equivalence between stable and well-founded semantics. In this
section, these problems will be addressed.

From now on, we permit programs to contain possibly infinitely many clauses, but
require that only finitely many predicates appear in each program.

Relations between stable and well-founded semantics 19

To avoid any possible confusion, we want to note that the logic we are working in in
this section is three-valued, where a three-valued interpretation { T, F) is said to be
total if 77U F =HB.? Thus, a total (three-valued) interpretation ¢ M, HB\ M) is stable
if M is a (two-valued) stable model in the classical two-valued logic as defined in
Section 1. A predicate p is totally defined w.r.t. a three-valued interpretation I if each
ground atom of p is either true or false in 1.

Let Pred be the set of all predicate symbols occurring in P. The predicate depend-
ency graph [1] of a program is a directed graph with signed edges. The nodes are the
elements of Pred. An edge from p to g is positive (negative) iff p occurs in the head of
a clause C of P and g occurs in a positive (negative) literal in the body of C.

Define the binary relations >, and >_, as: p =, q (p = _ q) iff there is a path
from p to g containing an even (odd) number of negative edges in the predicate
dependency graph of P.

Further, let us define

pzqiff p=,,qorp=_,qorp=gq,
p>q iff p=q and p#q,

pqiff pz,,qandp>_,q,

p=q iff p=q and qg=p,
[p1~={4qlp=q}.

[Pl<={qlp=q}.

If § < Pred, we say that $is downward closed iff for all pe $ and gePred, p=q implies
qe$. This implies that §=u {[p]~ |pe$}.

For any downward closed set §, let P|s={CeP|the predicate of C * belongs to §}.
If $=[g]< for some g then P|sis also denoted by Defp(q).

A program is said to be stratified [1] if we never have both p=gand p>_, g, ic.
within each equivalence class all dependencies are positive.

A program P is call-consistent [24, 15] if there is no predicate symbol p such that
p =1 p. Pisstrict [1,15] if we never have p>g.

It is easy to verify that any program which is either strict or stratified is call-
consistent but not vice versa.

Example. Let P be
Cild
c+b
a<« b
be—a

* Note that when we speak about a two-valued interpretation, we always mean a subset of the Herbrand
base.

20 P.M. Dung
Then a=_,b and b = _, a. Further, ¢> a. Thus, P is call-consistent but not strict.

Let $< Pred. A signing is a map, sig: §—{+1, —1} such that whenever p,ge$ and
p <;q. sig(p)=i.sig(q). As we will see very soon, signings will allow us to convert
partial fixpoints of 7, into total ones.

Definition 5.1. A program P is called stable-consistent if P has at least one stable
model.

To show that the call-consistency is sufficient for the existence of at least one stable
model, we need the following notion of semantic kernel.

5.1. Semantic kernels of logic programs

The semantic kernel of a logic program is defined as the fixpoint of a continudus
operator Qp on quasi-interpretations [8], where a quasi-interpretation is a set of
ground clauses of the form A <« B,,...,71B,,n=0, with A4, B; being ground atoms,
and the operator Qp on quasi-interpretations is defined as follows:

Qp(I)={A «—B,,...,mB,, Body,, ..., Body,,|
there exist CeGp and Ciel, 1 <i<m s.t. C is of the form
A«"By,...,mB,,A,,..., A, with n=0, m=0 and
C; is of the form A; <~ Body; with 1 <i<m}.

Qp is a continuous operator in the lattice of the quasi-interpretations [8]. The
semantics kernel of P, written as SK(P). is defined by

SK(P)=J {Q}@ [n>1}.
Lemma 5.2 (Dung and Kanchana Kanchanasut [8,9]). (1) Let I =T, IF) be a par-
tial three-valued model of P. Then I is stable iff I is a total fixpoint of Ts (p)-
(2) The least fixpoint of Tk p) is the well-founded model of P.

The following lemma holds obviously.

Lemma 5.3. If P is call-consistent (strict) then SK(P) is also call-consistent (strict).

5.2. Existence of stable models

Our goal in this section is to show that call-consistent programs are stable-
consistent. In [15] the following result has been proved.

Lemma 54. If P is finite and call-consistent then Tp has at least a total fixpoint.

Relations between stable and well-founded semantics 21

Hence, call-consistent logic programs with finite semantic kernel always possess at
least one stable model. We prove now that Lemma 5.4 holds also for infinite P which
contains only finitely many predicates.

Lemma 5.5. Let I be a three-valued interpretation satisfying the property 1< Tp(I).
Then there exists a fixpoint J of Tp such that 1<J.

Proof. Obvious since Tp is monotone. [

Since Tp is monotone (w.r.t <), it has a fixpoint. To show the existence of a total

fixpoint of 7p, we need the following lemma.
J

Lemma 5.6. If P is call-consistent and 1={IT,IF) is a fixpoint of Tp such that
ITUIF #HB. Then there exists a Herbrand interpretation 1'=<{IT', IF") such that

() ISI'STp(1').

(2) There exists a predicate p in Pred such that p is totally defined w.r.t. I', but not
totally defined w.r.t. 1.

Proof. Let p=min. {gePred|q is not totally defined w.r.t. I}. Let sig:[p]~ —
{+1, —1} be defined as follows: sig(p)= + 1 and for all ge[p]~, sig(q)=i if p =;4.
Since P is call-consistent, sig is a signing of [p] ~. Define a three-valued interpretation
I'={IT",1IF"> as follows:

IT'=ITu{A|A=4(t,,....1,) s.t. ge[p] ~ and sig(q)= + 1 and A¢ITUIF)
IF'=1Fu{A|A=q(t,....t,) s.t. ge[p]~ and sig(q)= —1 and A¢ITUIF}

It is not difficult to see that I <I'<7p(1') and each predicate q from [p]~ is totally
defined w.rt. I'. [

Since only finitely many predicates are occurring in P, Lemma 5.7 follows immedi-
ately (by induction) from Lemma 5.6.

Lemma 5.7. If P is call-consistent then Tp has at least one total fixpoint.
Theorem 5.8.* If P is call-consistent then P is stable-consistent.
Proof. It is clear that the semantic kernel of P, SK(P), is also call-consistent. Thus,

Tsk(p) has at least one total fixpoint. It follows immediately from Lemma 5.2 that
P has a stable model. [

* Independently, Fages [10] has shown that order-consistent logic programs [24] are also stable-
consistent. Although the result of Fages is slightly more general than that of ours, the proofs of both results
are largely similar.

22 P.M. Dung
The following lemma is an immediate consequence of the previous lemmas.

Lemma 5.9. Let P be a call-consistent program and I a fixpoint of Tp. Then Tp has
a total fixpoint J such that 1<J.

5.3. Equivalence between stable and well-founded semantics

Let L be a ground literal of P. We write P |=, L if L is true in every stable model of P.
Similarly, we write P|=, L if L is true in the well-founded model of P.

It is clear that the well-founded semantics is weaker than the stable semantics, i.e. if
Pl=, L then P|= L.

Definition 5.10. We say that the stable semantics is equivalent to the well-founded
semantics if for any ground literal L: if P} L then P, L.

Theorem 5.11. If P is strict then the stable semantics is equivalent to the well-founded
semantics.

Proof. Assume the contrary. Then there exists a ground literal L such that P =, L and
P, L. To show the contradiction, we construct a stable model in which L is false. Let
p be the predicate occurring in L, and

$={qePred|p=q}. Define sig: $—{+1, —1} by

S = —i if L is a positive literal and p =;q,

L= i if L is a negative literal and p =;q.
Since P is strict, sig is clearly a signing of $. Let WFM = (T, F) be the well-founded
model of P. Define an interpretation I =<{IT, IF) as follows:

IT=Tu{A|A=q(t,,...,t,) s.t. qe $ and sig(q)=+1 and A¢TUF},
IF=Fu{A|A=¢q(ty,...,t,) s.t. ge $ and sig(q)=—1 and A¢TUF}.

From the facts that WFM is a fixpoint of Tk (p, (Lemma 5.2) and SK(P) is also strict,
it is not difficult to see that WFM <1< T (p,(I). Hence, there exists a total fixpoint
J={M,HB\M) of T p, such that WFM <I<J (Lemma 5.9). It follows immedi-
ately that L is false in J. But L is also true in J since P =, L and J is stable (Lemma 5.2).
Contradiction!!. [J

Another class of programs whose stable semantics and well-founded semantics are
equivalent, is the class of stratified programs.® Note that the class of strict programs
and the class of stratified programs are independent. One does not include the other.
For example, the program consisting of the two clauses p«——1¢ and g«<—p is strict

1t is well known that the stable model and well-founded model of stratified programs coincide.

Relations between stable and well-founded semantics 23

but not stratified while the program consisting of only the clause p<q, 1q s stratified
but not strict. Thus, there arises naturally the question of a sufficient condition for the
equivalence between stable and well-founded semantics which generalizes both the
stratifiability and the strictness.

Definition 5.12. A program is said to be bottom-stratified and top-strict iff for each
pair p, g

if p> g then Defp(q) is stratified.

It is clear that bottom-stratified and top-strict programs are call-consistent.
Further, any program which is either strict or stratified is bottom-stratified and
top-strict but not vice versa.

Example. The following program is bottom-stratified and top-strict, but neither strict
nor stratified.

c—a
a« b
b——a
c+——r

Cie=T

Theorem 5.13. Well-founded semantics and stable semantics are equivalent for bottom-
stratified and top-strict programs.

Proof. Let TOP={p|34: p=g and Defp(q) is not stratified}. Thus, TOP is strict, i.e.
there are no two predicates p, g from TOP such that p>q. Let BOTT =Pred\TOP.
Then it is clear that for each pe BOTT, Delp(p) is stratified. It is easy to see that BOTT
is downward closed. Let Q=P lporr. Further, let R=P\Q. Then it is clear that the
predicates in BOTT occur only in the clause bodies of clauses in R. It is not difficult to
see that Q is stratified. Therefore, its well-founded model WFM={(T, F) is also
stable. Let Reduct be the program obtained from Gy as follows:

— Deleting each clause whose body contains one literal 7. whose predicate is in

BOTT such that L is false in WFM.

— Deleting all remained literals whose predicates are in BOTT.

It is easy to see that Reduct satisfies the following two propositions.

Proposition 5.14. Ler S < HB be a two-valued Herbrand interpretation of P. Then S is

a(two-valued) stable model of P iff there is a (two-valued) stable model S" of Reduct such
that

S=8'uT.

24 P.M. Dung

Proposition 5.15. Let W, W’ be the well-founded models of P and Reduct, respectively.
Then
W=Ww JWFM.

Proof of Theorem 5.13 (Conclusion). It is clear that Reduct is a strict program. Thus,
the well-founded semantics and stable semantics of Reduct are equivalent. From
Propositions 5.14 and 5.15, it follows immediately that the well-founded semantics
and stable semantics of P are equivalent, too. [

The results of this section can be generalized to show the equivalence between
two-valued strong completion and three-valued strong completion. But to do so, we
would have to introduce the notion of non-Herbrand stable models as well as
non-Herbrand well-founded models. Further, an extension of the semantic kernel to
accommodate clauses with variables would also be necessary. But this would go
beyond the scope of this paper. A forthcoming paper will handle this problem.

6. Conclusion

The goal of this paper was to study the inherent relations between stable semantics
and well-founded semantics. The results are threefold. First, we have shown that
stable semantics can be considered as two-valued well-founded semantics. We argue
that the two concepts of stability and well-foundedness in the semantics of logic
programming are equivalent. Second, we have given an axiomatic characterization of
the stable and well-founded semantics by introducing a new completion theory called
strong completion. Third, we have studied the equivalence between the two semantics
and found a new sufficient condition for their equivalence, the bottom-stratified and
top-strict condition.

Since the strong completion is a second-order formula, it would be meaningful to
ask whether it is possible to transform it into a first-order theory. Unfortunately, the
answer is negative. In [5], we show that, in general, strong completion is not
first-order-definable. This result suggests that in order to have a first-order character-
ization of stable and well-founded semantics, new extra function symbols as well as
predicate symbols should be used [26].

Acknowledgment

Many thanks to Huynh Ngoc Phien for his support during the time in which this
paper was written. I am also grateful to the anonymous referees for their comments
pointing out many shortcomings of the previous versions of this paper.

References

[1] K.R. Apt, HA. Blair and A. Walker, Towards a theory of declarative knowledge, in: J. Minker, ed.,
Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA,
1988) 89-148.

Relations between stable and well-founded semantics 25

[2] C.L. Chang and R.C. Lee, Symbolic Logic and Mechanical Theorem Proving (Academic Press, New
York, 1973).

[3] P. Cholak, Post corresponding problems and Prolog programs, Tech. Report, Univ. of Wisconsin,
Madison, 1988,

[4] K.L.Clark, Negation as failure, in: H. Gallaire and J. Minker, eds., Logic and Databases (Plenum, New
York, 1978) 293-322.

[5] P.M. Dung, On first-order defiability of stable mode] semantics, Tech. Report, Division of Computer
Science, Asian Institute of Technology. Bangkok, 1990,

[6] P.M. Dung, Strong circumscription specifies the stable semantics of logic programs, in: Proc. of
European Conf. on Artificial Intelligence 90 [EC AI-90), Stockholm (1990) 443448,

[7] P.M. Dung, Negation as hypotheses: An abductive foundation of logic programming, in: Proc. 8th
Internat. Conf. on Logic Programming, Paris (MIT Press, Cambridge, MA, 1991) 3-17.

[8] P.M. Dung and Kanchana Kanchanasut, A fixpoint approach to declarative semantics of logic
programs, in: Proc. North American C. onf. on Logic Programming, Cleveland, Ohio (MIT Press,
Cambridge, MA, 1989) 601—625.

[9] P.M. Dung and Kanchana Kanchanasut, A natural semantics of logic programs with negations, in:
C.V. Madhavan, ed., Proc. Conf. on Foundations of Software Technology and Theoretical Computer
Science, India, Lecture Notes in Computer Science, Vol. 405 (Springer, Berlin, 1989) 78-88.

[10] F. Fages, Consistency of Clark’s completion and existence of stable models, in: Workshop on
Nonmonortonic Reasoning and Logic Programming, NACL P-90, Austin, USA; Research Report 90-15,
Ecole Normale Superieure, F rance, 1990,

[11] M. Fitting, A Kripke-Kleene semantics for logic programs, J. Logic programming 2 (1985) 295-312.

[12] A. Van Gelder, K. Ross and J.S. Schlipf, Unfounded sets and well-founded semantics for general logic
programs, in: Proc. Conf. on Principles of Database Systems (1988) 221-230.

[13] M. Gelfond and V. Lifschitz, The stable model semantics for logic programs, in: Proc. 5th Internar.
Conf./Symp. on Logic Programming (MIT Press, Cambridge, MA, 1988) 1070-1080.

[14] K. Kunen, Some remarks on the completed database, Tech. Report, Dept. of Computer Science, Uniy.
of Wisconsin, Madison, 1988,

[15] K. Kunen, Signed data dependencies in logic programming, J. Logic Programming 7 (1989) 231-245.

[16] V. Lifschitz, Computing circumseription, in: M.L. Ginsberg, ed., Reading in Nonmonotonic Reasoning
(Morgan Kaufman, Los Altos. CA, 1987) 167-173.

[17] J.W. Lloyd, Foundations of Logic Programming (Springer, Berlin, 2nd ed., 1987).

[18] W. Marek and M. Truszczynski, Stable semantics for logic programs and default theories, in: Proc.
North American Conf. on Logic Programming 89, Cleveland, Ohio (MIT Press. Cambridge, MA,
1989) 243-256.

[19] J. McCarthy, Applications of circumscription to formalizing common-sense knowledge, Artificial
Intelligence 28 (1986) 89-116.

[20] T.C. Przymusinski, On the declarative semantics of deductive databases and logic programs, in:
J. Minker, ed., Foundations of Deductive Databases and Logic Programming (Morgan Kaufmann, Los
Altos, CA, 1988) 193-216.

217 T.C. Przymusinski, Perfect model semantics, in: Proc. 5th Internat. Conf. on Logic Programming (MIT
Press, Cambridge, MA., 1988) 1081-1096.

I22] T.C. Przymusinski, Three-valued formalizations of non-monotonic reasoning and logic program-
ming, in: Proc. Ist Internat. C, onf. on Principles of Knowledge Representation and Reasoning, Toronto,
Canada (1989) 341-348.

[23] T.C. Przymusinski, Well-founded semantics coincides with three-valued stable semantics, Tech.
Report, Dept. of Mathematics, Univ. of Texas at El Paso, 1989,

[24] T. Sato, On consistency of first-order logic programs, Tech. Report TR 87-12, Electrotechnical
Laboratory, Univ. of Ibaraki, Japan, 1987.

[25] J.C. Shepherdson, Negation in logic programming, in: J. Minker, ed., Foundations of Deductive
Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA, 1988) 19-88.

[26] M. Wallace, Unrestricted logic programs or if stratification is the cure, what is the malady?, in: Proc,
European Conf. on Artificial Intelligence "90, Stockholm (1990) 682-687,

