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ABSTRACT
We propose a novel multi-layers paradigm for the design
of key exchange protocols. In the top layer, protocols are
specified in a high-level, declarative, formal language using
speech acts as the basic building blocks. The declarative
semantics of speech acts are specified by their preconditions
and effects like in Hoare logics. A protocol logic, called
ProtoLog, is developed for reasoning about speech act ori-
ented protocols. Using the language of speech acts, protocol
designers could develop their protocols in an modular and
compositional way that are correct from the outset.

High-level speech act-oriented protocols are automatically
translated into lower-level message exchanging protocols by
a ”protocol compiler” that implements speech acts by send-
ing and receiving appropriate encrypted messages.

To demonstrate the applicability of our idea, we apply it
on the class of well-designed key exchange protocols where
a protocol is well-designed if a speech act is executed only
if its preconditions are satisfied. We develop a ”protocol
compiler” for the class of well-designed protocols and prove
the soundness and a limited form of completeness of the
protocol logic ProtoLog wrt the translation, implemented
by the compiler, under the Dolev-Yao assumption of perfect
cryptography. An immediate corollary from the soundness
result is the guarantee of the secrecy of exchanged keys (an
essential security requirement of key exchange protocols) in
well-designed protocols.

Categories and Subject Descriptors
D.2.10 [Software Engineering]: Design—Methodologies;
F.3.1 [Logics and Meanings of Programs]: Specifying
and Verifying and Reasoning about Programs—Logics of
programs, Pre- and post-conditions
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1. INTRODUCTION
Security protocols play a pivotal role in information secu-

rity. But despite the commonly recognized fact that infor-
mation security has become a serious concern in commercial
deployment of application and middleware, the development
and deployment of security protocols is still an error-prone
and difficult process [8, 19, 29, 23, 22, 3], done in an ad-hoc
manner, without a formal specification of their security re-
quirements. We hence need a process for making a stepwise
transition from high-level security protocol design through
development to code.

In general, security protocols often have structures that
determines the composition of the intention and semantics of
the individual messages. Recognizing these structure could
allow us to create a radically new modular approach to se-
curity protocol development in which high-level security de-
signs are translated stepwise to code. The obtained proto-
cols at all levels are guaranteed to be correct from the outset.
To illustrate this idea, let us look at an example

Example 1: Consider a protocol for distributing a fresh
session key K generated by a server S, to two principals A
and B. At the end of the protocol, both A and B are expected
to get K and also to know that the other has got K as well.
(1)A → S : req, newkey, A, Init, S, Server,Na, B
(2)S → A : {rep, newkey, S, Server,A, Init, Na, K, B}KAS

(3)S → B : {inf, newkey, S, Server,B,Resp,K, B, A, S}KBS

(4)B → A : {req, keyconfirm, B, Resp,A, Init, Nb,
Hash(K), S}KA

(5)A → B : {rep, keyconfirm, A, Init, B, Resp,Nb}KB

(6)B → A : {inf, keyconfirm, B, Resp,A, Init, S}K

Note that KX (resp. KXY ) represents a public (resp.
secret common) key of X (resp. between X and Y). {g}k

denotes the encryption of g using key k. Following the pru-
dent engineering practice of Abadi and Needham [2] each
message is designed to contain explicitly the identity of the
sender, receiver together with their roles in the protocol as
well as the purpose of the message.

The first message is a request from A, as initiator, to S,
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as server, for a fresh session key with B. The keywords req,
newkey indicate that the message represents a request for a
new key. Na is a fresh nonce.

S replies by sending a newly generated session key K to A
in the second message. The keywords rep, newkey indicate
that the message is a reply to an earlier request for a new
key. After getting the reply message, A knows that K is a
fresh session key between A and B generated by S.

S informs B about key K in the third message (B plays the
role of a responder). The keywords inform, newkey indicate
that the message is intended to inform B about a new key.
After receiving the third message, B could only say that it
has been informed about K without being sure whether K
is fresh or not. This is because B has no knowledge about K
before receiving the third message and hence, B could not
verify whether this message is just sent recently or it has
been replayed by a penetrator.

To verify the information it has just obtained, B requests
A in the fourth message to confirm that A knows that K is
indeed a fresh session key between A and B generated by
S. The keywords req, keyconfirm indicate that the message
represents a request for confirming the status of the included
key. Nb is a fresh nonce.

A replies to B by sending the fifth message to confirm
that K is indeed a fresh session key between A and B. The
keywords rep, keyconfirm indicate that the message repre-
sents a reply to an earlier request to confirm the status of K.
After getting this message, B knows that what it has been
informed before is correct.

B sends A the sixth message to confirm that B now knows
that K is a secret session key between A and B. The key-
words inform, keyconfirm indicate that the intention of the
message is for B, to confirm to A that it knows about K.

The above protocol could be viewed as an implementation
of the following more abstract one using speech acts as the
basic building blocks 1:
S1 : A requests S to generate a new session key for

communication with B
S2 : S replies to A by sending A a newly generated key K
S3 : S informs B that K is a new session key between A and

B generated by S
S4 : B requests A to confirm that K is a fresh session key

between them generated by S
S5 : A replies to B to confirm that K is indeed a fresh session

key between them generated by S
S6 : B informs A to confirm that B knows that K is a fresh

session key between them generated by S
where A,B,S play the roles of initiator, responder and key

server respectively.
The new approach proposed in this paper allows protocol

designers to develop their protocols in an abstract speech
act-oriented language like. A ”protocol compiler” would
translate automatically the abstract protocols into lower-
level ones. �

In this paper, we propose a multi-layered approach in
the design of security protocols. In the top layer, proto-
cols are specified using speech acts as the basic building
blocks. Like in Hoare logics, the declarative semantics of
speech acts are specified by their preconditions and effects.
High-level protocols are translated automatically into the

1Speech acts have been proposed as the basic primitives for
declarative agent communication language in the AI com-
munity [18]

lower-level message-exchanging protocols by ”protocol com-
pilers” where speech acts are implemented by sending and
receiving appropriate encrypted messages. Like in conven-
tional programming, ”protocol compilers” are developed by
the designers of speech act languages, not by their users.
Ensuring the correctness of ”protocol compilers” is hence a
responsibility of the speech act language designers, not of
the protocol programmers. In the proposed new paradigm,
designers could develop security protocols that are correct
from the outset, in an intuitive, modular and compositional
language of speech acts.

Key exchange protocols form an important and well-studied
class of security protocols. Due to the limited space and to
get the idea of the new approach easier across to the readers,
we focus technically in this paper on key exchange protocols.
We introduce a speech act language for the class of well-
designed key exchange protocols together with a protocol
logic called ProtoLog for reasoning about the mental states
of principals participating in protocol runs where a protocol
is well-designed if a speech act is executed only if its pre-
conditions are satisfied. We develop a ”protocol compiler”
for the introduced language and prove the soundness and a
limited form of completeness of the protocol logic ProtoLog
wrt the translation, implemented by the compiler, under the
Dolev-Yao assumption of perfect cryptography. An imme-
diate corollary from the soundness result is the guarantee of
the secrecy of exchanged keys (an essential security require-
ment of key exchange protocols) in well-designed protocols.

The paper is organized as follows. In chapter 2, we present
a language of speech acts, and introduce well-designed pro-
tocols. In chapter 3, a protocol logic called ProtoLog for
reasoning about the mental states of principals participat-
ing in protocol runs. A ”protocol compiler” is introduced in
chapter 4 and the soundness and completeness of the proto-
col logic ProtoLog wrt the translation implemented by the
compiler are proved in chapter 5. In chapter 6, we conclude
and discuss related works.

2. SPEECH ACTS AND WELL-DESIGNED
PROTOCOLS

We first propose a simple logical language for specifying
the mental states of protocol principals. In contrast to BAN-
style logics [6, 27], we do not employ a belief operator. In-
stead we have two operators: ”being informed” and ”know-
ing”. Intuitively, to say that an agent knows something is
to say that the agent’s information about this something is
correct and the agent is also aware about the correctness of
the information while to say that an agent is informed of
something simply indicates that the principal has obtained
a piece of information without giving any hint about the
correctness of the information as well as the awareness of
the agent about it. Jumping ahead, our actual semantic
definition follows Fagin et all [12] in defining that an agent
knows something if it is true in the current state and true
in every other state in which the agent makes precisely the
same observations.

We assume the existence of pairwise disjoint sets NONCE,
NVAR, KEY, KVAR and PI, PVAR of nonces, nonce
variables, keys, key variables and principals and principal
variables respectively. There is a distinguished identifier
PE ∈ PI denoting the penetrator. A principal that is not
the penetrator is called regular. In security protocols, prin-

34



cipals often play different roles like the roles of initiators,
responders or key servers. The roles of the principals in-
volved in a protocol form an important component in its
semantics. We assume the existence of a finite set RO of
predefined role identifiers. A principal term is either a prin-
cipal from PI, or a principal variable from PVar. Nonce term
and key terms are defined similarly.

Let A,B,C,X,Y,Z be principal terms, n be a nonce term
and K be a key term and ρ be a role. A basic formula has
one of the following forms:

1. GKA,ρ(K, B, C) stating that principal A acting in role
ρ has generated a fresh key K as a session key between
B and C

2. GNA,ρ(n) stating that principal A acting in role ρ has
freshly generated nonce n

3. HNA,ρ(n) stating that principal A acting in role ρ has
nonce n

4. InformedA,ρ(K, X, Y,Z) stating that principal A act-
ing in role ρ has been informed that K is generated
recently by Z as a session key between X,Y.

5. Key(K, A,B, C) stating that K is a session key be-
tween principals A and B generated recently by C.

6. Access(A,K) stating that A has access to key K

A formula is composed from basic formulas using the log-
ical operators ∧,∨,¬,→ together with the knowledge oper-
ator KnowA,ρF stating that A acting in the role ρ, knows
that F holds.

One may wonder of whether it is possible to replace the
notion Key(K,A,B,C) by just Key(K,A,B) without mention-
ing explicitly the generator C of K. Example 1 is a case where
an employment of Key(K,A,B) would lead the responder B
to believe in the trustworthiness of K even if S is the pene-
trator and A mistakenly believes S is honest while B is aware
about the true identity of S.

2.1 KPL: A Keys-Principals Association Logic
We introduce now KPL (Keys Principals Association Logic),

a specialized version of the modal logic S5, for reasoning
about keys and its association to principals. The logic is
needed to define well-designed protocols. Let A,B,C,D be
regular principal identifiers and X be a principal identifier.
KPL extends the system S5 in modal logic [17, 12] with the
following axioms:

A1 Key(K,A, B, C) → Key(K, B, A, C)
A2 InformedA,ρ(K, B, C, D) → InformedA,ρ(K, C, B, D)
A3 GKA,ρ(K, B, C) → GKA,ρ(K, C, B)
A4 GNA,ρ(n) → HNA,ρ(n)
A5 GKA,ρ(K, B, C) → Key(K, B, C, A)
A6 F → KnowA,ρF for all basic formula F of the form

GKA,ρ(K, B, C), GNA,ρ(n), HNA,ρ(n) and
InformedA,ρ(K, B, C, D)

A7 KnowA,ρKey(K, B, C, D) → InformedA,ρ(K, B, C, D)
A8 InformedA,ρ(K, B, C, D) → Access(A,K)

Axioms A1-A5 and A8 follow directly from the intuitions
of the involved basic formulas. The intuition of axiom A6 is
that if a principal is doing something then it is also aware
about it. Axiom A7 relates the knowing and being informed
operators, stating the obvious that if A knows that K is

Table 1: Speech-Acts Forms
Request Reply Inform
Sender: A Sender: A Sender: A
Role of Sender: ρ Role of Sender: ρ Role of Sender: ρ
Receiver: B Receiver: B Receiver: B
RoleOfReceiver: τ RoleOfReceiver: τ RoleOfReceiver: τ
Type: t Type: t Type: t
Content: Con Content: Con Content: Con
Reply-With: n Reply-To: n

a fresh session key between B,C generated by D then A is
also informed about it. The axioms and proof rule in modal
system S5 [17, 12] are adapted to KL as follows:

KnowA,ρF → F
KnowA,ρF ∧ KnowA,ρ(F → G) → KnowA,ρG
KnowA,ρF → KnowA,ρKnowA,ρF

¬KnowA,ρF → KnowA,ρ¬KnowA,ρF
From � F infer � KnowA,ρF

2.2 Speech Acts and Well Designed Protocols
We introduce a set of speech acts consisting of Request,

Reply and Inform acts that we believe form a core of prim-
itives that capture the most essential structures in security
protocols. This set is extensible to capture further struc-
tures with new acts.

There are two types of speech acts: newkey, keyconfirm.
Intuitively, an act of type newkey is used for distributing a
new key while an act of type keyconfirm is used for confirm-
ing the knowledge of a new key. For example, the first (resp.
last) three acts in the abstract protocol in example 1 are of
type newkey (resp. keyconfirm).

Speech acts are defined as speech act forms that contain
no variables. The structure of speech act forms are given
in the table 1 where A,B are principal terms, ρ, τ are roles
, n is a nonce term, t ∈ {newkey, keyconfirm}, and Con
represents the content of the acts. It is required that the
roles of sender and receiver in an act must be different, i.e.
ρ �= τ . The nonce n in a request act is generated randomly
by A when A performs the act.

The content of a request of type newkey has the form
Key(?,A,C,B) stating that A requests B to generate a new
session key for A to communicate with C.

The content of a request of type keyconfirm has the form
Key(K,A,B,C) stating that A asks B to confirm that B
knows that K is a fresh session key between A and B gener-
ated by C.

In a reply or inform act of type newkey, the sender A sends
the receiver B a freshly generated session key for communi-
cation with C. If the key has not been generated, then the
sender has to generate it first and then sends it. In this case
the content of the act has the form νK.Key(K, B, C, A).
Otherwise it has the form Key(K, B, C, A) in a reply act
or the form Key(K, B, C, A) or Key(K,B, A, C) (depend-
ing on whether K is generated by A or by C) in an inform
act.

The content of a reply or inform act of type keyconfirm
is simply of the form Key(K, A,B, C) affirming that K is
indeed a fresh session key between A and B generated by C.

The declarative semantics of speech acts is specified by
their preconditions and effects. The preconditions describe
the necessary information and knowledge a honest principal
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should have to be able to send the acts and for the receiver
to accept and process it without leaking any secret infor-
mation or being fooled by the penetrator. The effects of a
speech act describe the information and knowledge a princi-
pal gains after sending it (for the sender) or receiving it (for
the receiver). Regular principals are assumed to be honest.

Let S be a speech act form as defined above. The precon-
ditions and effects of the event of sending (resp. receiving) S
are denoted by Pre(+S) and Effect(+S) (resp. Pre(-S) and
Effect(-S)) and formalized in the tables 2-5 below.

The definition of key exchange protocols is based on a
notion of conversation form where a conversation form
is a pair (Req,Rep) of request and reply act forms of the
same type and with the same nonce such that 1) the sender
(resp. receiver) and its role in Req coincide with the receiver
(resp. sender) and its role in Rep respectively, and 2) if the
acts in the conversation are of type keyconfirm then their
contents coincide, and 3) if the acts in the conversation are
of type newkey and the content of the request has the form
Key(?,A,C,B) then the content of the reply has the form
Key(K,A,C,B) or νK.Key(K, A, C, B)

Definition A speech act oriented key exchange proto-
col (or simply key exchange protocol) is a sequence of speech
act forms S1, . . . , Sk such that

1) For each request (resp. reply) Si, there is exactly one
reply (resp. request) Sj, j > i (resp. j < i) such that Si, Sj

(resp. Sj , Si) form a conversation form.
2) Each principal term has at most one role, i.e. for each

principal term P in AP, if there exist Si, Sj such that P
appears as a sender or receiver in both Si and Sj then P has
the same role in both acts. 2

3) Every role in AP is occupied by exactly one principal
term, i.e. for all principal terms P,Q in AP, if there exist
Si, Sj and ρ ∈ RO such that P has role ρ in Si and Q has
role ρ in Sj then P = Q.

4) Variables representing nonces of different conversation
forms are different.

5) The penetrator identifier does not appear in any Si.
6) There is exactly one key term appearing in the protocol

and the first act in which it appears is a reply or inform act
of type newkey that is also the only act in the protocol with
a content of the form νK.Key(K, A, B, C)

Now we can introduce well-designed protocols. For each
speech act form S, define Pre(S) = Pre(+S) ∧ Pre(−S)
and Effect(S) = Effect(+S) ∧ Effect(−S).

Definition A key exchange protocol AP = S1, . . . , Sk is said
to be well-designed if speech acts are scheduled for execu-
tion only when their preconditions are satisfied, that means
following conditions are satisfied:

1) Pre(S1) = True
2) For each 2 ≤ i ≤ k: Effect(S1)∧. . .∧Effect(Si−1) �

Pre(Si)

It is not difficult to see that the abstract protocol in ex-
ample 1 is well-designed. The following example illustrates

2This condition does not forbid a principal to play more than
one role in an actual run of a protocol (when two different
principal variables are instantiated by the same principal
identifier), but it ensures that normally different principals
have different roles in a run of the protocol.

how a violation of the well-designed condition could lead to
serious flaws.

Let S1, . . . , S6 be the acts of the abstract protocol in ex-
ample 1. Consider a new protocol P ′ = S′

1, S
′
2, S

′
3, S

′
4, S

′
5

defined by S′
i = Si for i ∈ {1, 2, 3} and S′

4 = S6 and S′
5 is an

inform act of type keyconfirm from A to B to confirm the
receipt of K. P’ is in fact an abstraction of the Needham-
Schroeder protocol with symmetric key (NSPS) [8]. P ′ is
not well-designed as the preconditions of S′

4 do not follow
from the effects of the previous acts in it. Similar to NSPS,
P’ is subjected to a replay attack in which the penetrator
replays an old message S′

3 to B whose key K has become
stale. The penetrator then intercepts the message S′

4 that
B sends to A and then sends S′

5 to B as specified by the
protocol. B is then tricked into falsely believing that it has
a secret common key for communicating with A generated
by S.

3. PROTOLOG: A LOGIC FOR WELL-
DESIGNED PROTOCOLS

We introduce now ProtoLog, a protocol logic, for reason-
ing about the mental states of principals participating in
well-designed protocols. Let ρ ∈ RO be a role in a proto-
col AP = S1, . . . , Sn. The ρ-track of AP is the sequence
APρ = σi1Si1 , . . . , σikSik where σij ∈ {+,−}, 1 ≤ i1 <
i2 < . . . < ik ≤ n, such that for each 1 ≤ j ≤ n, +Sj ∈ APρ

(resp.−Sj ∈ APρ) iff ρ is the role of the sender (resp. re-
ceiver) in Sj . For illustration, the initiator-track of the
abstract protocol in example 1 is +S1,−S2,−S4, +S5,−S6

while its responder-track is −S3, +S4,−S5, +S6. A run of
principal A in the role ρ according to a protocol AP is a
ground instance of a prefix of the ρ-track APρ of AP in
which A is the principal having the role ρ. A is also called the
principal of such run. A proper-regular run is a run where
the penetrator PE does not appear in any of its acts. Let
R = E1 . . . Ek be a run. Define Effect(R) = Effect(E1)∧
. . . ∧ Effect(Ek). Note that Effect(nil) = True.

To reason about the effects of runs of protocols , we intro-
duce new formulas called protocol formulas of the form
AP.R [F] stating that formula F holds after run R accord-
ing to AP has been executed (by the principal of R).

Let AP be a protocol, E be an event of sending or receiv-
ing a speech act, R be a proper-regular run of A in a role ρ
according to AP, and F,F’ be formulas. Further let A,B,C,D
be regular principal identifiers and X be a principal identi-
fier. Protolog extends KPL with following axioms and proof
rules:

A9 Key(K,B, C, A) → GKA,ρ1(K, B, C) ∨ . . .
∨GKA,ρk(K, B,C)

where RO = {ρ1, . . . , ρk}
A10 GKA,ρ(K, B, C) ∧ GKA′,ρ′(K, B′, C′) →

(A, ρ) = (A′, ρ′) ∧ (B, C) = (B′, C′)
A11 A �= B∧A �= C∧A �= D → ¬InformedA,ρ(K, B, C, D)
A12 Key(K,B, C, A) ∧ X �= A ∧ X �= B ∧ X �= C →

¬Access(X, K)

Effect Rule Consequence Rule

� AP.R [F ], � F → F ′

—————————— ——————————–
� AP.R [Effect(R)] � AP.R [F ′]
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Table 2: Request Acts

Act Request
S newkey keyconfirm

Pre(+S) True InformedA,ρ(K, A,B, C)

Effect(+S) GNA,ρ(n) GNA,ρ(n)

Pre(-S) True KnowB,τ Key(K, A, B, C)

Effect(-S) HNB,τ (n) KnowB,τ InformedA,ρ(K, A, B, C) ∧ HNB,τ (n)

Table 3: Reply Acts

Act Reply
S newkey keyconfirm

Con ≡ νK.Key(K, B, C, A) Con ≡ Key(K,B, C, A)

HNA,ρ(n) ∧ KnowA,ρKey(K, A, B, C) ∧
Pre(+S) HNA,ρ(n) GKA,ρ(K, B, C) HNA,ρ(n)

Effect(+S) GKA,ρ(K, B, C) True True

GNB,τ (n) GNB,τ (n) ∧
Pre(-S) InformedB,τ(K, A,B, C)

KnowB,τ GKA,ρ(K, B, C) ∧ KnowB,τ HNA,ρ(n) ∧
Effect(-S) KnowB,τ HNA,ρ(n) KnowBτ KnowAρKey(K, A, B, C)

Table 4: Inform Acts
Inform

Act newkey
S Con ≡ Key(K, B, X, Y ) keyconfirm

Con ≡ νK.Key(K, B, C, A) where
(X,Y) = (A,C) or (C,A)

Pre(+S) True KnowA,ρKey(K,B, X, Y ) KnowA,ρKey(K, A,B, C)

Effect(+S) GKA,ρ(K, B, C) True True

Pre(-S) True True KnowB,τ Key(K,A, B, C)

KnowB,τ KnowA,ρ

Effect(-S) InformedB,τ (K, B, C, A) InformedB,τ(K, B, X, Y ) Key(K, A,B, C)
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Axiom A9 states that if a key K is generated by A then K
is generated by A acting in some role. Axioms A10,A11,A12
are based on the honesty assumption of regular principals.
The intuition of axiom A10 is that generated keys are ran-
dom and hence it is impossible for an agent to generate the
same key twice. Axiom A11 follows from the structure of
the speech acts that requires that when a key is sent in a
speech act, information about the association of the key to
the receiver of the act must be included. Hence a honest
principal would never receive a key that is not associated
with it. Axiom A12 states that freshly generated session
keys are accessible only by their generator and the princi-
pals for whom they are generated. This axiom implies that
well-designed protocols protect the secrecy of the exchanged
keys.

Let AP be the abstract protocol in example 1. Let R0, R1

be complete runs of regular principals A and B in the ini-
tiator (denoted by I) and responder (denoted by R) roles
respectively. S is a regular principal in the role of a server.
Applying the effect rule and then the consequence rule, we
obtain:
� AP.R0[KnowA,IKnowB,RKey(K, A, B, S)] and
� AP.R1[KnowB,RKnowA,IKey(K, A, B, S)]

Hence
� AP.R0[KnowA,IKey(K,A, B, S)] and
� AP.R1[KnowB,RKey(K, A, B, S)]

Applying the inference rule and axioms of S5 and the ax-
iom A12, we obtain:
� AP.R0[KnowA,I¬Access(PE,K)] and
� AP.R1[KnowB,R¬Access(PE,K)]

4. IMPLEMENTING SPEECH ACTS
The events of sending or receiving speech acts are imple-

mented by the actions of sending or receiving some message.
A sending action has the form +m or +νb.m
while a receiving action has the form −m where m is
a message and b is a key or nonce. The notation νb indicates
that b is freshly (or randomly) generated at this action (i.e.
the action actually consists of two tasks: generating b and
sending out the message). m is also called the message of
the respective action.

Note that for ease of reference, we have made a distinc-
tion between the higher-level notion of events of sending
or receiving speech acts denoted by +S or -S where S is a
speech act, and the lower-level notion of actions of sending
or receiving messages. As such, events are implemented by
actions.

Let S be a speech act. The messages appearing in the
actions implementing the events of sending or receiving S
are called the representations of S. A speech act could have
more than one representation.

Taking a hint from prudent engineering [2], a representa-
tion of a speech act should contain vital information about
its type, its content, the identity and role of its sender and
receiver and other information like reply-to, and reply-with-
nonces. We simply assume that the principals somehow rec-
ognize the basic message components like nonce, keys and
principal identifiers when they see them. See [16] on how it
could be done.

Let S be a speech act from a sender A in role ρ to a receiver
B in role τ . The notation mS refers to a representation of
S. We also often say that mS represents S.

If S is an inform act of type newkey whose content is of
the form Key(K,B,X,Y) (where (X,Y) = (A,C) or (C,A))
then

mS = {inf, newkey,A, ρ, B, τ, K, B, X, Y }KAB , or
mS = {inf, newkey,A, ρ, B, τ, K, B, X, Y }KB ,

If S is an inform act of type keyconfirm with a content of
the form Key(K,A,B,C) then

mS = {inf, keyconfirm, A, ρ,B, τ, C}K , or
mS = {inf, keyconfirm, A, ρ, B, τ, Hash(K), C}KB

The representation of a request (resp. reply) act depends
on the representation of the reply (resp. request) act in the
same conversation. Let (S,S’) be a conversation form and n
be the nonce in S,S’.

If (S,S’) is a conversation of type newkey and the content
of S’ is νK.Key(K, A,C, B), then there are at least two
different ways to represent (S, S′):

• mS = {req, newkey, A, ρ,B, τ, n, C}KB

mS′ = {rep, newkey, B, τ, A, ρ, n, K, C}KA

• mS = req, newkey, A, ρ, B, τ, n, C

mS′ = {rep, newkey, B, τ, A, ρ, n, K, C}KAB ,

If (S,S’) is a conversation of type keyconfirm and the con-
tent of S is Key(K,A,B,C), then there are at least two dif-
ferent ways to represent (S, S′):

• mS = {req, keyconfirm, A, ρ,B, τ, n, Hash(K), C}KB

mS′ = {rep, keyconfirm, B, τ, A, ρ, n}KA

• mS = {req, keyconfirm, A, ρ,B, τ, n, Hash(K), C}KAB

mS′ = {rep, keyconfirm, B, τ, A, ρ, n, Hash(K), C}KAB ,

The event +S of sending a speech act S is implemented by
the action +mS with two exceptions: 1) if S is a request act
with nonce n then the event of sending S is implemented by
the action +νn.mS, and 2) if S is a reply or inform act of
type newkey with a content of the form νK.Key(K, X, Y, Z),
then the event of sending S is implemented by the action
+νK.mS.

The event -S of receiving a speech act S is always imple-
mented by the action −mS

As there are many different ways to implement speech
acts, a speech act-oriented protocol could have many dif-
ferent implementations. For example, there are at least 16
different but correct ways to implement the abstract proto-
col in example 1.

Though a speech act could have many representations, it
is easy to see that each representation represents exactly one
speech act

Lemma 1: Let S and R be speech acts and mS, mR be
representations of S,R respectively. If S and R are different
acts then mS �= mR

4.1 Role Topology and Message Forwarding
Many security protocols do not allow principals acting

in certain roles to communicate directly. An example is
the well-known Otway-Rees protocol [8] (see appendix B)
that does not allow initiators to communicate directly with
servers. All messages between principals in these roles are
routed through the responders.

In general, each security protocol P assumes the existence
of a directed graph G = (RO, V ), V = RO × RO describ-
ing the connection topology of the roles in P. A direct link
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from role ρ to role τ in G represents a direct communication
channel from principals acting in role ρ to principals act-
ing in role τ . A question that immediately arises is how to
implement a speech act if the role topology forbids a direct
communication between its sender and receiver.

Consider the abstract speech act oriented protocol in ex-
ample 1. Suppose that the connection topology allows direct
communication only between initiators and servers as well as
between initiators and responders. In this case, the speech
act (3) in which S informs B about the new key K is imple-
mented by letting S (server) send message to B (responder)
through A (initiator). See appendix C for more details.

We give now the general translation algorithm. Let P be a
well-designed speech act oriented protocol and G = (RO, V )
be a given connection topology for the roles in P

Let S be a speech act in P and ρ, τ be the roles of the
sender A and receiver B in S respectively. Further let

ρ, ρ1, . . . , ρm, τ be a shortest path from ρ to τ with A1, . . . , Am

being the principal terms occupying the roles ρ1, . . . , ρm in
P. S is implemented by forwarding the message mS from A
through A1, . . . , Am to B as:

A
mS−→ A1

mS−→ . . .
mS−→ Am

mS−→ B
P is translated into a message exchanging protocol by suc-

cessively translating each of its acts as above.

5. SOUNDNESS AND COMPLETENESS OF
PROTOLOG

Strand spaces have been introduced by Fabrega, Herzog
and Guttman [11] to give an operational semantics for message-
exchanging protocols under the Dolev-Yao assumption of
perfect cryptography. We adapt the strand space model to
our framework to give an operational semantics to the lower-
level message-exchanging protocols obtained by implement-
ing the speech acts as described in the previous chapter. The
protocol logic Protolog is then interpreted over the adapted
strand models.

Let AP be an arbitrary but fixed speech act oriented key
exchange protocol. For simplicity and due to the limited
space, we assume that AP has a role topology in which there
is a direct link between every pair of different roles (all the
results in this chapter are proved for the general case in the
full paper). A strand is a sequence of nodes labelled by
actions of sending or receiving messages. The ith node of a
strand s is denoted by (s,i). Act(s,i) denotes the ith action
in s. The message of the action labelling (s,i) is denoted by
term(s, i). Often, if there is no danger of confusion, a strand
is identified with the sequence of actions labelling its nodes.
A binary relation ⇒ over the set of strand nodes is defined
by ⇒= {((s, i), (s, i + 1)) | s is a strand }

Let S be a set of strands and (s,i) be a node in S. A key
or nonce b is said to originate at (s,i) if (s,i) is a sending
action and b occurs in term(s,i) and for all j < i, b does not
occur in term(s,j). b is said to uniquely originate at (s,i) in
S if (s,i) is the only node in S at which b originates.

There are two kinds of strands, regular strand and pene-
trator strands. A node lying on a regular (resp. penetrator)
strand is called a regular (resp. penetrator) node. We often
say that a node N implements a speech act event E if the
action labelling N implements E. For a regular principal A
and a role ρ ∈ RO, an AP-regular strand of A in role ρ is
a regular strand s = N1, . . . , Nm such that each Ni imple-
ments the event Ei in a run R = E1, . . . , Em of A in role ρ

according to AP. We also say that strand s implements run
R. There are eight kinds of penetrator strands:

Key-strand: 〈+K〉 where K ∈ KEY \ K
RO-strand: 〈ρ〉 where ρ ∈ RO
PI-strand: 〈+A〉 where A ∈ PI
Nonce-strand: 〈+n〉 where n ∈ NONCE
S-strand: 〈−gh +g +h〉
E-strand: 〈−K − h + {h}K〉
C-strand: 〈−g − h + gh〉
D-strand: 〈−K−1 − {h}K + h〉

where K consists of all secret shared keys KAB, and private
keys K−1

A of regular principals.
With the exception of the Key, and RO-strands, the other

definitions of penetrator strands coincide with the defini-
tions given in [11, 14]. In [11, 14], the penetrator is assumed
to possess initially a set of keys and the key the penetrator
could pick up in a key strand should belong to this set. We
do not impose this restriction on the penetrator as we as-
sume that the penetrator has access to any algorithm that
could be used for key or nonce generation.

The assumption that the keys or nonces generated by reg-
ular principals are random and hence could not be generated
by the penetrator is captured by their unique origination re-
quirement in the defintion of historical bundles ( introduced
shortly below)

A bundle of AP is is defined as a pair (S,→) whereas
S is a finite set of strands, → is a binary relation over the
set of nodes in S such that the following two conditions are
satisfied:

1) For each node (s,i) in S, if Act(s,i) is a receiving action
then there is exactly one node (s’,i’) such that Act(s′, i′)
is a sending action and (s′, i′) → (s, i) and term(s, i) =
term(s′, i′) hold

2) The transitive closure of the relation → ∪ ⇒ is acyclic
3) Every regular strand in S is AP-regular.
The notation n 
→ n′ means that either n ⇒+ n′ with n a

receiving node and n’ a sending node, or n → n′. A path is
a finite sequence of nodes and edges n1 
→ n2 
→ . . . 
→ nk.
A strand s is said to precede (resp. follow) a strand r in
a bundle (S,→) if there is path starting in s (resp. r) and
ends in r (resp. s).

To deal with replay attacks, we introduce the idea of his-
torical bundle as a triple (S0, S1,→) whereas (S0 ∪S1,→)
is a bundle and S0 (resp. S1) is the set of past (resp. re-
cent) strands. Recent strands represent runs that have just
happened recently while past strands represent strands that
had happened in the past. Therefore it is possible that
the penetrator has access to keys and nonces generated in
past strands. It is required that strands that precede a past
strand are also past strands while strands that follow a re-
cent strand are recent strands. A node is said to be re-
cent (resp. past) if it lies on a recent (resp. past) strand.
Historical bundles are required to satisfy the following two
conditions:

1) For each recent node (s,i) in S, if a nonce or a key b
is generated at (s,i), i.e. Act(s, i) = +νb.m, then b uniquely
originates at (s,i) in S.

2) If a key or nonce b originates at a regular node (s,i)
then b is also generated at (s,i).

Note that the assumption that the keys or nonces gen-
erated by principals during a recent run of the protocol are
random is captured by their unique origination requirement.

¿From lemma 1 it follows immediately that for each reg-
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ular node N, term(N) represents uniquely a speech act. We
say that a key K is associated with principal identifiers A,B,C
at a node N if K is associated with principal identifiers A,B,C
in the speech act represented by term(N). Note again that if
K is associated with A,B,C in a speech act then the sender
and receiver of this act are among A,B,C.

Definition(Model Semantics) Let B be a historical bun-
dle of a well-designed protocol, A,B,C be regular principals,
D be an arbitrary principal and ρ be a role. Further let n
be a nonce and K be a key.

1. B |= HNA,ρ(n) iff there exists a recent regular strand
s ∈ B of A in role ρ such that n is contained in an
action in s.

2. B |= GNA,ρ(n) iff there exists a recent regular strand
s ∈ B of A in role ρ such that nonce n is generated in
some sending action in s.

3. B |= InformedA,ρ(K, B, C, D) iff there is a recent reg-
ular strand s ∈ B of A in role ρ and a node N in s such
that N implements the receiving event of an inform or
reply act and K is associated with B,C,D at N.

4. B |= GKA,ρ(K, B, C) iff there exists a recent regular
strand s ∈ B of A in role ρ such that key K is generated
at some sending node N in s and K is associated with
B,C,A at N

5. B |= Access(D,K) iff

(a) D is a regular principal and there exists a recent
regular strand s ∈ B of D such that K is contained in
an action in s, or

(b) D is the penetrator and there exists a penetrator
node N such that K = term(N)

6. B |= Key(K, A,B, C) iff there exists a recent regular
strand s ∈ B of C such that key K is generated at some
sending node N in s and K is associated with A,B,C
at N

Let B and B′ be historical bundles and A be a regular
principal identifier and ρ be a role. Further let Ω (resp. Ω′)
be the set of recent nodes of A in role ρ in B (resp. B′). We
say that B,B′ are recent (A, ρ)-indistinguishable, denoted by
B ≡A,ρ B′ if there is a bijection φ between Ω and Ω′ such
that for all nodes N, N ′ ∈ Ω following conditions hold:

1) The actions labelling N and φ(N) coincide.
2) N ⇒ N ′ iff φ(N) ⇒ φ(N ′)
What a principal in a role ρ knows at a certain state of the

world depends on what it considers to be a possible world
at this state [12]. Syverson [25] defined a world state as a
bundle. Similarly, we define a world state as a historical
bundle where a possible world for a principal A acting in a
role ρ in a state B is a historical bundle B′ such that B,B′

are recent (A, ρ)-indistinguishable.

Definition(Model Semantics, continued)
B |= KnowA,ρF iff for all B′ s.t. B,B′ are recent (A, ρ)-
indistinguishable: B′ |= F

Let R be a run of a principal A according to a well-
designed AP. Define |= AP.R[F] iff for each historical bun-
dle B of AP, if B contains a recent strand implementing R
then B |= F .

Let AP be a well-designed protocol, B be a historical bun-
dle of AP, F be a formula and R be a proper-regular run of A
in role ρ according to AP. The soundness as well as a limited
completeness of the protocol logic ProtoLog are established
in the following theorems.

Theorem 1. (Soundness Theorem)
1) If � F then |= F
2) If � AP.R[F ] then |= AP.R[F ]

Proof: Appendix D

Theorem 2. (Limited Completeness Theorem)
If |= AP.R[KnowA,ρKey(K, B, C, D)]

then � AP.R[KnowA,ρKey(K, B, C, D)]
Proof: Appendix E

6. CONCLUSIONS AND RELATED WORKS

We have proposed a new approach to development of se-
curity protocols that are correct from the outset, by step-
wise translation from high-level speech act oriented abstrac-
tion to lower-level message-exchanging protocols. We have
demonstrated the power of this idea by technically applying
it on the development of key exchange protocols. Our ap-
proach allows a protocol designer to work exclusively in the
abstract high level language of speech acts. Protocol design-
ers only need to ensure that their protocols are correct with
respect to the high-level protocol logic ProtoLog. A correct
”protocol compiler” that translates speech act events into
message sending and receiving actions, ensures the correct-
ness of the obtained lower-level message exchanging proto-
cols. Ensuring the correctness of the ”protocol compiler” is
a responsibility of the speech act language designers, not of
the protocol programmer. We have given a ”protocol com-
piler” for the class of key exchange protocols and proved its
soundness under the assumption of perfect cryptography.

As the logic ProtoLog is designed for reasoning about
speech-act-oriented protocols, it could not be applied to rea-
soning about unstructured protocols. But this is not a weak-
ness of our logic, very much like a logic designed for reason-
ing about structured Java programs is not expected to be
used to reason about unstructured Fortran programs.

Recently much attention has turned to verification of pro-
tocols like SSL (Secure Socket Layer), TLS (Transport Layer
Security) and SET (Secure Electronic Transactions) that are
more complex than the class of key exchange protocols. The
prevalent method for verification is based on human inter-
action with a powerful semi-automatic prover [29, 23, 22,
3]. But as pointed out in [4], the complexity of protocols
like SET has probably set a limit on the applicability of
this approach. To scale up, new advances are needed. We
believe that the approach proposed in this paper could be
extended naturally to deal with new classes of protocols in-
cluding TLS or SET. We are working on it in an ongoing
work.

There is a good body of work on designing security pro-
tocols. Guttman [13] has argued that the framework of au-
thentication tests could be used in the design of security
protocols. But it is not clear what kind of security goals are
satisfied by authentication tests. The notion of conversation
we introduced could be viewed as a high-level declarative
embodiment of the idea of authentication tests. Gong and
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Syverson [15] has developed an informal method for develop-
ing fail-stop security protocols. Meadows [21] has suggested
that the design of cryptographic protocols should be lay-
ered in which a abstract model is used at the top layer and
each successive layer is an implementation of the layer above
it. A requirement language for security protocols has been
given by Syverson and Meadows in [26]. Buttyan, Staa-
mann and Wilhelm [7] has proposed an abstract BAN-like
logic to be used in the protocol design. But it is not clear
how to translate a protocol specified in the abstract logic
into a lower level protocol and how to verify the correctness
of such translation. Boyd and Mao [5] have discussed infor-
mally set-theoretic guidelines for the design of key exchange
protocols. Abadi and Needham [2] have proposed a set of
informal guidelines for authentication protocol design. Per-
rig and Song [28, 24] has developed tools based on the idea
of strand space for analyzing protocols and later applied it
in the design of protocols. A more recent work by Datta,
Derek, Mitchell and Pavlovic [9] is especially relevant to our
work. Though they do not propose a high-level language
for protocol programming comparable to our language of
speech acts, the techniques they study could turn out to
be especially useful in the development and optimization of
”protocol compiler”. Abadi work on secrecy by typing [1]
seems to be closely related to our result on the secrecy of
exchanged keys of well-designed protocols.
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APPENDIX

A. APPENDIX A

A.1 Request Acts
Let S be a request act form as defined in the main text.

• Let the type of S be newkey. Let Key(?,A,C,B) be the
content of S. As A does not need any knowledge to
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send out a request for a new key, the preconditions of
sending such a request is True. That means

Pre(+S) ≡ True

When sending send out a request, A generates a new
fresh nonce for the reply-with field. Hence the effects
of sending out S is that A has generated a new nonce.

Effect(+S) ≡ GNA,ρ(n)

As B does not need any knowledge to receive a request
for a new key, the preconditions of receiving such a
request is also True. That means

Pre(−S) ≡ True

For B, the effects of getting a request is that B now has
the nonce n.

Effect(−S) ≡ HNB,τ (n)

• Let the type of S be keyconfirm. Let Key(K,A,B,C) be
the content of S. For A to be able to send out such a
request, A should be informed about K earlier. Hence

Pre(+S) ≡ InformedA,ρ(K, A, B,C)

The effect of sending a request of type keyconfirm is
the same as the effect of sending out a requests of type
newkey:

Effect(+S) ≡ GNA,ρ(n)

Before receiving a request act of type keyconfirm, re-
ceiver B should know that K is indeed a secret common
key between A and B generated by C. Hence

Pre(−S) ≡ KnowB,τ Key(K,A, B, C)

Because B knows that K is a secret common key be-
tween A and B, when B gets a request of type keycon-
firm, B knows that A has been informed about K as a
fresh session key between A and B. Hence

Effect(−S) ≡ KnowB,τ InformedA,ρ(K, A, B, C) ∧
HNB,τ (n)

A.2 Reply Acts
Let S be a reply act form as defined in the main text.

• Let the type of S be newkey and the content of S be
Key(K,B,C,A) or νK.Key(K, B, C, A).

For A to send B a key in a reply act, A must have
been requested by B to do so before. If K has not
been generated, i.e. the content of S has the form
νK.Key(K,B, C, A) then the precondition simply re-
quires that A has obtained the Reply-To nonce n be-
fore:

Pre(+S) ≡ HNA,ρ(n)

The effects of sending out such act is that A has freshly
generated key K as a session key between B and C.
Hence

Effect(+S) ≡ GKA,ρ(K, B, C)

In contrast, if K has been generated, i.e. the content of
S has the form Key(K, B, C, A) then the preconditions
states also that A must have generated the key K before
sending the act:

Pre(+S) ≡ GKA,ρ(K, B, C) ∧ HNA,ρ(n)

In this case, A does not gain any new information or
knowledge after sending out such act:

Effect(+S) ≡ True

A receiver of a reply act would receive it only if it has
requested for such a act before. Hence the precondi-
tions for B to act as a receiver in a reply act S of type
newkey is

Pre(−S) ≡ GNB,τ (n)

The effects for B after receiving S is that B knows K
is a fresh key between B and C generated by A, and B
also knows that A has received nonce n. Hence

Effect(−S) ≡ KnowB,τ GKA,ρ(K, B, C)∧
KnowB,τ HNA,ρ(n)

• Let the type of S be keyconfirm and the content of S
be Key(K,A,B,C)

The preconditions for A to send out S is that A knows
that K is a fresh session key between A and B generated
by C and A has received nonce n before:

Pre(+S) ≡ KnowA,ρKey(K, A,B, C) ∧ HNA,ρ(n)

A, as the sender in S, does not gain any new information
after sending S. Hence:

Effect(+S) ≡ True

The preconditions for B to receive S is that B must
have requested for it before, i.e. B has generated the
nonce n and B must be informed about K. Hence

Pre(−S) ≡ GNB,τ (n) ∧ InformedB,τ (K, A, B, C)

After receiving S, B knows that K is indeed a fresh
session key between A and B generated by C and B
also knows that A also knows it.

Effect(−S) ≡ KnowB,τ KnowA,ρKey(K, A, B, C)∧
KnowB,τ HNA,ρ(n)

A.3 Inform Acts
Let S be a inform act form as defined in the main text.

• Let the type of S be newkey and the content of S be
νK.Key(K, B, C, A) or Key(K,B,X,Y) where (X,Y) =
(A,C) or (C,A). If K has not been generated, i.e. the
content of S has the form νK.Key(K, B,C, A) then A
does not need any specific information to be able to
send the act:

Pre(+S) ≡ True

The effect for A as the sender in this case is:

Effect(+S) ≡ GKA,ρ(K, B, C)

In contrast, if the key has been generated before the act,
i.e. the content of the act is of the form Key(K,B,X,Y)
where (X,Y) = (A,C) or (C,A) , then A must have
known about K before sending out the act as we assume
that regular principals honest and hence would inform
others only about what they know:

Pre(+S) ≡ KnowA,ρKey(K, B,X, Y )

In this case, A does not gain any new information after
sending B the inform act. Hence

Effect(+S) ≡ True
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There is no preconditions for B to receive S. Hence

Pre(−S) ≡ True

After receiving S, B is informed about key K. Hence

Effect(−S) ≡ InformedB,τ (K, B, X, Y )

• Let the type of S be keyconfirm and its content be
Key(K,A,B,C). For A to be able to confirm to B that
K is generated by C as a fresh session key between A
and B, A should know that K is indeed generated by C
as a fresh session key between A and B. Hence

Pre(+S) ≡ KnowA,ρKey(K, A,B, C)

The sender of an inform act of any type obviously does
not gain any information after sending the act.

Effect(+S) ≡ True

The preconditions for B to receive an inform act of type
keyconfirm is that B knows that K is indeed generated
by C as a fresh session key between A and B. Hence
after receiving the act, B knows also that A knows that
K is generated by C as a fresh session key between A
and B. Hence

Pre(−S) ≡ KnowB,τ Key(K, A, B, C)

Effect(−S) ≡ KnowB,τ KnowA,ρKey(K, A,B, C)

B. OTWAY-REES PROTOCOL
(1)A → B : M, A,B, {Na, M, A, B}KAS

(2)B → S : M, A, B, {Na, M, A, B}KAS , {Nb, M, A, B}KBS

(3)S → B : M, {Na, KAB}KAS , {Nb, KAB}KBS

(4)B → A : M, {Na, KAB}KAS

C. APPENDIX C
Given that the connection topology allows direct com-

munication only between initiators and servers as well as
between initiators and responders, the abstract speech act
oriented protocol in example ?? is implemented by the fol-
lowing message exchanging protocol:
(1) A → S : req, newkey,A, Init, S, Server,Na, B
(2) S → A : {rep, newkey, S, Server,A, Init, Na, K, B}KAS

(3.1) S → A : {inf, newkey, S, Server,B, Resp,K, B, A, S}KBS

(3.2) A → B : {inf, newkey, S, Server,B, Resp,K, B, A, S}KBS

(4) B → A : {req, keyconfirm, B, Resp,A, Init, Nb, Hash(K), S}KA

(5) A → B : {rep, keyconfirm, A, Init,B, Resp,Nb}KB

(6) B → A : {inf, keyconfirm, B, Resp,A, Init, S}K

Steps (2) and (3.1) could be combined by letting S sending
both mS2 , mS3 to A in one step resulting in:

(1) A → S : req, newkey, A, Init, S, Server,Na, B
(2’) S → A : {rep, newkey, S, Server,A, Init, Na, K, B}KAS ,

{inf, newkey, S, Server,B, Resp,K, B, A,S}KBS

(3’) A → B : {inf, newkey, S, Server,B, Resp,K, B,A, S}KBS

(4) B → A : {req, keyconfirm, B, Resp,A, Init, Nb, Hash(K), S}KA

(5) A → B : {rep, keyconfirm, A, Init,B, Resp,Nb}KB

(6) B → A : {inf, keyconfirm, B, Resp,A, Init, S}K

D. APPENDIX D
For each bundle B, define ≺B to be the transitive closure

of → ∪ ⇒.

Theorem 3. (Soundness Theorem)

1. If � F then |= F

2. If � AP.R[F ] then |= AP.R[F ]

Proof(Sketch) The full proof is more than 15 pages long.
We hence will give only a sketch of it here.

1. Let � F . By induction on the structure of a derivation
of F wrt the axioms and proof rules of ProtoLog.

(a) Base case: F is an axiom of ProtoLog. It is obvious
that |= F holds for F ∈ {A1 − A6, A8 − A10} or
F is an axiom of the S5 system. It remains to show
that |= F for F ∈ {A7, A11, A12}.
i. Let F = A11. Assume the contrary. There-

fore there exists a historical bundle B and regu-
lar principal identifiers A,B,C,D such that B |=
InformedA,ρ(K, B, C, D) and A �∈ {B, C, D}.
Hence there is a recent regular strand s ∈ B
of A in role ρ and a node N in s such that N
implements a sending or receiving event of an
inform or reply act and K is associated with
B,C,D at N. Let S be the speech act imple-
mented by N. K is associated with B,C,D in S.
From the structure of the speech acts, it follows
that A ∈ {B, C, D}. Contradiction.

ii. Let F = A12. Let B be a historical bundle
such that B |= Key(K,A, B, C). It is enough
to prove the following two assertions:
1) For each recent regular strand s ∈ B, for
each node N of s, if K occurs in the speech act
S represented by term(N) then K is associated
with A,B,C in S .
Proof: Let Ω be the set of all nodes N’ in B
such that Effect(N ′) � Key(K,A, B, C). It is
clear that Ω is not empty. Let N be a minimal
node in Ω wrt �B. By case analysis, we can
prove that N implements a sending event of an
reply or inform act of type newkey and K is
generated at N. Let Σ be the set of regular
nodes N’ in B in which K occurs in the speech
act represented by N’. We prove by induction
wrt to the restriction of �B on Σ that K is a
key associated with A,B,C at all nodes in Σ.
The assertion hence follows.
2) B �|= Access(PE,K).
Proof: Assume the contrary. Applying the
above assertion and analyzing the structure of
the representations of speech acts, we will get
a contradiction.

iii. Let F = A7. Let B be a historical bundle
such that B |= KnowA,ρKey(K,B, C, D) for
regular principal identifiers A,B,C,D. It is not
difficult to see that A ∈ {B, C, D} for oth-
erwise we could show that for the bundle B0

consisting of those strands in B that are ei-
ther a strand of A or precede a strand of A,
B0 |= KnowA,ρKey(K, B, C, D) and K does
not appear in B0. Contradiction to the prop-
erty that B0 |= Key(K, B, C, D).
Suppose now that B �|= InformedA,ρ(K, B, C, D).
It follows from the definition of the relation |=,
that for each strand s of A in B, if K occurs in
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s then K occurs in a sending or receiving event
of a request act. Hence K occurs in the sending
or receiving event of a request act of type key-
confirm. Let N be a node implementing such a
event and N be the first node on its strand con-
taining K. Because N represents a sending or
receiving event of a request act of type keycon-
firm, and the protocol is well-designed, there
must be a node M preceding N on the same
strand also containing K. Contradiction.

(b) Inductive case: We only need to show that if |= F ,
then |= KnowA,ρF for all regular principal iden-
tifier A and ρ. This assertion follows immediately
from the definition of model semantics.

2. After having proved assertion (1), we only need to show
the validity of the propagation, consequence and initi-
ation rules wrt the model semantics. The validity of
the consequence and initiation rules wrt the model se-
mantics follows immediately from the definition of the
model semantics. The validity of the propagation rule
is proved by analyzing the structure of Effect(E). The
proof is long (more than 10 pages) and tedious. We
refer the readers to the full paper ( not listed in the
reference to keep the paper anonymous).

E. APPENDIX E
Let T be a prefix of the ρ-track APρ of AP such that R

is a ground instance of T. Let θ be the most general unifier
between T and R. Let θ′ be a ground substitution over the
variables appearing in AP such that θ, θ′ coincide for the
variables appearing in T and θ′ assigns distinct constants to
distinct variables not in T. Let B denote a historical bundle
of AP satisfying following properties:

1) There is no penetrator node in B
2) There is no past bundle in B
3) For each role ρ that appears in AP, there is exactly a

strand in B implementing APρθ
′

4) For each strand s in B there is exactly a role ρ that
appears in AP such that s implements APρθ′

The existence of B is obvious. Let s be the strand in B
that implements R. Let B′ denote the bundle obtained from
B by removing all nodes that do not precede a node in s.
B′ is called the ideal scenario of R, denoted by IS(R). It is
easy to see that IS(R) is a historical bundle of AP.

Theorem(Limited Completeness Theorem)
If |= AP.R[KnowA,ρKey(K,B, C, D)]

then � AP.R[KnowA,ρKey(K, B, C, D)]
Proof:
Assume the contrary that |= AP.R[KnowA,ρKey(K, B, C, D)]
holds but � AP.R[KnowA,ρKey(K,B, C, D)] does not hold.
There are three possible cases: 1) K does not appear in R,
or 2) K appears in R but is not associated with B,C,D, or 3)
K appears in R and is associated with B,C,D. Suppose that
the first two cases happen. Then it is clear that IS(R) �|=
Key(K, B, C, D), contradiction. Therefore it holds that K
appears in R and is associated with B,C,D. From
�� AP.R[KnowA,ρKey(K, B, C, D)], it is not difficult to see
that 1) all receiving events in R are receiving events of inform
or request acts of type newkey, and 2) all sending events in
R are sending events of request acts. Let s be the strand in
IS(R) that implements R. Let r be a new strand that is ex-
actly like s with the exception that their nonces if exist are

different. Construct a historical bundle B of AP from IS(R)
by 1) adding r to IS(R) and 2) connect the receiving nodes
in r with the corresponding sending nodes in IS(R) and 3)
assign the past status to all strands in IS(R), and the re-
cent status to r. It is obvious that B �|= Key(K, B, C, D)].
Contradiction. The theorem is proved.
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