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Abstract
The paper presents two novel results:

A theory of argumentation which can handle different kinds of conflicts
between arguments

Based on the newly developed theory of argumentation we define a
simple framework for semantics of extended logic programming with explicit
negation generalizing in a natural way the major approaches to semantics of
normal logic programming.

1. Introduction

In general, a logic program can be viewed as a schema for forming arguments
which may possibly support conflicting conclusions. The semantics of a logic
program is determined by the way the conflicts between its arguments are
resolved. In normal logic programming, there is only one kind of conflict caused
by the negation as failure assumptions. The nature of this kind of conflict has
been analysed deeply in the literature [ABW,CI,DI,DZ,DLI,EK,GRS,GLI,II,I2,
KKT,KM1, KM2,L,P1], and is well-understood today.

Logic programming has been extended by Gelfond and Lifschitz [GL2], Kowalski
and Sadri [KS] to allow reasoning with explicit negation. The introduction of a
new kind of negation brings with it a new kind of conflict between arguments.
Hence, to understand the nature of the semantics of extended logic programming,
it is necessary to understand the "interaction” between the two kinds of conflicts
between arguments. Though much work have been done lately to study the
semantics of extended logic programming [ADP,AP,DR,GLZ,GS,KS,I,PAA,P2],
no satisfactory analysis on the "interaction" between two kinds of conflicts in
extended logic programming has been given. As the result, the nature of
semantics of extended logic programming is still not well-understood today.
Hence, the goal of this paper is to clarify this problem.
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To have an intuitive understanding of the nature of the conflicts in extended logic
programming, let us take a look at a concrete example.

Example 1 (Why Tweety does not fly) Imagine the following argumentation
between two persons P1 and P2 about Tweety.

Pl:

Tweety can not fly since Tweety is a penguin and penguins can not fly

P2 does not agree with this conclusion. He tries to attack the argument of P1 via
Reductio Ad Absurdum, i.e. by pointing out that accepting the argument of Pl
can lead to a contradiction. P2 introduces his argument skillfully in the following

dialog:

P2:

Pl:
P2:
Pl1:

P2:

Well, I agree with you that Tweety can not fly. But this doesn’t change
the fact that Tweety is a bird. Doesn’t it ?

You are right. Tweety is still a bird though it can’t fly.
And you also agree with me that birds can fly. Don’t you ?
Of course.

Well, so Tweety can fly too. Can’t it ?

It seems that P2 has been successful in his attempt to reject the conclusion of P1
that Tweety can not fly. But wait ! P1 continues as follows:

Pl

You "forget" that though most birds do fly, some of them may not. And
penguins are among the exceptions. We all know it. Don’t we ?

According to the commonsense principle that specific information overrides more
general one, P1 has defeated P2’s attack. So P1 has successfully defended his
argument. And so, he does convince us all that Tweety indeed can not fly.

Pl and P2’s knowledge about Tweety together with their arguments can be
"encoded" in extended logic programming as follows:

fly(X) «bird(X),not-abg(X)
~fly(X) «penguin(X),not-aby(X)
bird(X) «penguin(X)

abg(X) «penguin(X),not-aby(X)
penguin(Tweety)

P2’s philosophy can be explained as follows: If it can be assumed that Tweety is
a normal penguin just because most penguins are normal then it can also be
assumed that Tweety is a normal bird since most birds are normal, too. But since
assuming both leads to a contradiction none should be assumed. And so one
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should not conclude that Tweety can not fly.

P1’s argument is based on the assumption that Tweety is a normal penguin. So
it can be characterized by the set {not-aby(Tweety)}. P2’s argument is based on
the asumption not-aby(Tweety). So it is characterized by the set {not-
abg(Tweety)}. Let Al = {not-aby(Tweety)}, and A2 = {not-abg(Tweety)}. So A2
represents an Reductio Ad Absurdum attack against Al. Since Al implies
abg(Tweety), Al represents an attack against the basis of A2. We say that Al
represents a (ground) attack against A2.

The principle of specific information overriding more general one dictates that the
ground attack from Al against A2 is stronger than the Reductio Ad Absurdum
attack from A2 against Al. So the intended semantics of the above extended logic
program should conclude that 4 fly(Tweety). B

The conclusion from the above example is that there are two different ways to
attack an argument in extended logic programming and an attack on a negation-
as-failure assumption of an argument is stronger than an attack via Reductio Ad
Absurdum.

The above example suggests that a natural and intuitive way to study the
semantics of extended logic programming is within the framework of
argumentation. In fact, this is not totally new as it has been showed in
[D1,KKT,D2,KM1,KM2] that argumentation provides a simple and natural
framework for studying the semantics of normal logic programming.

Roughly, the idea of argumentational reasoning is that a statement is believable
if it can be argued successfully against attacking arguments. In other words,
whether or not a rational agent believes in a statement depends on whether or not
the argument supporting this statement can be successfully defended against the
counterarguments. The goal of this paper is to show how this simple idea can be
applied to provide a simple framework for the semantics of extended logic
programming. We do so by developing an argumentation theory which can handle
more than one kind of conflicts between arguments and then applying this theory
to define the semantics of extended logic programming.

The paper is organized as follows: In chapter 2, we analyze the nature of conflicts
between arguments and give a formal definitions of Reductio Ad Absurdum
attacks as well as of ground attacks. Then in chapter three, we define the
semantics of argumentation frameworks which allow two diffewrent kinds of
attacks between arguments. We show that applying the newly developed theory
of argumenation provides a simple and intuitive semantics for extended logic
programming generalizing many major approaches to semantics of normal logic
programming.
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2. Extended Logic Programming as Argumentation Frameworks

An objective literal is either an atom A or the explicit negation —~A of an atom
A. A subjective literal is an expression of the form not-L where L is an objective
literal. An extended program clause C is of the form

Lo <L, Lppnot-Lipyy,.sn0t-Lip,

where L,’s are objective literals. L, is said to be the head of C and denoted by
head(C).

An extended logic program is a finite set of extended program clauses.

Let K be an objective literal. A (defeasible) proof of K can be viewed as a
sequence C,,C,,....C, of ground instances of clauses in P with head(C,) = K such
that for each i, 0<i<n, for each objective literal L in the body of C, there is a j<i
such that L = head(C)).

The subjective literals appearing in a proof are the assumptions on which the
proof is based. It is clear that the "acceptance" of a proof depends on the
"acceptance" of the assumptions on which it is based. Hence arguing for an
conclusion K means arguing for the assumptions on which some proof of K is
based. So it is intuitive to view the set of assumptions on which a proof of K is
based as an argument for K.

Definition 1 1) Let P be an extended logic program. An argument wrt P is
defined as a set of ground subjective literals.

2) An objective literal L is supported by an argument A if there exists a
proof of L whose assumptions are contained in A. W

Definition 2 1) We say that an argument A is selfdefeating if there is an
objective literal L such that A supports both L and L.
2) An argument is said to be sound if it is not selfdefeating. M

We give now a precise definition of attacks via Reductio Ad Absurdum.

Definition 3 Let A A’ be two sound arguments. Then we say that A’ represents
a Reductio Ad Absurdum - attack (or RAA-attack for short) against A if A U A’
is selfdefeating. W

Another way to attack an argument is to attack its basis.

Definition 4 Let A,A’ be sound arguments. Then A’ represents a ground attack
against A if there is an assumption not-L in A such that L is supported by A’.
m

To illustrate the interactions between the two kinds of conflicts between



arguments, let us continue to consider the well-known example about Tweety.
Example 2 Let P be the program introduced in example 1. The semantics of P
is determined by the conflicts between the arguments A0 = &, Al = {not-
aby(Tweety)}, A2 = {not-aby(Tweety)}. A2 is clearly an RAA-attack against Al.
Since Al supports abg(Tweety), Al is an groundattack against A2. ®

Given an extended logic program P, the set of all sound arguments wrt Pis
denoted by AR,.

Definition 5 Let P be an extended logic program. The semantics of P is defined
by the semantics of the following argumentation framework

AF(P) = <AR,, attacks, g-attacks>
where following conditions are satisfied:
attacks = RAA-attacks U g-attacks
RAA-attacks(A’,A) iff A’ represents a RAA-attack against A

g-attacks(A’,A) iff A’ represents a ground attack against A
=

The semantics of argumentation frameworks is given in the following chapter.

3. Argummentation Frameworks

An argumentation framework is defined as a triple of a set of arguments, and two
binary relations representing the attack-relationship between arguments.

Definition 6 An argumentation framework is a triple
AF = <AR, attacks, g-attacks>

where AR is a set of arguments, and attacks, g-attacks are binary relations on AR
such that g-attacks C attack. W

An argumentation framework is normal if attacks = g-attacks.

For two arguments A,B, the meaning of attacks(A,B) is that A represents an
attack against B. g-attacks(A,B) means that A represents a ground attack against
B. The purpose of distinguishing between (normal) attacks and ground attacks is
to classify different kinds of attacks among which the ground attacks are the most
"lethal” ones.



A theory of normal argumentation and its relations to normal logic programming
is given in [D2]. In the following, we generalize this theory for general
argumentation frameworks with more than one kind of conflicts between

arguments.

Remark From now on, if not explicitely mentioned otherwise, we always refer
to an arbitrary but fixed argumentation framework AF = <ARattacks,g-attacks>.
Further, we say that A attacks (resp. g-attacks) B if attacks(A,B) (resp. g-
attacks(A,B)) holds. Similarly, we say that a set S of arguments attacks (resp. g-
attacks) B if B is attacked (resp. g-attacked) by an argument in S.

Definition 7 A set S of arguments is said to be conflict-free if no two elements
of it attack each other, i.e. there are no two arguments A,B in S such that (A,B)
e attacks or (B,A) € attacks. W

For a rational agent G, an argument A is acceptable if G can defend A (from
within his world) against all attacks on A. Further, it is reasonable to assume that
a rational agent accepts an argument only if it is acceptable. That means that the
set of all arguments accepted by a rational agent is a set of arguments which can
defend itself against all attacks on it. This leads to the following definition of an
admissible (for a rational agent) set of arguments.

Definition 8 (/) An argument A is acceptable wrt a set S of arguments if for
each argument B: if B attacks A then B is g-attacked by some A’ € §.

(2) A conflict-free set of arguments S is admissible if each argument in
S is acceptable wrt S. W

The (credoulous) semantics of an argumentation framework is defined by the
notion of preferred extension.

Definition 9 A preferred extension of an argumentation framework AF is a
maximal (wrt set inclusion) admissible set of arguments. ll

Example 3 (Continuation of examples 1,2) Let P be the program given in
example 1. Let A0 = &, Al = {not-aby(Tweety)} and A2 = {not-abg(Tweety)}.
Then AR, = {A0,A1,A2}, and RAA-attacks = {(A1,A2),(A2,Al}, and g-attacks
= {(A1,A2)}. It is not difficult to see that &, {AO}, {Al}, and {AO,Al} are the
only admissible sets of arguments in this example. Thus {AO,Al} is the unique
preferred extension. W

Example 4 P: a <not-p
-a « not-q
b « not-r

Let AF(P) = <AR,,attacks,g-attacks>. It is not difficult to see that g-attacks = ©.
From that, we can conclude that preferred extensions of AF(P) contain only those
arguments which are not attacked by any other arguments. There are only two



such arguments in AF(P): A0 = @ and Al = {not-r}. It follows that AF(P) has
exactly one preferred extension which is {A0,Al}. Thus we can conclude b from
P but neither a nor -a. W

Lemma 1 (Fundamental lemma) Let S be an admissible set of arguments and
A,A’ be arguments which are acceptable wrt S. Then

1) S =S u {A} is admissible, and

2) A’ is acceptable wrt S°. W

The following theorem shows that preferred extension semantics is always defined
for argumentation frameworks.

Theorem 2 (1) The set of all admissible sets of arguments form a complete

partial order wrt set inclusion.
(2) For each admissible set S of arguments, there exists an preferred

extension Esuchthat ScE. W

Since there can be no attacks against the empty set & of arguments, it is clear
that the empty set & of arguments is always admissible. Thus, from the above

theorem it follows immediately

Corollary 3 Every argumentation framework possesses at least one preferred
extension. W

It is not difficult to see that the semantics defined by the preferred extension of
AF(P) for a normal logic program P coincides with the preferred extension
semantics defined directly for P in [D1].

Stable Semantics for Argumentation

The following notion of stable extension represents the counterpart of the answer
set semantics [GL2] of extended logic programs.

Definition 10 A conflict-free set of arguments S is a stable extension if S g-
attacks each argument which does not belong to S. B

The relations between stable extension and preferred extension are clarified in the
following lemma.

Lemma 4 Every stable extension is a preferred extension, but not vice versa.
4

That the stable extensions capture the answer set semantics of an extended logic
program P is showed in the following theorem.



Theorem 5 Let P be an extended logic program. Then S is an answer set of P
iff there is a stable extension E of AF(P) such that

S = { L | L is supported by an argument from E } L]

Fixpoint Semantics and Grounded (Skeptical) Semantics

We show in this chapter that argumentation can be characterized by a fixpoint
theory which also provides an elegant way to introduce grounded (skeptical)
semantics.

Definition 11 The characteristic function of an argumentation framework AF,
denoted by F,p, is defined as follows:

F, 2°% — 2%

FueS)={AlAis acceptable wrt S }
=

Remark As we always refer to an arbitrary but fixed argumentation framework
AF, we often write F shortly for F,p.

Lemma 6 A conflict-free set S of arguments is admissible iff S < F(S).

Proof The lemma follows immediately from the property "If S is conflict-free
then F(S) is also conflict-free". So we need only to prove this property. Assume
that there are A A’ in F(S) such that A attacks A’. Thus, there exists B in S such
that B g-attacks A. Hence there is B’ in S such that B’ g-attacks B. Contradiction
1! So F(S) is conflict free. W

It is easy to see that if an argument A is acceptable wrt S then A is also
acceptable wrt any superset of S. Thus, it follows immediately that

Lemma 7 F,; is monotonic (wrt set inclusion). W

The skeptical semantic of argumentation frameworks is defined by the notion of
grounded extension introduced in the following.

Definition 12 The grounded extension of an argumentation framework AF,
denoted by GE,, is the least fixed point of Fr. i3

Example 5 (Continuation of the Tweety example) First let P be the program
given in example 1 (AF(P) is given in example 3). Then F(D) = { A0}, and F(D)
= F(@) = {A0}. Note that the grounded extension of AF(P) is different to its
preferred extension. It is interesting to compare the grounded extension of AF(P)
with the grounded extension of AF(P") where P’ is obtained from P by replacing



the clause abg(X) «penguin(X),not-aby(X) by the clause aby(X) « penguin(X)
That means P’ is the following program:

b fly(X) «bird(X),not-abg(X)
-fly(X) «penguin(X),not-aby(X)
bird(X) « penguin(X)
abg(X) « penguin(X)
penguin(Tweety)

Let F’ denote the characteristic function of AF(P’). Then we have F,(J) = { A0},
and F,.2(@) = F,+(D) = {A0,A1}. Hence the grounded extension of AF(P’) is
also a preferred one. W

Example 6 (Continuation of exampl 4) P be the program given in example 4.
From the fact that g-attacks = @, it is not difficult to see that F(Q)={A0,Al},
and F(D) = FA(D) where A0 = @ and Al = {not-r}. Thus the grounded extension
of AF(P) is also a preferred one, but not a stable one. W

The following theorem shows that for a normal logic program P, the well-founded
semantics [GRS] of P "coincides" with the grounded extension of AF(P).

Theorem 8 Let P be a normal logic program. Let P* be the program obtained
from P by adding to P clauses of the form —=p(x,,..,X,) €not-p(X,,..,X,) for each
predicate symbol p. Let GE be the grounded extension of AF(P*). Then a
consistent set of objective literals W is the well-founded model of P iff

W = { L | L is supported by an argument from GE }
=

The following notion of complete extension provides the link between preferred
extensions (credulous semantics), and grounded extension (skeptical semantics).

Definition 13 An admissible set of arguments S is called a complete extension
iff each argument which is acceptable wrt S, belongs to S. W

Intuitively, the notion of complete extensions captures the kind of rational agents
who believes in every thing he can defend.

Lemma 9 A conflict-free set of arguments E is a complete extension iff E =
F.«(E). |

The relations between preferred extensions, grounded extensions and complete
extensions is given in the following theorem.
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Theorem 10 (1) Each preferred extension is a complete extension, but not vice

versa.
(2) The grounded extension is the least (wrt set inclusion) complete

extension.
(3) The complete extensions form a complete semilattice’ wrt set

inclusion.

Proof (1) It is obvious from the fixpoint definition of complete extensions that
every preferred extension is a complete extension. (2) Obvious

(3) Let SE be a nonempty set of complete extensions. Let LB = { S | S is
admissible and S c E for each E in SE }. It is clear that GE € LB. So LB is not
empty. Let S>=uU{ S1Se LB}. It is clear that S’ is admissible, i.e. S* < F(S’).
Let E = lub(F(S")) for ordinal i. Then it is clear that E is a complete extension
and E € LB. Thus E = S’. So E is the glb of SE. B

In general, F,; is not continuous, but if the argumentation framework is finitary
then it is.

Definition 14 An argumentation framework AF = <AR ,attacks,g-attacks> is
finitary iff for each argument A, A is attacked by only finitely many number of
arguments in AR. W

Lemma 11 If AF is finitary then F, is ®-continuous.

Proof LetS,< ... © S, < .. be an increasing sequence of sets of arguments, and
let S=S, U ..uUS, U ..Let A e F(S). Since there are only finitely many
arguments which attack A, there exists a number m s.t. A € F,«(S,). Therefore,
Fue(S) = Foe(Sp) U .L Fp(Sp v ...

We want to conclude this chapter with one more example. Let consider the
knowledge base:

Most US presidents serve out their full terms, except those who are
impeached by the congress.

Most quakers are pacifists.
Most republicans are not pacifists.

Nixon is an impeached US president who is also both a quaker and a
republican.

This can be encoded by the following program:

! A partial order (S,<) is a complete semilattice iff
each nonempty subset of S has a glb and each increasing
sequence of 8 has a lub.



P: serve-full-term(X) <« US-president(X), not-AR,(X)
—serve-full-term(X) « impeached-US-president(X)
Ab,(X) « impeached-US-president(X)
US-president(X) « impeached-US-president(X)

pacifist(X) < quaker(X), not-AR(X)
=pacifist(X) < republican(X), not-Af(X)

impeached-US-president(Nixon) «
republican(Nixon) «
quaker(Nixon) ¢«

For there are no ground attacks against the arguments {not-Ab,) and {not-Ab,},
and these two arguments attack each other, none of them could belong to any
admissible scenario. Hence, it is easy to see that the only preferred extension of
AF(P) is {J} which is also the grounded extension. So we can conclude that
Nixon does not serve out his term. But nothing about the pacifistness of Nixon
can be concluded.

Coherent Argumentation Frameworks

Now, we want to give a condition for the coincidence between stable extensions
and preferred extensions. In general, the existence of a preferred extension which
is not stable indicates the existence of some anomalies in the corresponding
argumentation framework, e.g. the argumentation framework corresponding to the
logic program p < not p has an empty preferred extension which is not stable. Sc
it is interesting to find sufficient conditions to avoid such anomalies.

Definition 15 An argumentation framework AF is coherent iff each preferred
extension of AF is stable. W

It follows directly from the definition that

Property There exists at least one stable extension in a coherent argumentation
framework. H

Now we want to give a sufficient condition for an argumentation framework to
be coherent.

We say that an argument B potentially attacks A if there exists a finite sequence
Ao, A, such that 1) A = Ajand B = A, and 2) n is an odd number and, 3) for
each i, A2i+| attacks A'Zi‘ &l‘ld A’Zi g"attacks A2i-]'

An argument B indirectly defends A if there exists a finite sequence A,,..,A, such
that 1) A = A, and B = A, and 2) n is an even number and, 3) for each i, A,
attacks A,;, and A,, g-attacks A, ;.
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An argument B is said to be controversial wrt A if B potentially attacks A and
indirectly defends A, at the same time. An argument is controversial if it is
controversial wrt some argument A.

Definition 16 An argumentation framework is uncontroversial if there exists no
controversial argument. H

The following theorem is proved in [D2]

Theorem 12 Normal uncontroversial argumentation frameworks are coherent.
2]

Now we want to introduce the class of seminormal argumentation frameworks
which can be "reduced" to a normal one.

Definition 17 An argumentation framework AF is seminormal if for each (AgA))
€ attacks, either (Ay,A,) € g-attacks or (A,,Ay) € g-attacks holds. W

It is clear that each normal argumentation framework is seminormal but not vice
versa.

The intuition behind the seminormality is that though there are two kinds of
attacks in a seminormal argumentation framework, the semantics of it is
determined by the ground attacks. This is demonstrated in the following.

Each seminormal argumentation framework AF = (AR,attacks,g-attacks) can be
transformed into a normal one N(AF) = (AR’ attacks’,g-attacks’) with AR’ = AR,
and attacks’ = g-attacks’ = g-attacks.

Lemma 13 Let AF be a seminormal argumentation framework. Then a set of
arguments S is admissible in AF if and only if it is admissible in N(AF).

Proof "=>" Obvious

"<«=" Let S be an admissible set of arguments in N(AF). Let A be an attack on
S. Let B € S s.t. (A,B) € attacks. If (A,B) € g-attacks then from the admissibility
of S in N(AF), it is clear that S g-attacks A. If (A,B) € g-attacks then from the
seminormality of AF, it follows that (B,A) € g-attacks. Hence S g-attacks A.
qed. B

It follows immediately
Theorem 14 A seminormal AF is coherent iff N(AF) is coherent. W

An extended logic program P is called seminormal (resp. uncontroversial) if its
argumentation framework AF(P) is seminormal (resp. uncontroversial).

It follows immediately that for seminormal and uncontroversial logic programs,



preferred semantics and stable semantics coincide.

Corollary 15 Let P be an arbitrary seminormal and uncontroversial logic
program. Then AF(P) is coherent. W

For each extended logic program P, let P* denote the normal logic program
obtained by replacing each objective literal —p(t,,...,t;) by the positive literal
p*(t,....,t,) where p* is a new predicate symbol introdued into the language for
each predicate symbol p in P. It follows then immediately from [K2,D4]

Corollary 16 A seminormal extended logic program P is coherent iff P* is call-
consistent. W

Conclusions

We have pointed out that there are two kinds of conflicts between arguments in
an extended logic program. Then we have generalized the theory of normal
argumentation from [D2] to handle this case. Our theory provides a simple and
intuitive semantics for extended logic programs generalizing many existing
approaches. Recently, also inspired by [D2], Bondarenko, Toni and Kowalski
[BTK] have developed a very interesting assumption-based framework for
nonmonotonic reasoning and logic programming where a deep analysis of the
different kinds of attacks is also given. Though different, our works and that of
Bondarenko et all complement each other, and together they provide the first deep
insights into the nature of argumentation and its applications in logic
programming and nonmonotonic reasoning.

Lately, based on the theory of admissible scenaria [D1], Alfere et all [ADP] have
introduced another framework for semantics of explicit negation wrt the so-called
coherence principle where it is required that if an negative objective literal —L is
supported then not-L must be accepted. As we don’t "enforce" this principle in
this paper, it is not clear to us how these approaches are related. We plan to
explore the relationship between them in the future.
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