
A FORTRAN IV To QuickBASIC Translator

Rizaldo B. Caringal and Phan Minh Dung
Division of Computer Science
Asian Institute of Technology

G.P.O. Box 2754
Bangkok 10501, THAILAND

A b s t r a c t

This paper describes the design and implementation of an
automatic translator from standard FORTRAN IV to QuickBASIC, a
structured form of the programming language BASIC. The
translator makestwo passes on the input program before finally
generating the translated program. The converter not only
performs lexical, syntactic and limited forms of semantic
analyses on the source program, but it also recovers from any
errors encountered. It was implemented using the C programming
language in the Disk Operating System (DOS) environment and was
successfully ported to UNIX. Furthermore, the contingencies to
cope with other dialects of the source language have been
defined, and the problems encountered in the implementation
process are discussed.

Keywords: Automatic Translator, Converter, FORTRAN, QuickBASIC,
Portable

Introduction

The advent of FORTRAN IV as the standard programming
language for writing numerical and engineering applications
produced numerous libraries of subprograms of the said language
[14]. However, since FORTRAN IV emerged during the period when
microcomputers were not even heard of, these libraries are mostly
stored and utilized in mainframes. The unavailability of
mainframe computing facilities, not to mention the high cost of
computing if they are at all available, restrict the access of
these vast software libraries. Additionally, the migration of
most programmers to structured programming languages made FORTRAN
IV libraries unusable in several cases. A viable solution
therefore is to make these FORTRAN programs available in cheaper,
more accessible hardware, e.g. microcomputers.

There can be two possible solutions to this situation. One
is to provide a mixed programming environment, where a host
language, e.g., Pascal, QuickBASIC etc., can access subroutines
written in FORTRAN IV. The main constraint in this approach is
that languages to be mixed should operate on the same
environment. This still requires the use of mainframe computers
[3] .

An alternative solution would be to translate FORTRAN
programs into another high level programming language either

75 ACM SIGPLAN Notices, Volume 27, No. 2, February 1992

automatically or by hand. According to Freak [5], translating
programs by hand poses the following disadvantages: the logical
structure of the original program might not be preserved; there
is a risk of introducing bugs to the program; problems regarding
documentation may arise; the process of translation by hand is a
tedious one; and the reliability of the resulting program is
unassured. On the other hand, Slape and Wallis [I0], enumerated
several problems associated with translating programs
automatically. First, the translation process is technically
infeasible if the languages being converted are too radically
different; second, translation is unattractive if majority of the
users are likely to rewrite most of their programs to enhance
specifications; and third, the generated programs are not
sufficiently idiomatic in their use of the target language to
make subsequent maintenance of the target language version an
attractive proposition.

The choice of QuickBASIC, which is gaining vast popularity
in this part of the world, as the target language alleviates the
first difficulty. However, there are still some
incompatibilities between FORTRAN and the said language. The
last two problems of translating programs automatically are not
expected to be encountered much since the translations will be
made between standard software libraries. This makes automatic
program translation an attractive proposition in addition to
offsetting the negative factors mentioned by Freak [5].

The features of the source language were limited to the ANSI
X3.9-1966 FORTRAN definition [11,12,13] - also known as FORTRAN
66, while the target language was based on the Microsoft
QuickBASIC version 4.5 [8]. An attempt was made to map every
language construct of FORTRAN to QuickBASIC, although some
problems were encountered and compromises had to be resorted to.
Specifically, FORTRAN's input and output facilities, and
EQUIVALENCE statement were implemented differently in the
corresponding QuickBASIC target code. Passing of subprogram
names as parameters to other subprograms was not supported.

The structure of FORTRAN and the need to make the translator
simple led to a two pass translation scheme. Nevertheless, the
translation process itself is fast enough to be comparable with
some existing compilers. The implementation language C allowed
the translator to be portable to machines supporting the standard
definition. The translation process is automatic in the sense
that only the source program and the device parameters' file are
needed to produce the target program. A runtime library is
provided for QuickBASIC programs, thus fully supporting FORTRAN's
intrinsic and basic external functions. Complete lexical and
syntactical analyses, in addition to limited semantic checking
are performed by the system with full error recovery.~ In
addition, a user interface is provided for the DOS environment,
facilitating the translation of FORTRAN source codes, the
compilation of the resulting QuickBASIC programs and the linkage
with the standard and runtime libraries.

76

Differences Between FORTRAN and QuickBASIC

QuickBASIC is an extended definition of the programming
language BASIC providing features such as subprograms and
functions, user-defined data type, recursion, and flexible array
dimensioning, much more advanced than the original. Although the
traditional constructs of the language have been retained,
additional control statements have been included to support
structured programming [8].

Structurally, FORTRAN and QuickBASIC programs share common
features. Both languages require a main program optionally
followed by subprograms - either subroutines or functions. The
major differences between the two lie with other aspects namely:
control structures, data structures, name structures and
syntactic structures.

Although the control statements of the two languages are
syntactically different, only two statements of FORTRAN are not
supported in QuickBASIC - the Arithmetic IF and the Assigned
GOTO. Among the data structures supported by FORTRAN IV, the
complex and Hollerith data types have no counterparts in
QuickBASIC. Additionally, the data type integer in FORTRAN can
be assigned another type - label, through the Assigned GOTO
statement. In both languages, implicit declarations of variables
are allowed. FORTRAN permits implicit integer types of variables
starting with letters I, J, K, L, M, and N, while the rest are
assumed to be of type real. In contrast, QuickBASIC only allows
implicit types for variables of type real.

Sharing of memory locations by several variables in the same
program block is achieved in FORTRAN through the EQUIVALENCE
statement. When two variables are declared to be equivalent,
they will be stored in the same memory space if they have the
same size or share some common locations if their sizes differ.
This feature is not supported in QuickBASIC.

Focusing on the syntactic structures, FORTRAN has two main
weaknesses [7]. First, it ignores blanks throughout the program,
except in Hollerith constants, and second, it has no concept of
reserved words. In QuickBASIC, blanks are considered as
delimiters of lexemes while keywords are treated as reserved.
This implies that keywords in this language are forbidden to be
used as program identifiers.

Lastly, there are differences in the input and output
formats, and operations of the two languages. In FORTRAN, I/O is
record-oriented, that is, each I/O statement accesses a new
record on the external medium with or without format
specifications. In QuickBASIC, I/O can either be stream-oriented
or record-oriented.

77

Translation Rules of the System

A set of translation rules mapping all the considered
language constructs of FORTRAN into equivalent QuickBASIC
structures was defined [2]. The rules were grouped according to
some general categories, such as: program form, data types, data
and procedure identification, expressions, statements, and
procedures and subprograms, describing the language features of
the source language and the corresponding structure of the target
language. For each feature of the language, the following
information are given: the facilities available in both
languages, the translation rule, and an optional example to
clarify more complicated rules.

There are certain rules which were difficult to implement.
One is the support for complex data types where a three-fold
problem is implied - representation of constants, variables and
function references. This problem was resolved by defining a
new data type in BASIC called COMPLEX which is actually a record
with two single precision fields - one is REAL for the real part
and another is IMAG for the imaginary part. The following type
declaration is included in every BASIC program which uses complex
data types:

TYPE COMPLEX
REAL AS SINGLE
IMAG AS SINGLE

END TYPE

Assignment of values to such variables will also entail two
operations - one for the real part and another for the imaginary
part. Constants are handled depending on where they are used in
the program, usually in expressions, and data initialization
statements. Given the complex variables A and B, the following
FORTRAN statements

DATA A / (i.0, 2.0) /
B = (3.0, 4.0)

will be translated to QuickBASIC as:

READ A.REAL, A.IMAG
DATA 1.0, 2.0
VAR0001.REAL = 3.0
VAR0001.IMAG = 4.0
B = VAR0001

where VAR0001 is a temporary complex typed variable created by
the system. Note that the assignment of values in BASIC are
always done in the field level of the record since a record
itself cannot be assigned a value directly. Similarly, FORTRAN's
DATA statement with a complex type argument was translated in
such a manner that the real and imaginary fields of the record
are initialized separately.

78

For a multi-operator complex expression, the operations have
to be broken down such that one is evaluated at a time, and the
intermediate results are stored in temporary variables. Assuming
that A, B, and C are complex variables, the following FORTRAN
statement

A = A + B * C

will be translated to QuickBASIC as

VAR0001.REAL = (B.REAL * C.REAL) - (B.IMAG * C.IMAG)
VAR0001.IMAG = (B.IMAG * C.REAL) + (B.REAL * C.IMAG)
VAR0002.REAL = A.REAL + VAR0001.REAL
VAR0002.IMAG = A.IMAG + VAR0001.IMAG
A = VAR0002

where VAR0001 and VAR0002 are temporary variables of type complex
created by the translator. In addition, if a real typed
component is involved in a complex expression, then the said
component is treated as a complex type with its value as the real
part and zero as the imaginary part.

Since a user defined type cannot be returned by QuickBASIC
functions, a FORTRAN complex typed function is translated by
using a subroutine and by adding an extra variable of type
complex to the list of the subroutine's parameters. This extra
variable will contain the value that is supposed to be returned
by the function. The subroutine is invoked prior to the original
statement where the function was referenced and consequently, the
extra variable replaces the occurrence of the function reference.
A more complicated case of this would be a statement involving an
expression with nested function references, as given in the
following example, assuming X and CEXP(X) are of type complex.

X = CEXP(CEXP(CEXP(X)))

One solution can be to evaluate the innermost function reference
first and store the result in a temporary variable, and use this
temporary variable to evaluate the second innermost reference,
and so on. The corresponding QuickBASIC statements are:

CALL CEXP(X,VAR0001)
CALL CEXP(VAR0001,VAR0002)
CALL CEXP(VAR0002,VAR0003)
X = V A R 0 0 0 3

A similar case was encountered in evaluating nested FORTRAN
minimum and maximum family of functions. Since such FORTRAN
functions allow variable numbers of parameters, corresponding
translations in QuickBASIC use single dimensioned arrays to
contain the original parameters. The arrays together with their
cardinalities are the ones passed to the functions. The reason
for this convention is to cope with the limitation of QuickBASIC
functions which do not allow a variable number of parameters to
be passed.

79

A FORTRAN's input/output list has its own inherent
difficulty in translation. First, there is the DO-implied list
which uses an implied loop to address some or all elements of an
array. Second, an array name can be specified in a list by
itself, whereby all the elements are accessed in a column major
order strategy. Both of these cases were handled using
QuickBASIC's FOR..NEXT statement. For the FORTRAN statements

DIMENSION A(10), B(10,10)
WRITE (6) ((B(I,J), A, I=l, i0), A, J=l, i0)

the corresponding QuickBASIC code will be:

DIM SHARED A(10)
DIM SHARED B(10,10)
DIM SHARED VAR0001 AS INTEGER

FOR J = 1 TO i0
FOR I = 1 TO i0

WRITE #6, B(I,J)
FOR VAR0001 = 1 TO i0

WRITE #6, A(VAR0001)
NEXT VAR0001

NEXT I
FOR VAR0001 = 1 TO i0

WRITE #6, A(VAR0001)
NEXT VAR0001

NEXT J

where VAR0001 is an integer variable created by the system.

Compromises were made in mapping some constructs of FORTRAN
to QuickBASIC. First, only unformatted I/O constructs of FORTRAN
are translated to QuickBASIC. This implies that formatted I/O
constructs of the source program are first converted to
unformatted ones, and then translated to the target language.
This led to the ignorance of the occurrences of FORMAT statements
in FORTRAN programs. Second, difficulty was encountered in
translating FORTRAN's EQUIVALENCE statement. Direct sharing of
memory locations in the same QuickBASIC module is not possible.
As a compromise, only scalar variables of the same type were
allowed to be parameters of this statement. Variables of
different types are ignored and warnings are issued. The
technique utilized was to assign the new value acquired by one of
the variables in the equivalence class to all the other variables
in the same class. Lastly, the mechanism of FORTRAN to pass
subprogram names as actual parameters to subprograms is
unsupported by the translator. Problems were encountered in the
effort to translate this construct of FORTRAN to QuickBASIC since
code addresses cannot be passed as parameters to subprograms in
the latter.

80

The Translation System

The translation system consists of two major modules: the
first pass which transforms the FORTRAN source code into an
intermediate form describable using the Backus-Naur Form (BNF)
notation; and the second pass which converts the intermediate
form into the QuickBASIC target code.

The First Pass

This module facilitates the uniformity of the scanning
process for the different tokens of FORTRAN. A number of
irregularities of the FORTRAN definition led to the design of
this module. First, blanks are not significant in FORTRAN
programs except in Hollerith constants, hence there may or may
not have boundaries between tokens. Another implication of this
is that a single token might have embedded blanks within itself.
These things complicate the lexical analysis process. Below are
three equivalent statements in FORTRAN but are presented
differently.

INTEGERA, B, C, D, E
I N T E G E R A , B , C , D , E

INTEGER A, B, C, D, E

(i)
(2)
(3)

We might have written the statement as in (3), but (i) and (2)
have the same meaning. One task of this module is to convert
every form of a statement into a standard one by deleting all
unnecessary blanks, and correspondingly, unnecessary white spaces
such as tabs, control characters and the like.

Another feature of a FORTRAN statement is that it uses the
6th column of a line to indicate whether or not the current is a
continuation of the previous line. To achieve uniformity, this
module merges multiple line statements into one. It uses a
special character - %, which is not part of the FORTRAN IV
character set, to delimit lines in multiple line statements.
Statement lines (4) and (5) below are converted into (6).

i00 INDEX = INDEX * 2 + INDEX * 3 +
• INDEX * 4

100INDEX=INDEX*2+INDEX*3+%INDEX*4

(4)
(5)
(6)

Other features of this module are: it deletes comment
statements; it marks the end of each FORTRAN statement; and it
ignores statement labels appearing in continuation lines.

The Second Pass

The second pass of the translation system is responsible for
converting the intermediate form created by the first pass into
an equivalent QuickBASIC target code. It is further divided into
the following submodules: the lexical analyzer which recognizes
tokens of FORTRAN from the intermediate form and passes them to
the syntax analyzer; the symbol table manager which initializes

81

and maintains the necessary fixed and variable symbol tables; the
syntax analyzer or the parser which checks for syntax correctness
by parsing the FORTRAN source code based on the BNF description;
and the code generator which produces the desired QuickBASIC
target code. All errors which might occur in the translation
process are reported by the error handling and recovery routine.

Lexical Analysis

The task of a lexical analyzer or a scanner is to recognize
tokens of a language. If such tokens have attributes, i.e.,
values, then they should also be returned by the module. Due to
certain irregular features of FORTRAN, a scanner cannot be
designed in a straightforward manner [4]. Token boundaries in
FORTRAN are not determined by uniform rules. But due to the
transformation done in the first pass, no more boundaries exist
between tokens and they must now be recognized depending on the
context in which they are used. Consider the example below:

ASSIGNi00TOTAL
ASSIGN i00 TO

(v)
TAL (8)

Statement (7) has four tokens as shown in (8), two keywords
(ASSIGN and TO), one label (i00), and one identifier (TAL).

Another difficulty with FORTRAN is that keywords are not
reserved. This means that keywords can also be used as
identifiers, e.g., variable names, procedure names, etc.
Consider the example below.

DO200I=i,100
DO 200 I = 1
DO200I=i.100
DO200I = i.i00

, i00

(9)
(z0)
(zz)
(12)

Statement (9) has seven tokens as shown in (i0), one keyword
(DO), one label (200), one identifier (I), two special characters
("=" and ","), and two numbers (i and i00) . But statement (ii)
has only three tokens, one identifier (DO200I), one special
character ("="), and one number (i.i00). The keyword DO in (9)
is not recognized until the character " " is encountered
Similarly, DO200I is recognized as an identifier when the
character "." is scanned.

An interesting feature of FORTRAN is that aside from the
line number, a statement usually begins with a keyword. The only
exception is the assignment statement which begins with an
identifier. The general approach with the scanner is to
recognize a keyword at the beginning of a statement. If a
keyword is identified, then the rest of the statement is scanned
for an "=". If it is found, then the statement is assumed to be
an assignment statement, otherwise the keyword is accepted. If
an identifier is recognized in the first place, then an
assignment statement is assumed. This is, however, not true for
all cases as illustrated by (9). For the DO keyword to be

82

identified, a " " is scanned instead of an "="

After recognizing the first token of a statement other than
the statement label, a keyword can no longer occur within the
statement except in two cases: in an ASSIGN statement where TO
should follow after a label; and in a typed function statement
where the keyword FUNCTION should follow after any of the type
statements COMPLEX, DOUBLE PRECISION, INTEGER, LOGICAL or REAL.
These cases are handled accordingly.

Since FORTRAN is not context free, it is necessary to
distinguish the different usages of identical symbols. One case
is the distinction between an assignment statement or a statement
function definition, e.g. :

IF(I) = 2 (13)

from the arithmetic and the logical IF statements:

IF(I) 1,2,3 (14)
IF(I) GOTO I (15)

Note that in (13), IF is recognized as an assignment
statement if it was declared to be an array previously, otherwise
it is recognized as a statement function definition.
Additionally, an identifier followed by a "(" is recognized as an
array name if it is in a DIMENSION, COMMON or TYPE statement,
otherwise it is recognized as a function name.

IF in (14) is recognized as an arithmetic IF statement since
the character following the rightmost close parenthesis of the
logical expression is a digit. Similarly, (15) is recognized to
be a logical IF because the character following the rightmost
close parenthesis of the expression is not a digit. The rules
for recognizing a new statement has to be applied for identifying
the tokens in a logical IF statement since a new statement begins
after the IF logical expression.

Numbers and labels are also distinguished from each other
since they can be of the same form, that is, a series of digits.
A series of digits is recognized as a label in the following
cases: if it is the first token of a statement, if it is in any
GOTO statement, if it supersedes a DO keyword, if it comes after
the rightmost close parenthesis of the arithmetic expression in
an arithmetic IF statement, and if it is the second argument of a
READ or WRITE statement. Otherwise, a series of digits is
recognized to be a number.

A finite state automaton was constructed to efficiently
distinguish the different tokens of FORTRAN [2].

83

Symbol Tables and Symbol Table Management

Two fixed and two variable symbol tables are needed for the
translator. The two fixed tables are used for storing QuickBASIC
reserved words, and FORTRAN intrinsic and basic external function
names. On the other hand, one variable symbol table is needed to
keep track of all the identifiers used in the FORTRAN program,
i.e., variable names, array names, procedure names, function
names, block names and labels; and the other is needed to keep
track of open files or devices in the program.

As much as possible, the translator preserves the
identifiers of the source program in the equivalent target code.
However, keywords in QuickBASIC are reserved. Thus, QuickBASIC
keywords utilized as identifiers in a FORTRAN program cannot be
copied directly to the corresponding QuickBASIC target program.
A name generator was constructed to produce a unique identifier
name to be used instead of the reserved word. The said generator
is also utilized by the code generator to create temporary
variable names needed in some translation processes.

Since the translated program is supposed to operate in a
microcomputer, it is imperative to minimize the number of
identifiers in the QuickBASIC program due to limited memory
space. To implement this, the concept of pooling all temporary
variables, depending on the type and structure, i.e. whether
scalar or array, has been employed. One list is maintained for
each of the classification. If a temporary identifier is needed,
then the appropriate list is checked. If one is available, then
it is returned and deleted from the list, otherwise the name
generator is invoked to produce a new name. After a set of
temporary variables have been used in translating a statement or
a group of statements, they are freed and returned to the lists.

The table for FORTRAN built-in functions contains
information for checking the correctness of said functions, i.e.,
the name of the FORTRAN function, the types of arguments, the
number of arguments and the type of the function. In addition,
it keeps track of the corresponding function names in QuickBASIC,
whether built-in or externally supported, which are needed during
the translation process.

One of the variable symbol tables is used to keep track of
all identifiers used in the FORTRAN program. It contains
information such as an identifier's name, type, etc., and various
parameters depending on the kind of the identifier, e.g., in an
array, the number of dimensions and the bounds for each
dimension. The operations needed for this table are to search
for and insert a given name. This table is always consulted
whenever an identifier is encountered in the translation process.
The other variable symbol table is used to record the current
open devices or files in the FORTRAN source program. These are
predefined correspondences between device and file numbers, and
actual devices and filenames.

84

Syntax Analysis and Code Generation

This module is the largest, approximately 60% of the whole
translation system, and the most complicated. It parses and
checks each of the FORTRAN statements in the source program
according to the defined BNF rules. If an error is found, the
error handling and recovery module is invoked. After recovering
from the error, the control is passed back to the syntax analyzer
so that succeeding statements can be processed.

The strategy employed in translating a FORTRAN statement to
QuickBASIC is to first recognize and parse the statement of the
former and check, according to the defined rules, if it can be
translated directly to the latter. If this is feasible, then the
equivalent QuickBASIC statement is constructed immediately and
written to the output file, otherwise, some temporary file is
created where intermediate results are stored. When a FORTRAN
statement is encountered which will complete the translation
process, the generated code stored in the temporary file is
appended to the output file. In this sense, the code generation
module is tied up with syntax analysis. Additionally, there are
some language constructs where transformations have to be done
before actual translation can be performed. It should not be
surprising that there are some FORTRAN statements whose
equivalent QuickBASIC code exceeds twenty statements each.

A good example of postponing code generation until the
logical end of the main program or a subprogram is the
declaration of variables. This is due to two factors. First,
since keywords in QuickBASIC are reserved, new identifiers have
to be created for each of the QuickBASIC keywords appearing in
the FORTRAN source. If the default types of the QuickBASIC
keyword (with respect to the FORTRAN program) and the new
identifier are not the same, then the latter should be explicitly
declared in the QuickBASIC program. Second, there are a number
of circumstances where new variables are created in the process
of translating certain statements of FORTRAN. These new
variables are presumed to be of specific types, hence explicit
declaration is necessary.

To simplify the implementation of the FORTRAN BNF
definition, one logical function was created for each of the BNF
rules. These functions return true if the parsing procedure was
successful, otherwise they return false. Two options are
provided for translating FORTRAN programs - one for specifying a
main program optionally followed by subprograms, and another for
subprograms only. This resulted in two starting BNF rules
depending on the option chosen.

Error Handling and Recovery

The tasks of this module are to communicate appropriate
messages regarding the errors encountered during the translation
process and to ignore the statements where the disorders
occurred. The messages that can be relayed by the translator are

85

classified into two main groups: system errors, and translation
errors and warnings. The first group of errors are considered
severe and causes the system to cease execution. These usually
involve hardware dependent factors such as memory space and disk
space. The second group of errors are those arising from the
lexical, syntactic and semantic analyses performed by the system
on the source program. Warning messages are given for those
language constructs of the FORTRAN program which are either
supported differently or not translated by the system, while
error messages are for actual violations of the FORTRAN
definition.

User Interface

An optional user interface module is provided for the Disk
Operating System. The purpose of this is to facilitate file
handling and maintenance, editing, the translation process
itself, the specification of options, and the compilation of the
QuickBASIC programs together the linkage of appropriate
libraries.

C o n c l u s i o n s

The size of the translation system is about 210 K in the DOS
environment. This leaves approximately 400 K for temporary
storage and processing. The translation speed is acceptable -
for a 5000 line FORTRAN program without comments, it averaged 41
lines per second on a microcomputer with an Intel 80286
processor. The first pass of the translation takes approximately
16% of the total processing time. It is expected that the
performance of the translator will improve if it will be
converted to a one pass system. On the average, the resulting
QuickBASIC programs are 76% larger than the FORTRAN programs.

Several FORTRAN routines, from numerical algorithms to
engineering applications, have already been converted without
modifications to QuickBASIC using the translator system. The
resulting QuickBASIC programs have been compiled directly and
linked with the necessary libraries. The results of executing
these programs confirmed the correctness of the translation
process.

The technology of automatic high level programming language
translators had emerged in software engineering. This work,
together with other translators such as - Pascal To C [i],
FORTRAN To Pascal [5], Small Euclid To Pascal [9], and Sail To C
[6], are some of the indications that the automatic translation
of one high level programming language to another is a viable
solution to the problem of program conversion.

The contingencies to handle FORTRAN 77 constructs have
already been defined in [2]. The structures of the latter
FORTRAN definition together with the structuring of source
languages's control statements are planned to be incorporated in
the next version of the system.

86

References

i. BOTHE, K., B. HOHBERG, CH. HORN, and O. WIKARSKI (1989), A
Portable High-Speed Pascal To C Translator, Sigplan Notices,
Vol. 24, No. 9, pp. 60-65.

. CARINGAL, R. B. (1990), A High Level Programming Language
Translator From FORTRAN IV To QuickBASIC, Masters Thesis,
Asian Institute of Technology, Bangkok, Thailand.

. EINARSSON, B. and W.M. GENTLEMAN (1984), Mixed Language
Programming, Software - Practices and Experience, Vol. 14(4),
pp. 383-395.

. FELDMAN, S.I. (1979), Implementation of a Portable Fortran 77
Compiler Using Modern Tools, ACM SIGPLAN Notices, Vol. 14,
No. 8, pp. 98-106.

. FREAK, R.A. (1981), A Fortran to Pascal Translator, Software
- Practices and Experience, Vol. ii, pp. 717-732.

. LEMKIN. P.F. (1987), PSAIL - A Portable SAIL to C Language
Compiler, Image Processing Section Laboratory of
Mathematical Biology, DCBDC National Cancer Institute.

. MacLENNAN, B.J. (1983), Principles of Programming Languages,
Holt, Rinehart and Winston.

. MICRO3OFTo (1988), BASIC Language Reference,
Corporation.

Microsoft

. PINTELAS, P.E., K.P. VENTOURIS and M.D. PAPASSIMAKOPOULOU
(1989), A Translator from Small Euclid To Pascal, Sigplan
Notices, Vol. 24, No. 5, pp. 93-101.

i0. SLAPE, J.K. and P.J.L. WALLIS (1983), Conversion of Fortran
to ADA using an Intermediate Tree Representation, The
Computer Journal, Vol. 26, No. 4, pp. 344-353.

ii. USASI Sectional Committee X3. (1964), FORTRAN vs. Basic
FORTRAN, Communications of the ACM, Vol. 7, No. 10, pp.
591-625.

12. USASI Sectional Committee X3. (1969), Clarification of
FORTRAN Standards - Initial Progress, Communications of the
ACM, Vol. 12, No. 5, pp. 289-294.

13. USASI Sectional Committee X3. (1971), Clarification of
FORTRAN Standards - Second Report, Communications of the
ACM, Vol. 14, No. i0, pp. 628-642.

14. VAN DER LAAN, C.G. (1982), Programming In Algol 68 (as a
host) and the Usage of FORTRAN (program libraries), The
Relationship Between Numerical Computation and Programming
Languages, North-Holland Publishing Company, IFIP.

87

