REPRESENTING ACTIONS IN LOGIC PROGRAMMING
AND

ITS APPLICATIONS IN DATABASE UPDATES

" Phan Minh Dung
Division of Computer Science
Asian Institute of Technology
GPO Box 2754, Bangkok 10501, Thailand
E-mail:dung@cs.ait.ac.th

Abstract

We give a sound and complete method for representing actions in normal logic
programming. The method allows both reasoning about the past as well as
reasoning about the future where abduction can be "implemented" by deduction.
We show that our framework provides a simple but powerful theoretical and
practical framework for reasoning about updates. We give an abstract
simplification method for reasoning about abstract actions generalizing Nicolas’s
well-known simplification method. Further, we also point out the interesting
relations between partial evaluations, constructive negation, abductions, and
reasoning about actions. We compare our method with a related method of
Gelfond and Lifschitz where we show the incompleteness of the later.

1. Introduction

The ultimate goal of a theory of actions is to provide a method for verifying
whether a dynamical system meets its specification. Such theories have been the
subject of much interest in Al Often it has been done by studying some toy
examples. Gelfond and Lifschitz [GL2] recently have proposed a new
methodology for studying actions which we believe is more likely to find
applications in practice. Here, a particular methodology for representing actions
can be viewed as a translation from a simple "source" language for describing
actions into a "target language" -for instance into logic programming. Thus the
soundness and completeness of each particular translation become precise
mathematical questions. Unfortunately, Gelfond and Lifschitz’s translation suffers
from many severe problems. First of all, it is not complete. Further in many
examples, it yields multiple answer sets where only one of them captures the
intended semantics (see chapter 5). Since the approach is purely declarative, an
appropriate proof procedure remains to be developed, thus making it unlikely to
be applicable in practice.

We believe that the best way to mechanize the process of reasoning about actions
is to find a way to represent actions in logic programming. Doing so will make
it possible to use the powerful Prolog systems to perform reasoning. Many of the
proposals for formalizations of action in logic programming have been made
[AB,E]. Unfortunately, these proposals are adequate only for a simple kind of
temporal reasoning called "temporal projection" where we are given a description
of the initial state of the world, and use the properties of actions to determine
what the world will look like after a series of action is performed. Moreover,
these approaches can be used only if the description of the initial world is
complete since the "closed world assumption” is applied to every predicate [GL2].

Our goal is to provide a simple but powerful logic programming based framework
for reasoning about actions which combines the novelties of previous works and
at the same time overcomes their limitations. Adopting Gelfond and Lifschitz’s
methodology, our method is a translation from a simple source language for
describing actions into the target language of normal logic programming'. The
difference to ealier approaches [AB,E] is that we don’t apply the "closed world
assumption” on each predicate. Instead, a modification of Clark’s predicate
completion is used which is "closed” at any future situation but open at the
current situation. The result is a simple, sound and complete method which allows
both reasoning about the future and the past where abduction can be
"implemented" by deduction. Since the target language of our translation is the
ordinary logic programming, we can apply the well-developed proof procedures
of normal logic programming directly as proof procedures for reasoning about
action. A main result of this paper is the abstract simplification method for
reasoning about actions generalizing Nicolas’s well-known simplification method

[N].

Finding efficient methods for checking the integrity of database updates is of vital
importance for the applications of databases. Since database updates are nothings
but actions performed on database states, it is obvious that systems which are
capable of reasoning about actions must be applicable to integrity checking of
database updates. But surprisingly, until now, not much works have been done to
study this relationship. In this paper, we will address this problem by showing
that our framework provides a simple but powerful theoretical and practical
framework for reasoning about updates. We will show how the well-known
techniques of partial evaluation and contructive negations [AD,C,CW,LS], can be
applied within our framework to provide a simple, intuitive and efficient methods
for checking the integrity of database updates.

The paper is organized as follows: In chapter two, a simple relational language
for describing actions is given. In chapter three, we introduce our method for

'We avoid the use of "classical" negation by considering
7F as a new fluent if F is a fluent name. Thus we make a
difference between Holds(qF,s) and not Holds(F,s).

representing actions in normal logic programming and prove its soundness and
completeness. Chapter 4 applies our theory to integrity checking of database
updates. Chapter 5 discusses the relations between our method and that of
Gelfond and Lifschitz [GL2] where we prove the incompleteness of the later. We
summarize the pros and cons of our approach in the conclusion.

2. A Relational Language for Representing Actions

In this chapter, we introduce a relational language for representing actions
generalizing the propositional language given in [GL2]. The alphabet of our
language is a triple <FLU,ACT,CONST> where FLU is a finite set of predicate
fluent names and ACT is a finite set of action names, and CONST is a set of
individual constants. An individual term is either an individual constant or a
variable. A fluent atom is an expression of the form F(t,,..,t,) where F is an n-ary
predicate fluent name and t;’s are individual terms. A fluent literal is a fluent
atom L or the negation =L of a fluent atom L. The complement of a positive
fluent literal L is —=L. Similarly, the complement of a negative fluent literal =L is
L. The complement of a fluent literal L is denoted by L*. An equality constraint
is either an equation t = t’ or an inequation t # t’ between individual terms. The
complement of an equality (resp. inequality) constraint t = t’ (resp. t # t’) is t #
t" (resp. t = t’). The complement of an equality constraint C is denoted by C*. A
fluent expression is a nonempty disjunction of fluent literals and equality
constraints. An action expression is of the form A(t,,...t,) where A is an n-ary
action name and t;’s are individual terms. We often use F and A to denote fluent
expressions and action expressions, respectively.

An e-formula is an expression of the form

A causes L, if L;,....L,
where A is an action expression, L.’s are fluent literals.
A v-formula is of the form

B after Ayl

where F is an fluent expression and A;’s are action expressions. If n=0 then a v-
formula is called an init-formula and written as initially F.

A relational domain description is a finite set of e- and v-formulae.

Example 1 [GL2] The domain of the famous Yale Shooting Problem is
characterized by the following propositions:

initially —~Loaded

initially Alive

Load causes Loaded

Shoot causes —Alive if Loaded

Shoot causes —Loaded 2

Example 2 The following relational database schema together with the insert and
delete update operations is a simple example of a relational domain description.

FLU = {Student,Receive}, and ACT = {Insert,,,Delete .} where Student is an
unary and Receive a binary fluent name, and Insert,., as well as Delete_., are
binary action names. The e-formulae describing the effect of the updating
operations are

Insert,...(X,y) causes Receive(x,y)

Delete,..,(x,y) causes —Receive(x,y) B

The semantics of a domain description is described by its models which are
defined in the following.

A pre-state over an alphabet <FLU,ACT,CONST> is a triple <DOM,1,7T’> where
DOM is a set of individuals, called the individual domain, and T is an one-to-one
mapping from CONST into DOM, and T’ is an assignment which assigns the
identity relation on DOM to =, and the complement of the identity relation to .
&

An assignment of a set of variable X = {x,,..,x,} wrt pre-state <DOM,T,7’> is
a mapping © from X into DOM. For any action expression A(X) and any
assignment © of X wrt a pre-state J, A(X)© is called an J-instance of A(X). The
J-instances of fluent expressions, e-formulae, v-formulae are defined similarly. J-
instances of expressions are also called J-ground expressions.

Remark We assume that J-ground fluent expressions are always simplified such
that no equality constraints appear in it.

The set of all J-ground action expressions is denoted by ACTION,. Similarly, the
set of all J-ground fluent atoms is denoted by BF).

A state over a pre-state J is a subset of BF,. The set of all states over a pre-state
J is denoted by ST7,.

An positive J-ground fluent literal L holds in a state ¢ iff L € ©. A negative J-
ground fluent literal =L holds in ¢ iff L ¢ ©. A J-ground fluent expression L,
v...v L, holds in ¢ if some L,, 1<i<n, holds in ©.

A transition function ® over a pre-state J is a mapping from ACTION, x ST, into
ST,. A structure over J is a pair (6, D) where G, is a state (the initial state) over
J, and @ is a transition function over J.

We say that a J-ground v-formula F after A,,...,A, is true in a structure M=(c,,®P),
if F holds in the state ®(A,,P(A,,,,....®(A,,0,)..)), and that it is false otherwise. A
(possibly nonground) v-formula F after A,,...,A, is true in a structure M if each
J-instance of it is true in M.

A structure M=(c,,®) over a pre-state J is a model of a domain description D if
every v-formula from D is true in M, and for each J-ground action expression A,
each J-ground fluent literal L, and each state o, the following conditions are
satisfied:

(1) If there exists an J-instance of the form
A causes L if L,,....L,
of some e-formula in D such that L;’s are true in ¢ then L holds in ®(A,0).

(2) Otherwise, L holds in ®(A,o) iff L holds in ¢ and L is not affected by any
action whose preconditions are satisifed in .2

For example, the transition function of the Yale Shooting Problem is the
following:

®(Load,0) = ¢ U {Loaded}

®(Shoot,0) = o\{Loaded,Alive}, if Loaded € ©
o, otherwise

®(Wait,0c) = 0

A relational domain description is consistent if it has a model. A v-formula E is
entailed by a relational domain description D, written D [E, if it is true in each
model of D.

Now, we give a simple sufficient condition for the consistency of a domain
description.

An action name A is said to be selfcontradicted in D if D contains two e-
formulae whose variables are disjoint, of the following form:

A(X) causes L(X) if L(X),...,L(X)
A(Y) causes -L(Y) if K,(Y),....K(Y)

2 [, is affected by an action A in state O if there exists
an J-ground e-formula of the form A causes L if L;,...,L, or
of the form A causes L* if L,,...,L, such that all L;’s hold
in @.

227

such that L(X) and L(Y) are unifiable with mgu 6 and there exist no such pairs
i,j such that K(Y) = L(Y)* and L.(X)6 and Li(Y)0 are unifiable.

Now we can prove the first result about the consistency of domain description.

Lemma 1 Let D be a domain description containing no v-propositions. Then D
is consistent if D contains no selfcontradicted actions.]

Remark From now on we consider only domain description containing no
selfcontradicted actions.

3. Transforming Relational Domain Description into Logic Programs

Our method translates a domain description D into a normal logic program aD.
oD uses variables of three sorts: situation variables s,8’,..., fluent variables f.,f’,..,
action variables a,a’,.. 2 The only situation constant is SO. The fluent terms are
the fluent literals where for any fluent atom L, =L is another distinct term®. The
action terms are the action expressions. The only (recursive) function symbol is
a situation function symbol [sla] denoting the situation resulted after the action a

is performed in situation s.

Let D be a domain description. Then by Dg,Dy we denote the sets of all e- and
v-formulae in D, respectively. The corresponding program oD = aD, U oD, is
defined as follows:

oDy consists of the translation of the individual formulae from Dy together with
the standard rule:

Holds(f,[sla]) «~ Holds(f,s), not Ab(f,a,s)
The translation of an e-formula A causes L if L,,...,.L, consists of 3 rules:
Holds(L,[sIA]) « Holds(l_1,s),...,Holds(Ln,s)
Ab(L,A,s) « Holds(L,,s),...,Holds(L,,s)
Ab(L* A,s) « Holds(Ll,s),...,Holds(Ln,s)

A v-formula L, v..v L_ v C, v .. v G after A,...A, where L;’s are fluent
literals and C;’s are equality constraints, is translated into a denial

Using a sorted language implies that all atoms in the
rules of a program are formed according to the syntax of the
sorted language. Further, we will always assume that all the
substitutions we will consider are of appropriate sorts.

‘Note that —-IL is not a fluent term

<« Holds(L;*,[SOIA|I...1A,]),...,Holds(L*,[SOIA,I...IA,]),C,*,...,C, *
aDy, consist of the translations of the v-formulae in it.
Now we want to define the semantics of aD. First, clauses of the form

Holds(F,[slA]) « Holds(L,,s),...,Holds(L,,s)
Ab(F,A,s) < Holds(L,s),...,Holds(L,,s)

in oDy are transformed respectively into the following form

Holds(f,[sla]) < f = F, a = A, Holds(L,,s),...,Holds(L_,s)
Ab(f,a,s) « f =F, a = A, Holds(L,s).....Holds(L_,s)

Let Holds(f,[sla]) « E
Holds(f,[sla]) < E

i-.l';z;lds(f,[sla]) «— E
Ab(f,a,s) « E’
Xl.:)(f,a,s) «— E/

be all the transformed clauses.’

Then compy(D) is defined as the first order theory consisting of the following
sentences together with the corresponding Clark’s equality theory CET [L].

VfVaVs(Holds(f,[sla]) <> E, v ... VE,)
VfvaVs(Ab(f,a,;s) < E’ v ... vE.)
Remark The completion semantics is defined only for Holds(f,[sla]) and not for
Holds(f,s).
Definition 1 D is defined as the following multi-sorted first order theory
WD = compy(D) v oD, U ICS,,
where ICS, = { Vx,..Vx,(Holds(—~F(x,,..,x,),S0) <> not Holds(F(x,,..,x,),S0)) |

F is an n-ary fluent name }

SNote that the standard clause Holds(f,[slal) —
Holds (f,s), not Ab(f,a,s) is among these clauses.

229

Example 3 Let D be the domain description of the Yale Shooting Problem (see
example 1). aD consists of the following clauses:

aD,: «— Holds(Loaded,S0)
<« Holds(—-Alive,S0)

aD,: Holds(Loaded,[slLoad]) «
Ab(Loaded,Load,s) «
Ab(—-Loaded,Load,s) «

Holds(—Alive,[sIShoot]) «— Holds(Loaded,s)
Ab(Alive,Shoot,s) «— Holds(Loaded,s)
Ab(—Alive,Shoot,s) <« Holds(Loaded,s)

Holds(=Loaded,[sIShoot]) «
Ab(Loaded,Shoot,s) «
Ab(—-Loaded,Shoot,s) «—

Holds(f,[sla]) « Holds(f,s), not Ab(f,a,s)
Thus uD is aD, w ICS, U CET together with the following sentences:

VfVaVs(Holds(f,[sla]) <> (f=Loaded A a=Load v
f=—Alive A a=Shoot A Holds(Loaded,s) v
f=-Loaded A a=Shoot v
Holds(f,s) A not Ab(f,a,s)))

V{VaVs(Ab(f,a,s) <> (f=Loaded A a=Load v
f=—Loaded A a=Load v
f=Alive A a=Shoot A Holds(Loaded,s) v
f=—Alive A a=Shoot A Holds(Loaded,s) v
f=Loaded A a=Shoot v
f=—Loaded A a=Shoot))

It is clear that puD [Holds(Loaded,[SOILoad]). Hence pD
Holds(Loaded,[SOILoadlWait]). Therefore ubD E Holds(—Alive,
[SOILoadIWaitIShoot]) [|

The equivalence of uD and D is showed in the following theorem.

Theorem 1 (Soundness and Completeness)

Let D be a relational domain description and E be a v-formula. Then

wD FoE iff D |E B

4. Application: Checking Integrity of Database Updates

In this chapter, we apply our theory to develop an powerful theoretical and
practical framework for reasoning about database updates. The result is an abstract
simplification method for reasoning about abstract actions generalizing Nicolas’s
well-known simplification method [N]. Further, we also point out the interesting
relations between partial evaluations, constructive negation, abductions, and
reasoning about actions.

A relational database schema is a finite set of predicate symbols RDS. A
relational database state over a schema RDS is a finite set of ground atoms of
predicates from RDS. The semantics of a relational database is defined using the
closed world assumption. A ground positive (resp negative) literal L is true wrt
a relational database state DB, written DB [y, L if L € DB (resp. L* ¢ DB).

Integrity constraints are conditions which the database has to satisfy when it
changes through the time. Formally, we say that an integrity constraint IC is
satisfied in a database state DB if DB [.y4 IC. For the sake of simplicity, in this
paper, we consider only integrity constraints which are denials, i.e. expressions
of the form «L,,...L.,C,....C,% where L’s are literals and C;’s are equality
constraints.

Databases are changed through updates. Updates can be either primitive updates
or compound updates. Similar to Wallace [W], (compound) updates are defined
according to the following syntax:

Update ::= Primitive Update
foreach X: Cond(X) do Primitive Update
Updatel;Update2

Primitive Update ::= insert(B) | delete(B)

where Cond(X) is a conjunction of literals with free variables in X , and B is an
atom.

The result of inserting a ground atom L into a database state DB is DB U {L}.
The result of deleting a ground atom L from a database state DB is DB \ {L}.

Upl1;Up2 is a sequential composition of Upl and Up2 which is defined by first
performing Upl then Up2.

A "parallel" update foreach X: Cond(X) do Up(X) represents a "simultaneously"

N,

fAl1]1 clauses are universially quantified at the head.

231

performing of all updates Up(X)&’ for which Cond(X)d holds in the current state
of the database. For example, the result of performing the update foreach x,y:
p(a,x) do insert(q(x)) upon the database state DB = {p(a,b),p(b,c),p(a,d)} is the
database state DB U {q(b),q(d)}.

The database resulted from updating a relational database state DB by an update
Up is denoted as result(DB,Up). An integrity constraint IC is satisfied by an
update Up if result(DB,Up) Fwa IC.

It is clear that an update language is in fact a language for describing actions on
the database states. Given a (compound) update Up, a domain description Dy, is
defined as follows:

1) For each n-ary predicate symbol p appearing in Up, D, contains the
following e-formulae:

insertp(xl,..,xn) causes p(x,,..,x,) and
delete,(x,,..,x,) causes —p(X,,..,X,)

2) For each "parallel" update foreach X:Cond do Pup(X) in Up, Dy,
contains the following e-formula

PU causes L(X) if Cond(X)
where L(X) = p(X) if Pup(X) = insert(X), and L = -p(X) if Pup = delete(X),
and PU is the string "foreach X:Cond do Pup(X)" interpreted as a propositional

action name.

3) No other formulae are contained in Dy,

For each (compound) update Up, define

Py, = aDy, U { Holds(L,SO0)« I L € DB }
U { Holds(=L,S0)« notHolds(L,S0) | L = F(x;,..,x,), F is an
n-ary fluent name }

The following theorem shows how our theory can be applied in checking the
integrity of database updates.

’® is a ground substitution over X

Theorem 2 The integrity constraint IC = «L,...L,,C,,..,C,, is satisfied by the
(compound) update Up on the database state DB if and only if

comp(Py,)° F «Holds(L,,[SO\Up]),...,Holds(L,,[SO\Up]),C,...,C,,
=" ¥

It follows immediately

Theorem 3 The integrity constraint IC = «L,...L,,C,,..,C, is satisfied by the
(compound) update Up on the database state DB if and only if the SLD-CNF?®
tree for the goal «<Holds(L,[SO\Up]),....Holds(L,,[SO\Up]),C,,..,C,, with respect
to the program Py, finitely fails.

Ed

From the theorem 3, it is clear that efficient methods for checking the integrity
of database updates can be developed using the well-studied techniques of
constructive negation and partial evaluation in logic programming [AD,C,CW,LS].
As an example, we will show in the following how the well-known simplification
method [N] can be obtained from theorem 3 through partial evaluation. We need
some new notations.

Definition 2 Given a domain description D and a v-formula E. A set S of init-
formulae is said to be an explanation of E if following conditions are satisfied:

(1) D U S is consistent
2)DuS EE

Let S,S’ be explanations of E wrt D. We say that S’ is less specific than S wrt
Dk S ES,
[

It is clear that if S,S’ are explanations of E wrt D then S v S’ is also an
explanation of E wrt D which is less specific than both S and S’. Hence, the least
specific explanation of E wrt D, if exists, represents a collection of all possible
explanations of E wrt D.

Definition 3 A domain description D is said to be normal if each v-formula E
possesses at least one least specific explanation S such that D U E [S. o4

8comp{PUp) is the Clark’s completion of the program Py, as
defined in [L].
Y
L
9SI,D-CNF stands for SLD resolution augemented with
constructive negation as failure [C].

233

Now we can define the abstract simplification method for reasoning about actions:

The Abstract Simplification Method

Given: A normal domain description D, a v-formula E and a structure
(0,D).

Goal: Checking whether (6,®) satisfies D U (E).

Step 1: Computing a least specific explanation S of E wrt D.

Step 2: Checking whether S is satisfied in . If yes then (o,®) satisfies

D U {E}. Otherwise (6,®) does not satisfy D U (E].

It is not difficult to see that Nicolas’s simplification method [N] 1s a special case
of the above abstract simplification method where the e-formulae are either
primitive updates or sequential composition of primitive updates. Further, the
method employed to compute the least specific explanation by Nicolas can be
obtained from the theorem 3 using partial evaluation with unfolding of negative
literals, techniques which have been studied extensively in [AD,CW].

Example 4 (Continuation of example 2)

Let D be the domain description given in example 2. Assume that the database
has to satisfy the integrity constraint saying that no student can receive both an
SERC-grant and a British Council award which is represented by the fluent
expression F = =Student(x) v —-Receive(x,SERC) v —Receive(x,BC).

Now we want to know whether it is possible to award Mark with a SERC grant.
In other words, we have to determine whether the database resulted from the
update insert,, (Mark,SERC) satisfies the integrity constraint F.

It is not difficult to see that the set consisting of the following init-formulae

initially =Student(Mark) v —Receive(Mark,BC)
initially =Student(x) v =Receive(x,SERC) v —Receive(x,BC) v (x#Mark)

is a least specific explanation for the v-formula F after Insert,. (Mark,SERC). If
the initial database state satisfies the integrity constraint F, then the updated
database satisfies F iff the initial database state satisfies the first init-formula. This
is exactly Nicolas’s simplification method |

(4

Wallace in [W] has developed a meta-level rule-based procedure for checking the
integrity of database updates. The difference between our and Wallace’s approach

is twofolds. First, our method transforms updating procedures into "equivalent”
simple logic programs which have a simple but precise semantics. From this
transformation, the application of partial evaluation for checking the integrity of
database updates follows immediately and naturally. This is in strong constrast to
the meta-level rule-based procedure of Wallace for which no clear and precise
semantics has been offered [W]. Further our method is based on a general but yet
simple theory for representing actions in logic programming where database
updates are only one of many possible applications.

A (compound) update is said to be legal if no integrity constraint is violated. One
possible way to determine the legality of a (compound) update is to specify the
conditions, called permissible conditions, under which a primitive update can be
performed without violating the integrity constraints. It is not difficult to see that
such permissible conditions are nothing but a least specific explanation of the
integrity interpreted as a v-formula. This points out that the recently proposed
approach to semantics of database updates in [R] can be obtained from our
through partial evaluation.

Up to now, we have assumed that the fluents are in some ways indepentdent to
each other. The value of a fluent can only affected by an action which has a
direct effect on this fluent. This is a severe restriction to the expresibility of our
language. For example, it is not possible to describe the semantics of view
updates of general deductive databases in a relational language. The problem of
describing the "indirect" effects of actions is called the ramification problem in
the AI literature. In [K2], Kowalski proposed to address this problem by
distinguishing between basic fluents and derived fluents where the value of a
derived fluent can only be indirectly affected by a change of the basic fluents.
This in fact is a simple adaptation of the idea of distinguishing between
intentional and extensional predicates in view updates. A formal development of
this idea is a topic of future work.

5. Relations to Gelfond and Lifschitz’s Approach

To have a framework capable of more general kinds of temporal reasoning other
than the temporal projection, Gelfond and Lifschitz [GL2] have proposed the
extended logic programming [GL1] as the target language. The reason here is that
extended logic programming offers a mechanism to represent "explicit" negation.
As we have showed in previous chapters, there is no real need for the use of
"explicit" negation to represent actions in logic programming. Further, we will
show in this chapter that unfortunately the Gelfond and Lifschitz’s translation is
not complete and in a lot of cases, it does not capture the intuitive semantics.
These shortcommings together with the lack of an appropriate proof procedure
makes it difficult to apply this approach in practice.

L
X

Remark In this chapter, we will consider only propositional domain description.

Let D be a domain description without similar actions'®. The corresponding
program 7D consists of the translation of the individual propositions from D and
the four standard rules:

Holds(f,[sla]) « Holds(f,s), not Ab(f,a,s)
-Holds(f,[sla]) « —Holds(f,s), not Ab(f,a,s)
Holds(f,s) « Holds(f,[sla]), not Ab(f,a,s)
-Holds(f,s) « —-Holds(f,[sla]), not Ab(f,a,s)

A v-proposition F after A,,...,A, is translated into
Holds(F,[SOIA,l...1A])

The translation of an e-proposition A causes F if P,,..P, consists of 2n+2 rules:

Holds(F,[sla]) <~ Holds(R,s),...,Holds(P,,s)

Ab(IFl,a,s) < not =Holds(R,s),...,not ~Holds(P,,s)

Holds(P,,s) «— —~Holds(F,s),Holds(F,[sla])

-Holds(P;,;s)« —-Holds(F,[sla]),Hold(P,,s),...,Hold(P;_,,s),
Hold(P,,,,s),...,Hold(P,,s).

where IFl = F and [-Fl = F for each fluent name F.
The following theorem shows the soundness of the translation 7.

Theorem 4 [GL2] Let D be a domain description without similar e-propositions.
For any v-proposition P, if =D entails ©tP, then D entails P. [

Gelfond and Lifschitz have given no results about the completeness of their
transformation. The following theorem shows that the Gelfond and Lifschitz’s
transformation is not complete.

Theorem 5 The Gelfond and Lifschitz’s transformation © is incomplete in the
sense that there exists a domain description D and a v-proposition P such that
D entails P but D does not entail TP.

Proof Let D = { Shoot causes —~Alive if Alive }. It is clear that D entails P with
P = —Alive after Shoot. Let Z = { Ab(Alive,Shoot,s) | s = [SOlw] with w €
{Shoot}* }. It is not difficult to see that Z is an answer set of tD. It is obvious
that TP = —Hold(Alive, [SOIShoot]) does not belong to Z. Thus, D does not
entail tP. qed. W

7'wo different e-propositions are similar if they differ
only by their preconditions.

Another interesting problem which has been left open by Gelfond and Lifschitz
in [GL2] is the question of how many answer sets D has. The authors of [GL2]
gave a prediction that under general condition, tD has an unique answer set. The
following example shows that in general, there are more than answer sets for D
where only one of them captures the intended semantics.

Theorem 6 In general, D can have more than one answer sets where only one
of them captures the intended semantics.

Proof Let D: Initially Alive
Parachute causes —Alive if Stormweather

The corresponding program has two answer sets

Z, = { Ab(Alive,s) | s = [SOlw], w € {Parachute}* } U {Holds(Alive,S0)}
Z, = { Holds(Alive,s) | s = [SOlw], w € {Parachute}* }
v { —Holds(Stormweather,s) | s = [SOlw], w € {Parachute}* }

It is obvious that only Z, captures the intended semantics of D for if we don’t
know anything about the weather, it is impossible to say anything about the
outcome of parachuting. Z, is completely counterintuitive.

&

Conclusion

We have proposed a simple, sound and complete method for representing actions
in logic programming. We have showed that it is posssible in our framework to
reason both about the future and about the past with both forms of reasoning:
abduction and deduction. We have showed that applying our method to database
updates provides an efficient procedure for checking the integrity of database
updates without actually performing the updates. Then we compared our method
with the recently proposed method of Gelfond and Lifschitz whereby we pointed
out the incompleteness of the later. Our method can be viewed as a combination
of methods proposed in [GL2,AB,E] where we try to inherit the best from each
and at the same time avoid their shortcommings.

To extend our method for more applications, much work remains to be done.
Here it is necessary to extend the power of the source language to include parallel
as well as nondeterministic actions. Finding a way to represent parallel and
nondetermincitic actions in logic programming will be the real challenge for a
successful application of logic programming in verifying dynamical systems.
Maybe, here works done by Kowalski and Sergot as well as many other
researchers [K2,K3,51,S2] could be of some help. A more concrete extension of
our work is to study whether our method could be applied to checking the
integrity of updates defined in other language as that of Manchanda and, Warren
[MS] as well as to dtermine whether other methods for checking the integrity of

237

database updates [SK] can be modelled within our framework.

Recently, Denecker and De Schreye [DS] has indepentdently proposed a similar
but technically somewhat simpler transformation from a propositional source
language into a normal logic programming. Denecker and De Schreye’s work
corresponds roughly to chapter 3 in our paper where the transformation is
restricted to propositional domain.

Acknowledgement

This work has been partially supported by the Abduction Group at Imperial
College under a grant from Fujitsu.

References

[AB] Apt K., Bezem M. ’Acyclic Programs’ in Proc. of 7th ICLP’90

[AD] Aravindan C., Dung P.M. ’Partial deduction of logic programs
wrt well-founded semantics’ in Proc. 3th Int. Conference on
Algebraic and Logic Programming, LNCS 632, 1992, Springer
Verlag

[C] Chan D. *Constructiv negation based on the completed database’
in Proc. of 5th ICLP, 1988, MIT press

[CW] Chan D., Wallace M. A treatment of negation during partial
evaluation’ in Meta-programming in Logic Programming (eds.)
Abramson H. amd Rogers M.H., 1989, MIT Press.

[CDT] Console L., Dupre D.T., Torasso P. ’On the Relationship between
Abduction and Deduction’ in J. Logic and Computation, 1991

[DS] Denecker M., De Schreye D. ’Representing incomplete
knowledge in abductive logic programming’, Draft, personal
communication, March 1993.

[EK] - Eshghi K., Kowalski R.A. *Abduction compared with Negation
as Failure’ in Proc. of 6th ICLP’89

[E] Evans C. ’Negation as failure as an approach to the hanks and
McDermott problem’ in Proc. of Second Int Symp. on AI, 1989

[GL1] Gelfond M, Lifschitz V. ’Logic Programs with Classical

Negations’, in Proc. of the ICLP’90

[GL2]

[K1]

[(K2]

[K3]

[K4]

[L]

[LS]

[MW]

[N]

[R]

[SK]

[S1]

[S2]

[W]

Gelfond M., Lifschitz V. ’Representing Actions in Extended
Logic Programming’, in Proc. of the JICSLP’92

Kowalski R.A. ’Logic for problem solving’, Elsevier North
Holland, New York, 1979

Kowalski R.A. 'Database Updates in Event Calculus’, J. of Logic
Programming, 1992

Kowalski R., Sergot M. A Logic-based Calculus of Events’ in
New generation Computing 1986, Vol 4, 67-95

Kowalski R.A. ’Logic programming in AI’ in Proc. of IICAI’91

Lloyd J.W. Foundations of Logic Programming’, Second edition,
Springer verlag, 1987

Lloyd J.W., Shepherson J.C. ’Partial evaluation in logic
programming’ J. of logic programming, 1992

Manchanda S., Warren D.S. ’ A logic-based language for database
updates’ in Foundations of Deductive databases and Logic
Programming’ J. Minker (ed.) 1988

Nicolas J.M. ’Logic for improving integrity checking in relational
databases’, in Acta Informatica, 18:227-253,1982

Reiter R. ’On formalizing database updates: Preliminary report’,
in Proc. of 3rd International Conf. on Extending Database
Technology, 1992

Sadri F., Kowalski R.A. A theorem proving approach to
database integrity’ in Foundations of Deductive databases and
Logic Programming’ J. Minker (ed.) 1988

Shanahan M. ’Prediction is Deduction and Explanation is
Abduction’ in Proc. of IJCAI’89

Shanahan M. *Explanations in the Situation Calculus’, in Proc. of
LICAI’'93

Wallace M. ’Compiling Integrity Checking into Update
Procedure’ in Proc. of IJCAI’91

