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Several systems of semantics have been proposed for structured argumentation with 
priorities. As the proposed semantics often sanction contradictory conclusions (even for 
skeptical reasoners), there is a fundamental need for guidelines for understanding and 
evaluating them, especially their conceptual foundation and relationship.
In this paper, we present an axiomatic analysis of the semantics of structured defeasible 
argumentation both with and without preferences by introducing a class of ordinary attack 
relations satisfying a set of simple and intuitive properties. We show that there exists a 
“normal form” for ordinary attack relations in the sense that stable extensions wrt any 
ordinary attack relation are stable extensions wrt the normal attack relations.
We relate the ordinary semantics to other approaches, especially to the ASPIC+ framework 
and the prioritized approaches in logic programming.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Prioritized defeasible reasoning has been studied extensively [35,34,8,15,44,40,10,26,24,43]. Distinct semantics are pro-
posed that could give different (even contradictory) answers to the same query as the following example illustrates.

Example 1.1. Consider a knowledge base K (adapted from [10,11]), consisting of three defeasible rules

d1 : Dean ⇒ Professor d2 : Professor ⇒ Teach d3 : Administrator ⇒ ¬Teach

and two strict rules

r : Dean → Administrator r′ : ¬Administrator → ¬Dean

with d1 ≺ d3 ≺ d2
1 and di � di , i = 1..3.

Suppose we know some Dean. The question is whether the dean teaches.2

Proposed semantics in literature deal with this example differently.
An influential and important approach to structured argumentation is the ASPIC+ framework. Modgil and Prakken [34]

proposed four attack relations based on the last- or weakest-link principles coupled with the elitist- or democratic-orderings

E-mail address: dung.phanminh@gmail.com.
1 d ≺ d′ means that d is less preferred than d′ .
2 The relevant arguments concerning this question are given in Figs. 3, 4.
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that are arguably the most prominent attack relations proposed until now in the ASPIC+ framework. One of these four attack 
relations, the one based on the weakest link and elitist ordering leads to semantics with respect to which the dean does not 
teach while the other three as well as the non-argument-based approach of Brewka and Eiter [10] lead to conclusion that 
the dean does teach. �

As the proposed approaches to defeasible reasoning with priorities [35,34,8,15,44,40,10,26,24,43] often sanction con-
tradictory conclusions (even for skeptical reasoners) there is a fundamental need for guidelines for understanding and 
evaluating them, especially their conceptual foundation and relationship when a user applies prioritized defeasible reason-
ing in reality.

A key property for evaluating the semantics of structured argumentation is the attack monotonicity. For a quick illustra-
tion of this property imagine you have a lively dancing bird in your garden and you know that it is a penguin.3,4 Suppose 
some neighbour tells you that the bird is most likely a penguin.5 Will it change anything in your beliefs about your bird? Of 
course not. This is an example of the property of irrelevance of redundant defaults stating that adding redundant defaults 
into your knowledge base does not change your beliefs. This simple and natural property follows from the property of attack 
monotonicity. Proposed semantics in literature behave differently wrt these properties.

Example 1.2 (A Sherlock Holmes investigation). Sherlock Holmes is investigating a case involving three persons P1, P2 and S 
together with the dead body of a big man. The case could be represented by the following knowledge base.

1. The knowledge that one of the persons is the murderer is represented by three strict rules:

r1 : Inno(P1), Inno(S) → ¬Inno(P2)
6

r2 : Inno(P2), Inno(S) → ¬Inno(P1)

r3 : Inno(P1), Inno(P2) → ¬Inno(S)

2. S is a small child who cannot kill a big man. This fact is captured in the base of evidence BE = {Inno(S)}.
3. The legal principle that people are considered innocent until proven otherwise could be represented in two ways:

• By three defeasible rules

d1 : ⇒ Inno(P1) d2 : ⇒ Inno(P2) d : ⇒ Inno(S)

• By two defeasible rules

d1 : ⇒ Inno(P1) d2 : ⇒ Inno(P2)

as S is innocent, and hence the defeasible rule d :⇒ Inno(S) is intuitively redundant.
4. After digging around, it becomes clear to Holmes that P1 has a strong motive to kill the victim while there is nothing 

connecting P2 to the dead man. He hence will focus his investigation on P1. This knowledge is represented by a 
preference

d1 ≺ d2

stating that Holmes gives higher priority (in his investigation) to the scenario in which P2 is innocent than to the other 
one.

Let KB1 be the knowledge base containing the strict rules r1, r2, r3, the three defaults d1, d2, d and the fact that S is 
innocent together with the preference d1 ≺ d2.

Further let KB0 be the knowledge base obtained from KB1 by removing defeasible rule d :⇒ Inno(S).
Due to the fact that S is innocent, we expect that default d will have no impact on the belief sets of the knowledge 

base KB1. In other words, both KB1 and KB0 are expected to have identical belief sets, concluding

¬Inno(P1), Inno(P2)

Surprisingly, KB0, KB1 have different belief sets wrt the semantics based on attack relations employing the democratic 
order proposed and studied by Modgil and Prakken in [34] as elaborated below.

For ease of reference, we refer to the attack relations proposed and studied by Modgil and Prakken in [34] as MP-attack 
relations in the rest of this example.

3 In other words, it is an undisputed fact to you that the bird is a penguin. According to Definition 3.3, BE = {penguin}.
4 Remember Mumble, the main penguin character in the animated movie Happy Feet?
5 In other words, you add a defeasible rule ⇒ penguin to your knowledge base.
6 Inno stands for Innocent.
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Fig. 1. Arguments of KB0.

Fig. 2. Extra arguments for KB1.

• Relevant arguments concerning the innocence of P1, P2 wrt KB0 are given in Fig. 1. Due to the preference of d2 over d1, 
N2 attacks A1 but N1 does not attack A2 wrt all four MP-attack relations in the ASPIC+ framework. Therefore N2 also 
attacks N1. The unique stable extension for KB0 thus contains A2, N2. Hence

¬Inno(P1), Inno(P2) are skeptically justified (as expected) for KB0

• There are two new relevant arguments concerning the innocence of P1, P2 wrt KB1 (illustrated in Fig. 2). According to 
the MP-attack relations based on the democratic order, N ′

1 attacks A2. Hence N ′
1 also attacks N2, N ′

2. Therefore there is 
a new stable extension containing A1, N ′

1, N1 justifying:

Inno(P1), ¬Inno(P2), a counter-intuitive set of beliefs

A closer look reveals that MP-semantics based on democratic order behave counter-intuitively because they violate the 
principle of attack monotonicity as follows:

N1 could be obtained from N ′
1 by replacing the defeasible evidence ⇒ Inno(S) by the hard evidence Inno(S). Hence N1

should be “stronger” than N ′
1. Therefore if N ′

1 attacks A2, we expect N1 to also attack A2, which is not the case according 
to the MP-attack relations based on the democratic order in [34].

MP-semantics based on the elitist ordering as well as the approaches of Brewka and Eiter [10] and Delgrande, Schaub, 
Tompits, Wang [15,44] all provide the expected conclusion in this case. �

Brewka, Niemelä and Truszczynski [11] have persuasively argued that the intuition of defeasible reasoning is about 
finding (justified) belief sets that give the most accurate picture of reality assuming the world is as normal as possible (see also Reiter, 
Reiter and Criscuolo [41,42] and Delgrande [14]). Stable belief sets could be viewed as providing such pictures of the reality 
where the beliefs are supported and defended by arguments that are grounded in the undisputed facts about the reality 
and based on the world’s “normal patterns” represented by defeasible rules. The assumption that the world is “as normal as 
possible” is realized by taking into account all possible arguments that could be built based on the given facts and normal 
patterns of the world. The grounding of considered arguments in the undisputed facts ensures that the accepted beliefs are 
grounded in the reality. Therefore the more facts we have about the real world, the more pro and con arguments we have 
about the world and hence the more accurate pictures we have about the reality.

Suppose all beliefs in a stable belief set S of a knowledge base K indeed represent facts about the real world. Therefore 
the updated knowledge base K ′ = K +� obtained by adding the facts in a subset � ⊆ S to K, contains more facts about the 
real world and hence should provide a more accurate picture of the reality. Since S is an accurate picture of the reality and 
K ′ should provide a more accurate picture of the reality then K , it should be intuitive and sensible to expect that S is also 
a belief set of the updated knowledge base K ′ .

We refer to the property stating that expanding the base of undisputed facts and observation of a knowledge base K by 
new facts that belong to a stable belief set S of K results in an updated knowledge base of which S is still a stable belief set 
as the property of credulous cumulativity. The following Example 1.3 shows that credulous cumulativity helps shed useful 
insights into the different semantics of structured argumentation.

Example 1.3. Consider the knowledge base K in Example 1.1 where it is known that Dean holds.
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According to the MP-last link and democratic ordering semantics,7 {D, A, P , T }8 is the unique stable belief set of K while 
{D, A, P , ¬T } is the unique stable belief set of K according to the MP-weakest link and elitist ordering.

Suppose that we also know that the dean is a professor and updating the knowledge base with this fact results in 
K ′ = K +{P }. According to the property of credulous cumulativity, {D, A, P , T } (resp. {D, A, P , ¬T }) should be a stable belief 
set of K ′ wrt the MP-last link and democratic ordering semantics (resp. MP-weakest link and elitist ordering semantics). As 
we will see later, {D, A, P , T } is indeed a stable belief set of K ′ wrt the MP-last link and democratic ordering semantics 
while {D, A, P , ¬T } is not a stable belief set of K ′ wrt MP-weakest link and elitist ordering.

We will show in section 7.4 that credulous cumulativity is satisfied wrt MP-semantics (as studied in [34]) based on 
democratic ordering and also the non-argument-based approach of Brewka and Eiter while it is not satisfied by the MP-
semantics based on the elitist ordering. �

Rule preferences have been studied extensively in logic programming [8,10,15], which is arguably the conceptually closest 
framework to structured argumentation. As the intuition underlining the credulous cumulativity property is conceptually not 
specifically bound to argument-based approaches, it is natural to ask whether this property is also satisfied by the semantics 
of logic programming with and without rule preferences. In sections 7.1, 7.2, 7.3 we show that credulous cumulativity is 
indeed embraced, although implicitly, by the two most well-known and well-studied approaches to preference handling in 
logic programming: the approach advocated by Delgrande, Schaub, Tompits, Wang and others [15,44] where preferences are 
viewed as a prescription of the application order of rules and the Brewka and Eiter approach [10], which is based on two 
principles referred to as BE-principles that preference semantics should follow. We study the relation between structured 
argumentation and logic programming with rule preferences in two different directions: In sections 7.1, 7.2, we demonstrate 
that the conceptual ideas and principles underlining the logic programming approaches could be naturally incorporated into 
our technical framework of structured argumentation. In the other direction, we show directly within the technical contexts 
of logic programming with rule preferences (section 7.3) that the credulous cumulativity property is satisfied.

There are distinct approaches to study the semantics of rule preferences. Some are based on specificity while others 
could be based on social values, laws or just common customs [6,18,15,11,10]. Though the underlining intuitions for the 
introduction of rule preferences could be different, they all share a basic and natural interpretation of the preference of a 
defeasible rule d over another rule d′ , that in a situation when each of rules d, d′ is applicable (i.e. the premises of both 
rules follow from the factual evidence and the strict rules in the knowledge base), but both could not be applied together, 
then d should be applied. We adopt this basic and natural view of rule preference and capture it by the property of effective 
rebuts stating simply that a defeasible argument containing exactly one rule attacks another defeasible single-rule argument 
only if the rule of the former is not less preferred than the one of the latter.

A key contribution of this paper is the introduction and study of a set of properties for analyzing and evaluating the 
semantics of structured argumentation. The properties could be divided into three groups. The first group consists of the 
properties of credulous cumulativity and attack monotonicity together with the property of context-independence. The sec-
ond one consists of two pretty simple properties: one is the property of subargument structure stating that any attack 
against a subargument is also an attack against the entire argument, and the other is the property of attack closure stat-
ing intuitively that attacks are either based on undercuts (and hence preference-independent) or based on contradicting 
arguments (and hence preference-dependent if the preference relation is not empty). These two groups of axioms together 
determine the semantics of knowledge bases without preferences between rules. The semantics of rule preferences are dealt 
with by two new properties. One is the property of effective rebuts and the other is the link-oriented property expressing 
the intuition that attacks are directed towards identifying “culprit link” within arguments.

There is some tension between the properties of credulous cumulativity and attack monotonicity. When some beliefs 
justified by some arguments in a stable extension are confirmed in the reality and hence put into the base of evidence, 
many arguments may get stronger due to the attack monotonicity property.

If the arguments belonging to the stable extension get stronger, they will strengthen the defense of the stable extension 
and hence there is no counter-effect on the credulous cumulativity property. But if an argument not belonging to the stable 
extension gets stronger, its attacking power also grows. The question is whether such stronger arguments could threaten 
the stability of the stable extension. The answer is “no” if the attack relation assignment satisfies the link-oriented property 
stating intuitively that attacks are directed against “culprit links” within arguments.

If the link-oriented property is not satisfied then the growing power of the strengthened arguments could destroy the 
credulous cumulativity property. For an illustration, consider the arguments (see Figs. 3, 4) wrt knowledge bases K , K ′
in Examples 1.1, 1.3. A1 is a subargument of A2 and A′

2 is obtained from A2 by replacing the subargument A1 with its 
conclusion. It is clear that A3 does not attack A1. Suppose A3 attacks A2.9 Because A3 does not attack A1,10 the link-oriented 
property states that A3 should attack A′

2.

7 We refer to the attack relations and associated semantics studied by Modgil and Prakken in [34] wrt the ASPIC+ framework as MP-attack relations.
8 D, P, T, A stand for Dean, Professor, Teach and Administrator respectively.
9 Hence the attack is directed against some link in A2.

10 Hence the link in A1 is not the “culprit” causing the attack from A3 against A2 implying that the “culprit link” is in A′
2.
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Fig. 3. Arguments of Example 1.1.

Fig. 4. Extra arguments for Example 1.3.

It turns out that wrt the MP-weakest link principle and the elitist ordering, A3 attacks A2 but A3 attacks neither A1
nor A′

2. Therefore the link-oriented property is violated. Not surprisingly, the credulous cumulativity is violated as we have 
discussed in Example 1.3.

The presented properties in this paper could be viewed as an axiom system for evaluating, understanding and compar-
ing existing approaches to structured argumentation systems with preferences. They could also serve as guidelines when 
defining new argumentation systems. The stable semantics of argument systems obeying such axioms is characterized by a 
normal form such that the stable extensions of any argument system obeying the axiom system are also stable extensions 
wrt the normal form which is itself also obeying the axioms.

Another important contribution of this paper is the application of the presented axiom system to analyze and evaluate 
prominent approaches to defeasible reasoning with preferences. We especially analyze and evaluate the four prominent 
attack relations proposed by Modgil and Prakken for the ASPIC+ framework. As illustrated in Example 1.2, the two attack 
relations based on democratic ordering do not satisfy the attack monotonicity which could lead to counter-intuitive conclu-
sions. We will show later in section 7.4 that the other ones based on the elitist ordering do not satisfy consistency postulate 
(and hence the credulous cumulativity property). These insights suggest that a revision of prominent MP-attack relations 
together with much more research may be needed to understand the semantics of ASPIC+. The axiom system studied in this 
paper could play a significant role here.

The paper also makes a relevant contribution in the exploration of the relations between argument-based and non-
argument-based approaches to defeasible reasoning with priorities by showing that the semantics proposed by Delgrande, 
Schaub and Tompits [15] and Brewka and Eiter [10], arguably the most prominent ones in logic programming with priori-
ties, satisfy the credulous cumulativity property. To our knowledge, this is the first time a deep insight between these two 
prominent approaches to reasoning with priorities has been gained. This insight is even more relevant from the point of 
view of a user who is interested in the application of defeasible reasoning with priorities in reality as logic programming 
offers arguably one of the most sophisticated industrial-strength development environments for reasoning systems. Such a 
user may be well-advised to use logic programming as her/his development base (saving very valuable resources for the 
implementation of new systems for reasoning with preferences) if she/he knows that there is a significant convergence be-
tween the argument-based and non-argument-based approaches. Of course more work needs to be done to reach this stage 
of knowledge and we believe that this paper provides a significant first step for further research in this direction.

The paper is organized as follows. We recall quickly the basic notions of abstract argumentation in section 2. In the 
following section, key notions of knowledge bases, rule preferences, arguments and sensible classes of knowledge bases 
are recalled from the literature or introduced. In section 4, we introduce a novel notion of attack relation assignments 
together with the basic properties for knowledge bases with or without rule preferences. We then introduce in section 5
a basic attack relation assignment and show that it represents a “normal form” of attack relation assignments satisfying the 
basic properties and that each stable extension wrt any attack relation assignments satisfying the basic properties is also a 
stable extension wrt the basic attack relation assignment. In section 6, we introduce two new properties for dealing with 
rule preferences. We define a class of ordinary attack relation assignments as those satisfying the basic properties together 
with the new properties for handling rule preferences. We then introduce a normal attack relation assignment and show 
that it represents a “normal-form” of ordinary attack relation assignments in the sense that it is itself an ordinary attack 
relation assignment and each stable extension wrt any ordinary attack relation assignments is also a stable extension wrt 
the normal attack relation assignment. We study in section 7 the relationship between our approach and related approaches 
in the literature. We first show that the semantics, based on the operational reading of the preference relation between rules 
as a specification of their application order [15], could be captured in our framework. We then show that the principles 
underlining Brewka and Eiter’s semantics of prioritized logic programming [10] are also satisfied by the ordinary semantics 
in our framework. We also show that extended logic programming with and without preferences satisfies the property of 



112 P.M. Dung / Artificial Intelligence 231 (2016) 107–150
credulous cumulativity. We end this section by an in depth study of the attack relations of Modgil and Prakken [34]. We 
discuss possible future works and conclude in section 8.

This paper is both a follow-up and an extension of our paper in [17]. It is an extension as it provides an expanded 
presentation and proofs of the properties presented in [17]. It is a follow-up as it offers significant new results, especially 
new properties of attack closure and link-orientation and new theorems showing that the normal attack relation assignment 
represents indeed a normal form of ordinary attack relation assignments and the credulous cumulativity also holds for 
complete extension semantics. We also provide an extensive study of related literature.

2. Preliminaries

An abstract argumentation framework [16] is defined simply as a pair (AR, att) where AR is a set of arguments and 
att ⊆ AR × AR. (A, B) ∈ att means that A attacks B . A set of argument S attacks (or is attacked by) an argument A (or a 
set of arguments R) if some argument in S attacks (or is attacked by) A (or some argument in R); S is conflict-free if it 
does not attack itself. S is conflicting if S is not conflict-free. A set of arguments S defends an argument A if S attacks 
each attack against A. S is admissible if S is conflict-free and defends each argument in it. The semantics of abstract 
argumentation is defined by various notions of extensions. A complete extension is an admissible set of arguments containing 
each argument it defends. A stable extension is a conflict-free set of arguments that attacks every argument not belonging to 
it. It is well-known that stable extensions are complete but not vice versa.

3. Defeasible knowledge bases

We assume a non-empty set L of ground atoms and their classical negations. An atom is also called a positive literal 
while a negative literal is the negation of a positive literal. A set of literals is said to be contradictory if it contains a pair 
a, ¬a of an atom a and its negation ¬a.

Atoms in L are distinguished between domain atoms representing propositions about the concerned domains and non-
domain atoms of the form abd representing the non-applicability of defeasible rules d.11

Following ASPIC+ [34,35], Garcia and Simari [21], Nute [36], Nute and Lewis [37], Loui [31], Pollock [38], Gelfond and 
Son [24] and Vreeswijk [46], we distinguish between strict and defeasible rules.

Definition 3.1.

1. A defeasible rule is of the form

b1, . . . ,bn ⇒ h

where b1, . . . , bn, h are domain literals.
2. A strict rule is of the form

b1, . . . ,bn → h

where
• b1, . . . , bn are domain literals, and
• h could be a domain literal or a non-domain atom of the form abd where d is a defeasible rule.12,13 �

Notation 3.1.

1. For a rule r of the form b1, . . . , bn → / ⇒ h, the set {b1, . . . , bn} (resp. the literal h) is referred to as the body (resp.
head) of r, denoted by bd(r) (resp. hd(r)).

2. For a set of rules R, denote hd(R) = {hd(r) | r ∈ R}. �
Definition 3.2. A rule-based system is defined as a triple

RBS = (RS,RD,�)

where following conditions are satisfied:

1. RS is a set of strict rules.

11 Intuitively, the atom abd represents an “abnormal situation” for defeasible rule d where d should not be applied even if its premises hold. This common 
use of abd is borrowed from logic programming [5].
12 A strict rule b1, . . . , bn → abd states that defeasible rule d must not be applied when b1, . . . , bn hold.
13 We thank an anonymous referee of our ECAI 2014 paper [17] for suggesting the elegant notation abd .
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2. RD is a finite set of defeasible rules.
3. � is a binary preference relation over RD that is transitive.
4. If RS contains a rule of the form bd → abd then d ∈ RD. �

We write d ≺ d′ iff d � d′ and d′ � d.
A base of evidence BE is a set of ground domain literals representing unchallenged observations, facts etc.

Definition 3.3. A knowledge base is a pair (RBS, BE) of a rule-based system RBS = (RS, RD, �) and a base of evidence BE.
A knowledge base is said to be basic14 if its preference relation is empty, i.e. �= ∅. �
For an illustration, consider the knowledge base KB1 in Example 1.2 where {r1, r2, r3} is the set of strict rules, {d1, d2, d}

is the set of defeasible rules, {Inno(S)} is the base of evidence and d1 ≺ d2 represents the preference relation.
Knowledge bases whose preference relations are preorders15 are studied extensively within the ASPIC+ framework [34,

35] while basic knowledge bases are studied in [12].16

Remark 3.1. For convenience, we often write K = (RS, RD, �, BE) instead of K = (RBS, BE) with RBS = (RS, RD, �).

We recall below the key notion of arguments from [46,12,34,35].

Definition 3.4 (Arguments). Let K = (RBS, BE) be a knowledge base. An argument wrt K is defined inductively as follows:

1. For each α ∈ BE, [α] is an argument with conclusion α.17

2. Let r be a rule of the forms α1, . . . , αn → / ⇒ α, n ≥ 0, from RBS. Further suppose that A1, . . . , An are arguments with 
conclusions αi , 1 ≤ i ≤ n, respectively. Then

A = [A1, . . . , An → / ⇒ α] (also denoted by A = [A1, . . . , An, r] )
is an argument with conclusion α and last rule r denoted by cnl(A) and last(A) respectively.

3. Each argument wrt K is obtained by applying the above steps 1, 2 finitely many times. �
For an illustration, consider the arguments in Example 1.3 where A1 = [[D] ⇒ P ] = [[D], d1], A2 = [A1 ⇒ T ] = [A1, d2].
In Example 1.2, the formal representation of A1, N1 are as follows: A1 = [⇒ Inno(P1)] = [d1], N1 = [[Inno(S)], A1 →

¬Inno(P2)] = [[Inno(S)], A1, r1].

Notation 3.2.

1. The set of all arguments wrt a knowledge base K is denoted by ARK . The set of the conclusions of arguments in a set 
S ⊆ ARK is denoted by cnl(S).

2. A strict argument is an argument containing no defeasible rule. An argument is defeasible iff it is not strict. The set of 
defeasible rules appearing in an argument A is denoted by dr(A).
A defeasible argument A is called basic defeasible iff last(A) is defeasible.

3. An argument B is a subargument of an argument A iff B = A or A = [A1, . . . , An, r] and B is a subargument of some Ai .
B is a proper subargument of A if B is a subargument of A and B �= A. �

For any set of literals X ⊆L, Xdom denotes the set of all domain literals in X. Let K = (RBS, BE) with RBS = (RS, RD, �).

Definition 3.5. The closure of a set of literals X ⊆ L wrt the set of strict rules RS, denoted by CNRS(X), is the union of X 
and the set of conclusions of all strict arguments wrt knowledge base (RBS, Xdom).18

X is said to be closed iff X = CNRS(X). X is said to be inconsistent iff its closure CNRS(X) is contradictory.19 X is
consistent iff it is not inconsistent. �
14 Also called preference-free in [17].
15 A preorder is a reflexive and transitive relation [13].
16 Note that preorders are reflexive, i.e. they always contain d � d for any d ∈ RD. Therefore if RD is not empty, the preorder � is not empty. It follows 

that the preference relations of basic knowledge bases with non-empty set of defeasible rules are not preorders.
17 Note that only domain literals are contained in BE. Hence there are no arguments of the form [abd] or [¬abd] wrt K .
18 Xdom acts as a base of evidence. It is straightforward to see that if X contains only domain literals, then CNRS(X) is the set of conclusions of all strict 

arguments wrt (RBS, X). In general, CNRS(X) = X ∪ CNRS(Xdom). Further it is not difficult to see that for any X ⊆ L, CNRS(X) = CNRS(CNRS(X)) (a simple 
proof is given in Appendix K).
19 Note that a set X could be inconsistent but not contradictory. For example, let RS = {a → ¬b}. The set X = {a, b} is inconsistent as its closure CNRS(X) =
{a, b, ¬b} is contradictory though X itself is not contradictory.



114 P.M. Dung / Artificial Intelligence 231 (2016) 107–150
Notation 3.3. We often write CN(X) or CNK (X) for CNRS(X) if there are no possibilities for misunderstanding. We also often 
write X � l (or X �K l) iff l ∈ CN(X). �

In Example 1.2, RS = {r1, r2, r3}. The closure of X = {Inno(P1), Inno(S)} wrt RS is CNRS(X) = {Inno(P1), Inno(S),

¬Inno(P2)}. It is clear that for Y = {Inno(P1), Inno(S), Inno(P2)}, the closure of Y, CNRS(Y ) = {Inno(P1), Inno(S), Inno(P2),

¬Inno(P2)} is contradictory. Therefore Y is inconsistent though Y is not contradictory.

Definition 3.6. Let K = (RS, RD, �, BE) be a knowledge base.

1. K is said to be consistent iff its base of evidence is consistent wrt its set of strict rules.20

2. K is said to be closed under transposition iff for each strict rule of the form b1, . . . , bn → h in K s.t. h is a domain literal, 
all the rules of the forms b1, . . . , bi−1, ¬h, bi+1, . . . , bn → ¬bi , 1 ≤ i ≤ n, also belong to K .

3. K is said to be closed under contraposition iff for each set of domain literals S, each domain literal λ, if S �K λ then for 
each σ ∈ S , S \ {σ } ∪ {¬λ} �K ¬σ .

4. K is said to satisfy the self-contradiction property iff for each minimal inconsistent set of domain literals X ⊆L, for each 
x ∈ X , it holds: X �K ¬x. �

The properties of closure under transposition or contraposition are introduced in [12,39,34] while the self-contradiction 
property together with the following lemma can be found in [19].

Lemma 3.1. If K is closed under transposition or contraposition then K satisfies the self-contradiction property.

Proof. To keep the paper self-contained, we recall the proof in Appendix A. �
The classes of knowledge bases closed under transposition or contraposition or satisfying the self-contradiction property 

are prominent examples of sensible classes of knowledge bases characterized by their rule-based systems.

Definition 3.7 (Sensible classes of knowledge bases). A class K of knowledge bases is said to be sensible iff following conditions 
are satisfied:

1. K is not empty.
2. Every knowledge base in K is consistent.
3. If a knowledge base K = (RBS, BE) belongs to K then all consistent knowledge bases of the form (RBS, BE′) also belong 

to K. �
For an illustration, several sensible classes of knowledge bases are given in the following example.

Example 3.1.

1. The class of all consistent basic knowledge bases closed under transposition is sensible. All three conditions in Defini-
tion 3.7 are obviously satisfied.
Similarly, the class of all consistent knowledge bases satisfying the self-contradiction property is also sensible.

2. Another example is the class K = { (RS, RD, �, BE) | BE is not contradictory } where RS = ∅, �= ∅ and RD = {d0, d1} with 
d0 :⇒ a and d1 :⇒ ¬a.
It is easy to verify that K is sensible. �

We conclude this section with another helpful notation on argument structure.

Notation 3.4.

1. The basic defeasible subarguments of an argument A that are not proper subarguments of other basic defeasible subar-
guments of A play a prominent role in our later exposition and are referred to as maximal basic defeasible subarguments
of A and formally defined by:

mbd(A) =
{∅ if A = [α] for α ∈ BE

{A} if A is basic defeasible
mbd(A1) ∪ . . . ∪ mbd(An) if A = [A1, . . . , An, r] and r is strict

20 I.e. the set CNRS(BE) is not contradictory.
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2. For an argument A, the set of defeasible rules appearing last in A is defined by:

ldr(A) = { last(X) | X ∈ mbd(A) } �
For an illustration, consider again arguments in Figs. 1, 2. It is not difficult to see mbd(A1) = mbd(N1) = {A1}, mbd(N ′

1) ={A1, B} where B = [⇒ Inno(S)]. Therefore ldr(A1) = ldr(N1) = {d1}, ldr(N ′
1) = {d1, d}.

Maximal basic defeasible sub-arguments are special cases of the maximal fallible sub-arguments in [34]. While the later 
are defined for any ASPIC+ knowledge bases, the formers are defined only for the knowledge bases considered in this paper.

4. Basic properties of attack relation assignments

We introduce in this section the basic properties of attack relation assignments.
The semantics of structured defeasible argumentation systems are determined by appropriate attack relations where 

strict arguments are not attacked by any other arguments as they are considered reflecting the reality and hence beyond 
any doubt.

Definition 4.1 (Attack relation assignment). An attack relation assignment att defined for a sensible class K of knowledge bases 
is a function assigning to each knowledge base K ∈ K an attack relation att(K ) ⊆ ARK × ARK such that there is no attack 
against strict arguments, i.e. for each strict argument B ∈ ARK , there is no argument A ∈ ARK such that (A, B) ∈ att(K ).

For convenience, we often say A attacks B wrt att(K) for (A, B) ∈ att(K ). �
Notation 4.1.

• From now on, whenever we refer to a knowledge base K without any specific information, we mean one of the form 
K = (RBS, BE) with RBS = (RS, RD, �).

• For any finite set � of domain literals, define K + � = (RBS, BE ∪ �). �
Definition 4.2 (Belief sets). A set S ⊆ L is said to be a stable (resp. complete) belief set of knowledge base K wrt an attack 
relation assignment att iff att(K ) is defined and there is a stable (resp complete) extension E of (ARK , att(K )) such that 
S = cnl(E). �
4.1. Credulous cumulativity

We begin with the introduction of the formal definition of the credulous cumulativity property.

Definition 4.3 (Credulous cumulativity). Let K be a sensible class of knowledge bases and att be an attack relation assignment 
defined for K. We say att satisfies the property of credulous cumulativity for K if and only if for each K ∈ K, for each stable 
belief set S of K wrt att and for each finite subset � ⊆ S of domain literals,

1. K + � is a consistent knowledge base (i.e. K + � belongs to K), and
2. S is a stable belief set of K + � wrt att. �

For an illustration, consider the knowledge base K in Example 1.3. It is obvious that K ′ = K + {P } is consistent and 
hence belongs to any sensible class of knowledge bases to which K belongs. Let att be an attack relation assignment where 
att(K ) = {(A2, A3)} and att(K ′) = {(A2, A3), (A′

2, A3)}.21 It is easy to see that S = {D, A, P , T } is a stable belief set of K wrt 
att(K ). It is also straightforward to see that S is a stable belief set of K ′ wrt att(K ′).

There are different versions of the property of credulous cumulativity according to different types of belief sets. In this 
paper, we focus on stable semantics to facilitate the comparison of argument-based and non-argument-based prioritized 
default reasoning. We discuss the credulous cumulativity property wrt complete extension semantics in section 8.

Notation 4.2. Slightly abusing notation for convenience, we often simply say that

an attack relation assignment att satisfies some property P (like the property of credulous cumulativity) for a sensible class of 
knowledge bases K

assuming implicitly that att is defined for K. �
21 Note that att(K) is different to the attack relation assignment based on the weakest link and the elitist ordering for K , K ′ in Example 1.3.
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The following lemma shows that credulous cumulativity implies Caminada and Amgoud’s postulates of consistency and 
closure.

Lemma 4.1. Suppose an attack relation assignment att satisfies the credulous cumulativity property for a sensible class K of knowledge 
bases. Then for each K ∈K, the stable belief sets of K (wrt att) are both consistent and closed.

Proof. Let K ∈ K and S be a stable belief set of K wrt att. It is clear that there are no negative literals of the form ¬abd
in S.

Suppose S is inconsistent. Therefore, there is a finite subset � ⊆ S of domain literals such that � is inconsistent wrt set 
of strict rules of K. Hence K + � is not a consistent knowledge base, contradicting the first condition in the definition of 
credulous cumulativity axiom.

Let S �K α for a literal α. We need to show α ∈ S . If α ∈ S , there is nothing to prove. Suppose α /∈ S . Therefore there 
is a finite set � ⊆ S of domain literals such that � �K α. Therefore there is a strict argument A of K ′ = K + � such that 
cnl(A) = α. As there is no attack against A wrt att(K ′), A belongs to any stable extension of (ARK ′ , att(K ′)). Hence α belongs 
to any stable belief set of K ′ wrt att. As S is also a stable belief set of K ′ , α ∈ S . Contradiction. Hence the case α /∈ S cannot 
occur. �
4.2. Attack monotonicity

We proceed further with the introduction of the property of attack monotonicity stating that when some piece of defea-
sible information on which an argument is based is confirmed by unchallenged observations, the argument is strengthened 
in the sense that whatever is attacked by the original argument should also be attacked by the strengthened one, and 
whatever attacks the strengthened one, attacks the original one. In other words, the more hard evidence your arguments 
are based on, the stronger your arguments become.

Let A ∈ ARK and � ⊆ BE be a finite set of literals. The strengthening of A wrt � denoted by A ↑ �, is the set of 
arguments obtained by replacing zero, one or more subarguments of A by their conclusions provided that these conclusions 
belong to �.

Definition 4.4 (Strengthening operation). Let A ∈ ARK and � ⊆ BE be a finite set of domain literals. The strengthening of A 
wrt � denoted by A ↑ � is defined inductively as follows:

A ↑ � =
{ { [α] } if A = [α] and α ∈ BE

AS ∪ { [hd(r)] } if A = [A1, . . . , An, r] and hd(r) ∈ �

AS if A = [A1, . . . , An, r] and hd(r) /∈ �

where AS = { [X1, . . . , Xn, r] | ∀i : Xi ∈ Ai ↑ � }. �
For illustration, in Example 1.3,

[D] ↑ {P } = {[D]}, A1 ↑ {P } = {[P ], A1}, A2 ↑ {P } = {A2, A′
2}.

In Example 1.2, N ′
1 ↑ {Inno(S)} = {N ′

1, N1}.

Lemma 4.2. Let K be a knowledge base, A ∈ ARK and � ⊆ BE be finite. The following assertion holds:
X ′ is a subargument of an argument X ∈ A ↑ � iff there exists a sub-argument A′ of A such that X ′ ∈ A′ ↑ �.

Proof. See Appendix C. �
For an illustration of Lemma 4.2, consider a basic knowledge base where BE = {a} and RS = ∅ and RD consist of following 

defeasible rules

d1 : ⇒ a d2 : a ⇒ b d3 : b ⇒ c

Consider the arguments A, A′ , X , X ′ in Fig. 5 and � = {a}. It is clear that A′ , X ′ are subarguments of A, X respectively 
and X ∈ A ↑ {a} and X ′ ∈ A′ ↑ {a}.

Definition 4.5 (Attack monotonicity). Let att be an attack relation assignment defined for a sensible class K of knowledge 
bases. We say att satisfies the property of attack monotonicity for K iff for each knowledge base K ∈ K, for each finite subset 
� ⊆ BE, for all A, B ∈ ARK and for each X ∈ A ↑ �, the following assertions hold:

1. If (A, B) ∈ att(K ) then (X, B) ∈ att(K ).
2. If (B, X) ∈ att(K ) then (B, A) ∈ att(K ). �
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Fig. 5. Strengthening-subargument.

As we have discussed in the introduction, a natural property of knowledge bases inherently related to the property of 
attack monotonicity is the property of irrelevance of redundant defeasible rules. We introduce below the formal definition 
of this property and a theorem showing that it follows from the property of attack monotonicity.

Notation 4.3. For any defeasible rule d, denote

K + d = (RS,RD ∪ {d}, � ,BE)

where K = (RS, RD, � , BE). �
For ease of reference, for any evidence ω ∈ BE, we denote the default “⇒ ω” by dω .

Definition 4.6 (Irrelevance of redundant defaults). Let K be a sensible class of knowledge bases such that for each K =
(RSB, BE) ∈K, for each evidence ω ∈ BE, K +dω belongs to K. Further let att be an attack relation assignment defined for K.

We say the attack relation assignment att satisfies the property of irrelevance of redundant defaults for K iff for each 
knowledge base K = (RSB, BE) ∈K, for each evidence ω ∈ BE:

1. the stable belief sets of K and K + dω coincide, and
2. the complete belief sets of K , K + dω coincide. �

The property of irrelevance of redundant defaults follows from the attack monotonicity property if the attack relations 
satisfy a general and natural condition of context-independence.

Definition 4.7 (Context-independence). Let att be an attack relation assignment defined for a sensible class K of knowledge 
bases. We say att satisfies the property of context-independence for K iff for any two arbitrary knowledge bases K , K ′ with 
preference relations �, �′ respectively and for any two arguments A, B belonging to ARK ∩ ARK ′ such that the restrictions 
of � and �′ on dr(A) ∪ dr(B) coincide,22 it holds that

(A, B) ∈ att(K ) iff (A, B) ∈ att(K ′) �
For an illustration of the context-independence property, consider arguments A2, A3 in Example 1.3. Both A2, A3 are 

arguments wrt K and K ′ and the preference relations in both knowledge bases are identical. Context-independence requires 
that the attack relation between A2, A3 should also be the same wrt K , K ′ . It is indeed the case for all attack relations 
defined in ASPIC+ as well as the basic or normal attack relations defined in Definitions 5.2, 6.6.

Theorem 4.1. Let K be a sensible class of knowledge bases such that for each K = (RSB, BE) ∈ K, for each evidence ω ∈ BE, K + dω

belongs to K. Further let att be an attack relation assignment satisfying the properties of attack monotonicity and context-independence 
for K. Then att also satisfies the property of irrelevance of redundant defaults for K.

22 I.e. � ∩(D × D) =�′ ∩(D × D) for D = dr(A) ∪ dr(B).
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Proof. See Appendix C. �
Example 1.2 could be viewed as an illustration of Theorem 4.1 (in a contrapositive way).

4.3. Further properties on attack structure

We introduce in this section two simple and natural properties on the structure of attack relations. We begin with the 
property of sub-argument structure.

Definition 4.8 (Subargument structure). Let K be a sensible class of knowledge bases and att be an attack relation assignment 
defined for K. Then att is said to satisfy the property of subargument structure for K iff for each knowledge base K ∈ K, for 
all A, B ∈ ARK , it holds that

(A, B) ∈ att(K ) iff there is a defeasible subargument B ′ of B such that (A, B ′) ∈ att(K ) �
A key consequence of the property of subargument structure is the property of subargument closure.

Lemma 4.3. Let K be a sensible class of knowledge bases and att be an attack relation assignment satisfying the property of subargu-
ment structure for K. Further let K ∈K. Then each complete extension of (ARK , att(K )) contains all subarguments of its arguments.

Proof. Let E be a complete extension of (ARK , att(K )). Further let A ∈ E and X be a subargument of A. If X is strict then 
there is no attack against X. Hence X ∈ E .

Suppose X is defeasible. From the sub-argument structure axiom, each attack against X is an attack against A. Hence 
each attack against X is counter-attacked by E. Therefore X ∈ E . �

Lemma 4.3 is not new. Martinez, Garcia and Simari [33] include it as a key component in their study of abstract argu-
mentation. Within the ASPIC+ framework, it is known as Theorem 12 [34]. It is proposed as a postulate in Amgoud [1].

One way for arguments to attack each other is by undercutting [38,12,34,35] recalled below.

Definition 4.9. Let A, B ∈ ARK for knowledge base K.
We say A undercuts B (at B ′) iff B ′ is a basic defeasible subargument of B and the conclusion of A is ablast(B′) .
We say A directly undercuts B iff A undercuts B (at B). �
Contradiction between arguments represents another key source of conflicts among arguments.
We say A contradicts B (at B ′) iff B ′ is a sub-argument of B and the conclusions of A and B ′ are contradictory.
For an illustration, in Fig. 1, N1 contradicts N2 (at A2) and N2 contradicts N1 (at A1).

Remark 4.1. If A contradicts B (at B ′) then cnl(A) = ¬cnl(B ′) and both cnl(A) and cnl(B ′) are domain literals because the 
base of evidence contains only domain literals and the heads of rules in the knowledge base are either domain literals or 
non-domain atoms.

Within our framework, if two arguments do not undercut or contradict each other then they do not have any reason to 
attack each other. We capture this intuition by the property of attack closure introduced below.

Definition 4.10 (Attack closure). Let K be a sensible class of knowledge bases and att be an attack relation assignment for K.
The attack relation assignment att is said to satisfy the property of attack closure for K iff for each knowledge base K ∈K, 

for all A, B ∈ ARK , the following conditions hold:

1. If A attacks B wrt att(K ) then A undercuts B or A contradicts B.
2. If A undercuts B then A attacks B wrt att(K ). �

The scope of attack closure should be expanded when new types of attacks need to be considered. ASPIC+ [34] allows 
other types of attacks, like contrary-rebut or contrary-undermine attacks. These attacks like undercuts are preference-
independent in the sense that they are not affected by the preferences between rules or arguments. As we focus in 
this paper on understanding the semantics of preferences between rules and hence allow undercuts as the only type of 
preference-independent attacks, our version of attack closure reflects this focus.23

23 A revised version of the attack closure property to capture other types of attacks would be something like: If A attacks B then A preference-
independently attacks B or A contradicts B where A preference-independent attacks B iff A undercuts B or A contrary rebuts B or A contrary-undermines B.
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Notation 4.4 (Basic properties). The properties of credulous cumulativity, attack monotonicity, context-independence, subar-
gument structure and attack closure are often referred to as basic properties. �
5. An axiomatic semantics for basic knowledge bases

We start our exposition with recalling a notion of rebut, a special case of contradicting, from [12,34,38].

Definition 5.1. Let A, B ∈ ARK for a knowledge base K.
We say A rebuts B (at B ′) iff B ′ is a basic defeasible subargument of B and the conclusions of A and B ′ are contradictory.
We say A directly rebuts B iff A rebuts B (at B). �
It is obvious that if A rebuts B then A also contradicts B, but not vice versa. For an illustration, arguments N1, N ′

1 in Figs. 1, 2
rebut (and hence also contradict) A2, but A2 does not rebut any of N1, N ′

1 though A2 contradicts both N1, N ′
1.

Pollock [38] views A as a rebut to B if A contradicts B (at B) and B is defeasible. Caminada and Amgoud [12] introduce a 
restricted version of rebut where B is required to be basic defeasible. Modgil and Prakken [34] view restricted rebut as an 
attack in their system though they referred to it simply as rebut. We follow Modgil and Prakken in Definition 5.1.

The following lemma suggests that stable semantics wrt the attack relation assignments satisfying the basic axioms could 
be captured by those based solely on the notions of rebut and undercut even though the attack closure property states only 
that attacks should be based on the notions of undercut and contradiction.

Lemma 5.1 (Characteristic lemma). Let K be a sensible class of basic knowledge bases and att be an attack relation assignment 
satisfying all basic properties for K. Further let K ∈ K and E be a stable extension of (ARK , att(K )), B ∈ ARK \ E and A ∈ E such that 
(A, B) ∈ att(K ). Then A either undercuts or rebuts B.

Proof. Follows immediately from Lemma D.1 in Appendix D. �
Remark 5.1. Lemma 5.1 suggests that there is something like a normal form based solely on undercuts and rebuts, among the 
attack relation assignments satisfying the basic properties. This normal form is called the basic attack relation assignment 
formally introduced below.

Definition 5.2 (Basic attack relation assignment). Let B be the sensible class of all consistent basic knowledge bases. An attack 
relation assignment defined for B is said to be basic and denoted by attbs iff it assigns to each basic knowledge base K ∈ B, 
an attack relation

attbs(K ) = Rebut ∪ Undercut

where Rebut = { (A, B) | A, B ∈ ARK : A rebuts B } and Undercut = { (A, B) | A, B ∈ ARK : A undercuts B }. �
We proceed to show that the basic attack relation assignment attbs is indeed a normal form among the attack relation 

assignments satisfying the basic properties in the following sense:

• Stable extensions wrt any attack relation assignment satisfying the basic properties are also stable extensions wrt the basic attack 
relation assignment.

• The basic attack relation assignment attbs satisfies all basic properties.

The following theorem confirms the first of the above two assertions.

Theorem 5.1. Let K be a sensible class of basic knowledge bases and att be an attack relation assignment defined for K.
It holds that if att satisfies all basic properties for K then for each K ∈ K, each stable extension of (ARK , att(K )) is also a stable 

extension of (ARK , attbs(K )).

Proof. Let E be a stable extension of (ARK , att(K )). Because att satisfies the credulous cumulativity property, cnl(E) is 
consistent (Lemma 4.1). Since E is conflict-free wrt att(K) and att satisfies the property of attack closure, E is free of 
undercut-attacks.24

We show that E is conflict-free wrt attbs(K ).
Suppose E is not conflict-free wrt attbs(K ). Therefore there is A, B ∈ E s.t. (A, B) ∈ attbs(K ), i.e. A either undercuts or 

rebuts B. Since E is free from undercut-attacks, it follows A rebuts B (at B ′). Therefore cnl(A) = ¬cnl(B ′). From Lemma 4.3, 
B ′ ∈ E . Therefore cnl(E) is contradictory. This is impossible since cnl(E) is consistent. Hence E is conflict-free wrt attbs(K ).

24 That means that there are no arguments X, Y ∈ E s.t. X undercuts Y.
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We show that E attacks every argument not belonging to it (wrt attbs(K )). Let B ∈ ARK \ E . From Lemma 5.1, it follows 
that there is A ∈ E undercutting or rebutting B. Hence (A, B) ∈ attbs(K ).

We have proved that E is a stable extension of (ARK , attbs(K )). �
To show that the basic attack relation assignment satisfies all basic properties, we first prove two relevant lemmas.

Lemma 5.2. Let K be a sensible class of basic knowledge bases. Then attbs satisfies the properties of attack monotonicity, context-
independence, subargument structure and attack closure for K.

Proof. It is obvious that attbs satisfies the properties of context-independence, subargument structure and attack closure 
for K. We only need to show that attbs satisfies the property of attack monotonicity for K.

Let K ∈K and A, B ∈ ARK . Suppose A attacks B wrt attbs(K ) and X ∈ A ↑ �.
If A undercuts B, it is clear that X also undercuts B. If A rebuts B (at B ′) then it is also clear that X also rebuts B (at B ′). 

Hence X attacks B wrt attbs(K ).
Suppose C attacks X wrt attbs(K ), i.e. C undercut X or C rebut X (at X ′) for X ∈ A ↑ �. If C undercuts X, it is clear that C 

also undercuts A. Suppose C rebuts X (at X ′). From Lemma 4.2, there is a subargument A′ of A such that X ′ ∈ A′ ↑ �. Hence 
last(A′) = last(X ′) and A′ is basic defeasible. Hence C rebuts A (at A′). Therefore C attacks A wrt attbs(K ). �
Lemma 5.3. Let K be a sensible class of basic knowledge bases that satisfy the self-contradiction property. Then the basic attack relation 
assignment attbs satisfies the property of credulous cumulativity for K.

Proof. It follows immediately from Lemmas 6.3 and 6.6. The readers are advised to delay its easy verification until after the 
Lemma 6.6. �

The following theorem follows immediately from Lemmas 5.2, 5.3

Theorem 5.2. Let K be a sensible class of basic knowledge bases that satisfy the self-contradiction property. Then the basic attack 
relation assignment attbs satisfies all basic properties for K. �

Theorems 5.2, 5.1 confirm an insight that the combination undercut + rebut captures the intuition of the attack closure 
property even though rebut is not explicitly specified in it.25

An attentive reader may wonder whether the reverse of Theorem 5.1 holds. We give two examples and a lemma below 
to show that it does not hold in general.

Example 5.1. Let K = (RS, RD, �, BE) such that

• RS consists of four strict rules:

r0 : a → c r1 : b → ¬c r2 : c → ¬b r3 : ¬c → ¬a

• RD consists of two defeasible rules:

d0 : ⇒ a d1 : ⇒ b

• �= ∅ and BE = ∅.

Let K be a sensible class of basic knowledge bases defined by:

K ′ ∈ K iff K ′ = (RS,RD,�,BE′) s.t. BE′ is consistent wrt RS

Let A0, A1, A2, A3 be defined as in Fig. 6.
Let att be an attack relation assignment defined for K as follows:

∀K ′ ∈ K, att(K ′) = attbs(K ′) ∪ { (A0, A1), (A1, A0) }
Since A1 is a defeasible subargument of A3, from (A0, A1) ∈ att(K ′) and (A0, A3) /∈ att(K ′),26 it is clear that att does not 

satisfy the property of subargument structure.

25 We will see in section 7.4 (Lemma 7.5) that all MP-attack relation assignments proposed in [34] coincide with the basic attack relations for the basic 
knowledge bases.
26 Suppose (A0, A3) ∈ att(K ′). From the definition of att, it follows (A0, A3) ∈ attbs(K ′), i.e. A0 rebuts A3. This is impossible according to Definition 5.1. 

Hence (A0, A3) /∈ att(K ′).
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Fig. 6. Arguments of Example 5.1.

It is also obvious that for each K ′ ∈ K, the stable extensions of (ARK ′ , att(K ′)) and (ARK ′ , attbs(K ′)) coincide (see Exam-
ple 5.2 and Lemma 5.4 below for a precise proof). So the reverse of Theorem 5.1 does not hold for K. �

In Example 5.2, we present another sensible class of knowledge bases containing the one in Example 5.1 as a subclass.

Example 5.2. Let K be the sensible class of all consistent basic knowledge bases closed under transposition.
Let K be the knowledge base defined in Example 5.1. It is clear that K ∈ K. Let A0, . . . , A3 be arguments defined as in 

Fig. 6.
Let att be an attack relation assignment defined for K as follows:
For each K ′ ∈K:

att(K ′) =
{

attbs(K ′) if {A0, A1} � ARK ′
attbs(K ′) ∪ {(A0, A1), (A1, A0)} otherwise

Let K ′ ∈K. From Lemma 5.4 below, it follows that the stable extensions of (ARK ′ , att(K ′)) and (ARK ′ , attbs(K ′)) coincide.
As K ∈K, it follows from the elaboration in Example 5.1 that att does not satisfy the property of subargument structure 

for K. Therefore the reverse of Theorem 5.1 does not hold for K. �
Lemma 5.4. Let K be the sensible class of all consistent basic knowledge bases closed under transposition. Let att be the attack relation 
assignment defined in Example 5.2. Following assertions hold:

1. For each K ′ ∈K, the stable extensions of (ARK ′ , att(K ′)) and (ARK ′ , attbs(K ′)) coincide.
2. The reverse of Theorem 5.1 does not hold for K.

Proof. See Appendix M. �
6. Axiomatic semantics for prioritized knowledge bases

There are many interpretations of the preference of one default to another. Some are due to specificity or social values 
while others could just be a specification of the operational order in applying the defaults [18,6,8,15,10]. Though the under-
lying intuitions for the introduction of rule preferences could be different, they all share a basic and natural interpretation 
of the preference of a defeasible rule over another rule that in a situation when each of them is applicable (i.e. the premises 
of both rules follow from the factual evidences and the strict rules in the knowledge base), but both could not be applied 
together, then the preferred one should be applied.

Example 6.1. Suppose K consists of just two defeasible rules: d1 :⇒ a, d2 :⇒ ¬a, with d1 ≺ d2. The arguments A1 = [ ⇒ a], 
A2 = [ ⇒ ¬a] (illustrated in Fig. 7) rebut each other.

As d2 is preferred to d1, A2 is considered an effective rebut against A1 while A1 is an ineffective rebut against A2. Hence 
A2 is an attack against A1, but not vice versa. �

We adopt this basic and natural view of rule preference and capture it by the property of effective rebuts below.
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Fig. 7. Effective rebuts.

Definition 6.1 (Effective rebut). Let K be a sensible class of knowledge bases and att be an attack relation assignment defined 
for K. We say that att satisfies the effective rebut property for K iff for each knowledge base K ∈ K, for all arguments 
A0, A1 ∈ ARK such that

• each Ai , i = 0, 1, contains exactly one defeasible rule di (i.e. dr(Ai) = {di}), and
• A0 rebuts A1,

the following assertion holds:

(A0, A1) ∈ att(K ) iff d0 ⊀ d1 �
It is now the time to present the last property in our axiom system, of which the intuition is that attacks are directed 

towards “identifying” some links as the culprits in an attacked argument.
We first introduce a “weakening” operation, a kind of a “reverse” version of the strengthening operation.
Let A ∈ ARK and AS ⊆ ARK . By A ↓ AS we denote the set of arguments obtained by replacing zero, one or more premises 

of A by arguments in AS whose conclusions coincide with the premises.

Definition 6.2 (Weakening operation).

• Let A ∈ ARK and AS ⊆ ARK . The weakening of A by AS, denoted by A ↓ AS is defined inductively as follows:

A ↓ AS =
{ {[α]} ∪ { X ∈ AS | cnl(X) = α } if A = [α] and α ∈ BE

{ [X1, . . . , Xn, r] | Xi ∈ Ai ↓ AS } if A = [A1, . . . , An, r]
• B ∈ ARK is said to be a weakening of A by AS iff B ∈ A ↓ AS. �

For an illustration, consider again the arguments in Example 1.3. Applying Definition 6.2 yields directly that [P ] ↓ {A1} =
{[P ], A1}, A′

2 ↓ {A1} = {A′
2, A2}.

Lemma 6.1. Let A, B ∈ ARK , AS ⊆ ARK such that S = cnl(AS) ⊆ BE.
It holds that if X ∈ A ↓ AS then A ∈ X ↑ S.

Proof. By induction on the structure of A.

1. Base case: A = [α], α ∈ BE. From Definition 6.2, it follows immediately X ∈ [α] ↓ AS iff X = [α] or X ∈ AS and cnl(X) = α.
From Definition 4.4, it follows immediately [α] ∈ X ↑ cnl(AS) iff X = [α] or cnl(X) = α and α ∈ cnl(AS). The lemma holds 
obviously.

2. Inductive step. Let A = [A1, . . . , An, r]. Suppose X ∈ A ↓ AS. From Definition 6.2, A ↓ AS = {[A′
1, . . . , A

′
n, r] | A′

i ∈ Ai ↓
AS }. Hence X = [X1, . . . , Xn, r] where Xi ∈ Ai ↓ AS. From induction hypothesis, Ai ∈ Xi ↑ S . From Definition 4.4, 
A ∈ X ↑ S . �

Note that the reverse of the above Lemma 6.1 does not hold in general.27

Definition 6.3 (Link-orientation). Let K be a sensible class of knowledge bases and att be an attack relation assignment 
defined for K. We say that att satisfies the link-oriented property (or property of link-orientation) for K iff for each knowledge 
base K ∈ K, for all arguments A, B, C ∈ ARK such that C is a weakening of B by AS ⊆ ARK (i.e. C ∈ B ↓ AS), the following 
assertion holds:

If A attacks C wrt att(K) and A does not attack AS wrt att(K) then A attacks B wrt att(K).28 �
27 To see this, just let AS = {N1} (see Figs. 1, 2) and X = N ′

1 and A = [¬inno(P2)]. Let S = cnl(AS) = {¬inno(P2)}. It is clear that A ∈ X ↑ S . But A ↓ AS =
{A, N1}. Therefore X /∈ A ↓ AS.
28 I.e. if (A, C) ∈ att(K ) and ∀X ∈ AS : (A, X) /∈ att(K ) then (A, B) ∈ att(K ).
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Fig. 8. Normal rebuts.

For an illustration, consider again arguments in Figs. 3, 4 (Example 1.3). As A3 does not attack A1, and A2 is a weakening 
of A′

2 by {A1},29 in any attack relation assignment att satisfying the link-oriented axiom, if A3 attack A2 wrt att(K + {P })
then A3 attacks A′

2 wrt att(K + {P }).
As elaborated in Example 1.3, with respect to the ASPIC+-attack relation based on the weakest link principle and the 

elitist ordering, A3 attack A2 but A3 does not attack A′
2. Hence this attack relation assignment does not satisfy the link-

oriented property.

Definition 6.4 (Ordinary attack relations). An attack relation assignment att is said to be ordinary for a sensible class K of 
knowledge bases iff it satisfies the properties of credulous cumulativity, attack monotonicity, context-independence, subar-
gument structure, attack closure, effective rebuts and link-orientation for K. �
6.1. A structural insight into ordinary attack relation assignments

Apart from undercut, stable extensions wrt ordinary attack relation assignments employ a special kind of rebut, referred 
to as normal-rebut, to attack arguments not belonging to it. Let us first illustrate the idea.

Let att be an ordinary attack relation assignment for a sensible class of knowledge bases K. Consider a knowledge base 
K = (RS, RD, �, BE) in K such that the arguments A and B (in Fig. 8) belong to its set of arguments. Note that the bodies of 
defaults d1, d2, d3 are empty.

As A rebuts B, the question is under which condition the rebut is effective such that A is considered an attack against B.
Suppose A attacks B. What could we say about the preferences between defeasible rules in A and B? Let K ′ = K + {a}

and suppose K ′ ∈ K. It is clear that A′ is an argument wrt K ′ . From the attack monotonicity and context-independence of 
att, it follows that A′ attacks B. From the effective rebut property, it follows that d2 ⊀ d3.30

Similarly we could also conclude that d1 ⊀ d3 (if K + {b} belongs to K).
It turns out that the above discussed scenarios of preferences between defeasible rules in A, B are special cases of a 

general pattern of rebut, referred to as normal-rebut that are employed by stable extensions wrt ordinary attack relation 
assignments to attack arguments not belonging them. We give a formal definition of normal-rebut below followed by a 
lemma capturing this insight.

Definition 6.5 (Normal rebut). Let K be a knowledge base and A, B ∈ ARK . We say that A normal-rebuts B (at X) iff A rebuts B 
(at X) and the following normal condition holds.

(Normal condition). There is no defeasible rule d ∈ ldr(A) such that d ≺ last(X). �
It is not difficult to see that if K is basic, normal-rebuts coincide with rebuts.
The following Lemma 6.2 generalizes the characteristic Lemma 5.1 for ordinary attack relation assignments.

Lemma 6.2 (General characteristic lemma). Let att be an ordinary attack relation assignment for a sensible class K of knowledge 
bases. Further let K ∈K and E be a stable extension of (ARK , att(K )), A ∈ E and B ∈ ARK \ E such that A attacks B wrt att(K). Then A 
undercuts or normal-rebuts B.

Proof. As any ordinary attack relation assignment satisfies all basic properties, from Lemma 5.1, it follows immediately that 
A undercuts or rebuts B. The rest of the proof follows from Lemma E.1 in Appendix E. �

Lemma 6.2 shows that stable extensions wrt ordinary attack relations employ normal-rebuts or undercuts to attack 
arguments not belonging to it. This insight suggests that an attack relation based on undercuts and normal-rebuts could be 
ordinary. We show below that it is indeed the case.

29 A′
2 ↓ {A1} = {A′

2, A2}.
30 Note that the condition d2 ⊀ d3 does not necessarily hold if K ′ does not belong to K.
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6.2. Introducing normal attack relation assignment

Definition 6.6 (Normal attack relation assignment). Let K be the sensible class of all consistent knowledge bases. The normal 
attack relation attnr is defined for K as follows:

For any knowledge base K ∈ K and any arguments A, B ∈ ARK , (A, B) ∈ attnr(K ) if and only if A undercuts B or A 
normal-rebuts B. �

It is obvious that the normal attack relation assignment generalizes the basic attack relation assignment of basic knowl-
edge bases.

Lemma 6.3. For any consistent basic knowledge base K, attnr(K ) = attbs(K ). �
We proceed to show that the normal attack relation assignment attnr represents a normal form among the ordinary 

attack relation assignments in the following sense:

• The normal attack relation assignment attnr is ordinary.
• Stable extensions wrt any ordinary attack relation assignment are also stable extensions wrt the normal attack relation assignment.

6.3. Normal attack relation assignment is ordinary

We start with three relevant lemmas.

Lemma 6.4. attnr satisfies the properties of context-independence, subargument structure, attack closure, effective rebuts and link-
orientation for any sensible class of knowledge bases.

Proof. It is obvious that normal attack relations satisfy the properties of context-independence, attack closure, effective 
rebuts and subargument structure.

It remains to show that attnr also satisfies the link-oriented property. Let A, B, C ∈ ARK for a knowledge base K such that 
C is a weakening of B by AS ⊆ ARK (i.e. C ∈ B ↓ AS) and A does not attack AS wrt attnr(K ) and (A, C) ∈ attnr(K ). There is a 
basic defeasible subargument C ′ of C such that either cnl(A) = ablast(C ′) or cnl(A) = ¬cnl(C ′) and there is no d ∈ ldr(A) s.t. 
d ≺ last(C ′). Since A does not attack AS wrt attnr(K ), the default last(C ′) does not occur in any argument belonging to AS. 
Hence last(C ′) occurs in B. Therefore (A, B) ∈ attnr(K ). �
Lemma 6.5. Let K be a sensible class of knowledge bases. The normal attack relation assignment attnr satisfies the property of attack 
monotonicity for K.

Proof. Let K ∈ K and A attacks B wrt attnr and X ∈ A ↑ �. It is not difficult to see that if A undercuts B then X also 
undercuts B. Suppose now that A rebuts B (at B ′) and there is no d ∈ ldr(A) s.t. d ≺ last(B ′). From ldr(X) ⊆ ldr(A) and 
cnl(X) = cnl(A), it follows obviously that X rebuts B (at B ′) and there is no d ∈ ldr(X) s.t. d ≺ last(B ′). We have proved that 
X also attacks B wrt attnr .

Suppose C attacks X wrt attnr for X ∈ A ↑ �. It is easy to see that there exists a basic defeasible subargument X ′ of X 
such that either last(C) = ablast(X ′) or C normal-rebuts X ′ (at X ′). From Lemma 4.2, there is a subargument A′ of A such 
that X ′ ∈ A′ ↑ �. Hence last(A′) = last(X ′) and A′ is basic defeasible. It holds obviously that either last(C) = ablast(A′) or C 
normal-rebuts A′ (at A′). C thus attacks A wrt attnr . �
Lemma 6.6. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction. Then the normal attack relation 
assignment attnr satisfies the credulous cumulativity property for K.

Proof. See Appendix F. �
It is now possible for us to present a key result stating that the normal attack relation assignment is ordinary.

Theorem 6.1. The normal attack relation assignment attnr is ordinary for any sensible class of knowledge bases that satisfy the self-
contradiction property.

Proof. The properties of context-independence, subargument structure, attack closure, effective rebuts and link-orientation 
follow immediately from Lemma 6.4. The property of attack monotonicity follows from Lemma 6.5. The property of credu-
lous cumulativity is proved in Lemma 6.6. �
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6.4. Normal form of ordinary semantics

Our next result is that the normal attack relation assignment represents a normal form of ordinary semantics in the 
sense that the stable extensions wrt any ordinary attack relation assignment are also stable wrt the normal attack relation 
assignment.

Theorem 6.2. Let K be a sensible class of knowledge bases. Let att be an ordinary attack relation assignment defined for K. Then for 
each K ∈K, each stable extension of (ARK , att(K )) is also a stable extension of (ARK , attnr(K )).

Proof. Let E be a stable extension of (ARK , att(K )).
Because att satisfies the credulous cumulativity property, cnl(E) is consistent (Lemma 4.1). Since E is conflict-free wrt 

att(K) and att satisfies the property of attack closure, E is free of undercut-attacks.31

We show that E is conflict-free wrt attnr(K ).
Suppose E is not conflict-free wrt attnr(K ). Therefore there is A, B ∈ E s.t. (A, B) ∈ attnr(K ). Since E is free from undercut-

attacks, it follows A rebuts B at a basic defeasible subargument B ′ of B. Therefore cnl(A) = ¬cnl(B ′). From Lemma 4.3, B ′ ∈ E . 
Therefore cnl(E) is contradictory. This is impossible since cnl(E) is consistent. Hence E is conflict-free wrt attnr(K ).

It remains to show that E attacks every argument not belonging to it wrt attnr(K ).
Let B ∈ ARK \ E . Therefore there is A ∈ E s.t. (A, B) ∈ att(K ). From Lemma 6.2, it follows that A undercuts or normal-

rebuts B. From the definition of attnr , it follows immediately that (A, X) ∈ attnr(K ).
E is hence also a stable extension of K wrt the normal attack relation attnr(K ). �
Examples 5.1, 5.2 and Lemmas 5.4, 6.3 show that the reverse of Theorem 6.2 does not hold in general.

7. Relations to other approaches

7.1. Operational interpretation of rule ordering

Preference orders between rules in prioritized default logics or logic programming are viewed in [15,44] as specifying ap-
plication orders of rules. We show in this section that this operational reading of preferences is sound wrt normal semantics 
and also complete for the class of stratified knowledge bases.

The operational reading of preferences defines the semantics of a knowledge base K = (RS, RD, �, BE) in two steps: first 
determining the stable extensions of the basic knowledge base Kbasic = (RS, RD, ∅, BE) underlying K and then applying the 
preference relation to pick the preferred extensions.

We first adapt the definitions in [15,44] to structured argumentation below.

Definition 7.1. A stable extension E of (ARK , attbs(Kbasic))
32 is said to be an enumeration-based extension of K iff there is 

an enumeration (di)i≥1 of �E = {d ∈ RD | d appears in some argument of E} such that for all i, j, we have:

1. {hd(dk)|k < i} ∪ BE �K bd(di);
2. if di ≺ d j then j < i;
3. if di ≺ d and d ∈ RD \ �E then

(a) bd(d) � cnl(E), or
(b) {hd(dk)|k < i} ∪ BE �K ¬hd(d), or
(c) {hd(dk)|k < i} ∪ BE �K abd . �

The intuitions of the first two conditions in Definition 7.1 should be clear. The third condition states that if a default d 
is not applied while a less preferred di is, then this is either because some of the premises of d are not satisfied wrt the 
belief set generated by the extension or because d has been already rebutted or undercut before di is applied.

The following theorem shows the soundness of the enumeration-based semantics wrt the normal semantics.

Theorem 7.1. Every enumeration-based extension of K is a stable extension of (ARK , attnr(K )).

Proof. See Appendix G. �
When the operational interpretation of rule preferences interferes with the basic control mechanism of “applying a rule 

when its premises are satisfied”, there could be no enumeration-based extension. For example, consider a knowledge base 

31 That means that there are no arguments X, Y ∈ E s.t. X undercuts Y.
32 Note that the arguments of K and Kbasic are identical, and attbs(Kbasic) = attnr(Kbasic).
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consisting of just two defeasible rules d :⇒ a, d′ : a ⇒ b with d ≺ d′ . There is no enumeration-based extension in this case 
as the first two conditions in Definition 7.1 cannot be fulfilled.

When the basic control mechanism and the operational reading of the default preferences do not interfere, the 
enumeration-based semantics and the normal semantics coincide. We introduce below a class of stratified knowledge bases 
where the two mechanisms do not interfere by applying the concept of stratification in logic programming and Brewka’s 
idea of ranking function [4,8] to our framework.

7.1.1. Stratified knowledge bases
A preference relation � is said to be ranked iff there is a ranking function ρ assigning non-negative integers to defeasible 

rules in RD such that for all d, d′ ∈ RD, d � d′ iff ρ(d′) ≤ ρ(d).
For an illustration, the preference relation in Example 1.3 could be ranked by ρ(d2) = 0, ρ(d3) = 1, ρ(d1) = 2.

Notation 7.1. Abusing the notation for simplicity, for any argument A, we denote the maximum of the ranks of the defeasible 
rules appearing in A by ρ(A).

We introduce below the notion of stratified knowledge base that is inspired by both the concept of stratification in logic 
programming and Brewka’s ranking function [4,8].

Definition 7.2. A knowledge base K is said to be stratified iff its preference relation � is ranked with a ranking function ρ
such that following conditions are satisfied:

1. For each basic defeasible argument A, for each defeasible rule d occurring in A and different to last(A), ρ(d) <
ρ(last(A)).

2. For each argument A such that cnl(A) = abd for some defeasible rule d, ρ(A) ≤ ρ(d). �
Interpreting the ranking of defaults as their application order, the first condition states the obvious that the last rule in a 

basic defeasible argument should be applied last while the meaning of the second one is that if a default is undercut then 
the undercut should happen before the default’s turn to be applied.

For an illustration, the preference relation in Example 1.3 could be ranked by ρ(d2) = 0, ρ(d3) = 1, ρ(d1) = 2. The 
knowledge base is not stratified as in argument A2, ρ(d1) = 2 > 0 = ρ(d2) = ρ(last(A2)).

Lemma 7.1. Suppose K is stratified and A, B ∈ ARK such that (A, B) ∈ attnr(K ). Then ρ(A) ≤ ρ(B).

Proof. See Appendix G. �
Theorem 7.2. Suppose K is a consistent and stratified knowledge base satisfying the self-contradiction property. Then each stable 
extension of (ARK , attnr(K )) is an enumeration-based extension of K.

Proof. See Appendix G. �
7.2. Brewka and Eiter principles

Brewka and Eiter [10] have proposed two principles, referred to as BE-principles in this section, for the evaluation of 
semantics of prioritized default reasoning. We show in this section that both BE-principles are satisfied by the ordinary 
attack relation assignments.

The first BE principle concerns the intuition of preferences between defeasible rules while the second one is about 
relevance of rules. We start with the second one as it is the simpler of them.

The intuition of the second BE-principle is best illustrated by a simple example. Suppose the weather forecast for tomor-
row is sunshine, light wind, no rain. You plan to go yachting. Suppose somebody tells you a rule that in stormy weather, 
yachting is forbidden. Of course knowing this rule will not affect your plan as the weather is fine and the rule is not 
applicable.

We say that a rule r is applicable wrt set of literals S if bd(r) ⊆ S . We adapt the second BE-principle from [10] to our 
framework below.

Notation 7.2. Let K = (RS, RD, �, BE) be a knowledge base and r be a rule. Define K + r = (RS′, RD′, �, BE) as follows:

(RS′,RD′) =
{

(RS ∪ {r},RD) if r is strict
(RS,RD ∪ {r}) if r is defeasible



P.M. Dung / Artificial Intelligence 231 (2016) 107–150 127
Definition 7.3 (Second BE-principle). An attack relation assignment att is said to satisfy the second BE-principle for a sensible 
class of knowledge bases K iff for each knowledge base K ∈ K if S is a stable belief set of K (wrt att) and r is a rule not 
applicable wrt S and K + r belongs to K then S is also a stable belief set of K + r (wrt att). �
Theorem 7.3. Let att be an attack relation assignment satisfying the properties of subargument structure and context-independence 
for a sensible class of knowledge bases K. Then att satisfies the second BE-principle for K.

Proof. See Appendix I. �
The intuition of the first BE-principle is that if two belief sets are generated by the same sets of rules with the exceptions 

of two defaults d, d′ with d ≺ d′ then the one with d should not be preferred.
For illustration, in Example 1.3, the belief sets {D, A, P , T }, {D, A, P , ¬T } are generated respectively by the sets of rules 

{r, d1, d2}, {r, d1, d3}. Since d3 ≺ d2, the set {D, A, P , ¬T } should not be a stable belief set according to the first BE-principle.
In [10], the first BE-principle is presented for extended logic programming. We adapt it to our framework below.
Let S be a set of literals. S is said to be generated by a set � ⊆ RS ∪ RD iff the following conditions are satisfied

1. For each literal σ , σ ∈ S iff there is an argument A such that cnl(A) = σ and all rules appearing in A belong to �.
2. For each strict rule r ∈ RS, r ∈ � iff bd(r) ⊆ S , hd(r) ∈ S .
3. For each defeasible rule d ∈ RD, d ∈ � iff bd(d) ⊆ S , hd(d) ∈ S and abd /∈ S .

Note that the uniqueness of � wrt S follows immediately from the second and third conditions. In general, these two 
conditions are not sufficient to guarantee the first one. To see this simple but relevant point, consider a knowledge base 
consisting of just a unique strict rule r : a → a. Then S = {a} and � = {r} satisfy both the second and third condition but 
not the first.

�, if exists, is often referred to as the generating set of S.

Definition 7.4 (First BE-principle). We say that an attack relation assignment att satisfies the first BE-principle for a sensible 
class K of knowledge bases iff for each K ∈K, the following condition is satisfied:

Suppose S, S ′ be consistent sets of literals generated respectively by sets of rules � ∪ {d} and � ∪ {d′} such that d, d′ ∈
RD \ � and d ≺ d′ . Then S is not a stable belief set of K wrt att. �
Theorem 7.4. Let att be an ordinary attack relation assignment defined for a sensible class K of knowledge bases. Then att satisfies the 
first BE-principle for K.

Proof. See Appendix I. �
An attentive reader may wonder whether the reverses of Theorems 7.4, 7.3 hold. The answer is “No”. To see this, let 

us consider again Example 5.2 and Lemma 5.4. From Lemma 5.4, it follows that the set of stable extensions wrt att and 
attbs coincide. Therefore these two attack relation assignments have identical stable belief sets. Since attbs satisfies both 
BE-principles for K, att also satisfies both BE-principles. But att does not satisfy the property of subargument structure 
for K.

7.3. Credulous cumulativity in prioritized logic programming

In this section we show that credulous cumulativity is indeed embraced, although implicitly, in prioritized logic program-
ming. We first show that the answer set semantics of extended logic programs without rule preferences satisfies credulous 
cumulativity. In the two following sections we then show that both well-known and well-studied approaches to preference 
handling in logic programming, the approach advocated by Delgrande, Schaub, Tompits, Wang and others [15,44] and the 
Brewka and Eiter approach [10], satisfy the credulous cumulativity property.

From now on until the end of this section, we assume a language C consisting of ground atoms α and their classical 
negation ¬α. Literals in C are often simply referred to as classical literals. Further, for each classical literal λ, we introduce a 
naf-literal33 of the form not_λ.

A logic program rule (or just lp-rule for short) r is of the form

h ← l1, . . . , ln,not_ln+1, . . . ,not_ln+k

such that h, l1, . . . , ln, ln+1, . . . , ln+k are classical literals. For ease of reference, we denote hd(r) = h, bd+(r) = {l1, . . . , ln} and 
bd−(r) = {ln+1, . . . , ln+k}.

33 naf stands for “negation as failure”.
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An extended logic program is a finite set of logic program rules. The semantics of extended logic programs is defined by 
their answer sets [22,23].

Given a set of lp-rules P and a set X of classical literals. The Gelfond–Lifschitz reduction (or just GL-reduction for short) 
of P, denoted by P X , is obtained by

• deleting each rule h ← l1, . . . , ln, not_ln+1, . . . , not_ln+k in P such that some ln+ j ∈ X for 1 ≤ j ≤ k, and
• deleting all naf-literals from the remaining rules.

A non-contradictory set34 S of classical literals is an answer set of P iff S is the smallest set of literals such that S is 
closed wrt P S , i.e. for any rule h ← l1, . . . ln in P S if l1, . . . ln belong to S, then h ∈ S .35

For a logic program P and a finite set � of classical literals, define

P + � = P ∪ {ω ← | ω ∈ �}
The following theorem shows that the credulous cumulativity property is satisfied by the answer set semantics of ex-

tended logic programming.

Theorem 7.5. Let P be an extended logic program and S be an answer set of P. Further let � ⊆ S. Then S is also an answer set of P +�.

Proof. Let P ′ = P + �. It is not difficult to see that P ′
S = P S + �. Therefore S is closed wrt rules in P ′

S . As any set that is 
closed wrt rules in P ′

S is also closed wrt rules in P S , S is obviously the smallest set that is closed wrt P ′
S . S is hence an 

answer set of P ′ . �
7.3.1. Delgrande, Schaub, Tompits (DST) – preferred answer sets for prioritized logic programming

Delgrande, Schaub and Tompits [15] view the preferences between rules as constraints on their application orders.
Formally, a prioritized logic program is a pair (P , ≺) where P is an extended logic program and ≺ is a strict partial order 

on P.36

Given a set of classical literals X , denote

�P ,X = {r ∈ P | bd+(r) ⊆ X and bd−(r) ∩ X = ∅}

Definition 7.5 (DST-preferred answer sets). (See [15].) Let 	 = (P , ≺) be a prioritized logic program. A DST-preferred answer 
set of 	 is an answer set S of P such that there is an enumeration (ri)i≥1 of the rules in �P ,S such that for all i, j, we have:

1. bd+(ri) ⊆ {hd(rk)|k < i};
2. if ri ≺ r j then j < i;
3. if ri ≺ r and r ∈ P \ �P ,S then

(a) bd+(r) � S , or
(b) bd−(r) ∩ {hd(rk)|k < i} �= ∅. �

For a finite set � of classical literals and a prioritized logic program 	 = (P , ≺), define

	 + � = (P + �,≺)

The following theorem shows that the credulous cumulativity property is satisfied by the DST-answer set semantics of 
prioritized logic programming.

Theorem 7.6. Let S be a DST-preferred answer set of a prioritized logic program 	 and � ⊆ S. Then S is also a DST-preferred answer 
set of 	 + �.

Proof. See Appendix L. �

34 Such sets are referred to as consistent in the literature [15,10]. We do not use this notion of consistency here to avoid possible misunderstanding with 
our notion of consistency in Definition 3.5.
35 In earlier papers [22], the inventors of answer set semantics allow contradictory answer sets. In later papers [30,32] they suggest to eliminate contra-

dictory answer sets altogether. We follows their suggestion in this paper.
36 A strict partial order is an irreflexive, antisymmetric and transitive relation.
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7.3.2. Brewka, Eiter (BE) – preferred answer sets for prioritized logic programming
Brewka and Eiter [10] consider a prioritized logic program (P , ≺) as representative of the fully prioritized programs 

(P , �) such that ≺⊆� and � is a strict total order.37 The preferred answer sets of (P , ≺) are defined as preferred answer 
sets of (P , �).

A lp-rule r is said to be prerequisite-free iff bd+(r) = ∅. A prerequisite-free program consists only of prerequisite-free rules. 
The preferred answer sets of prerequisite-free programs rely on an operator defined below.

Definition 7.6. (See [10].) Let 	 = (P , �) be a prerequisite-free fully prioritized program and (ri)i≥1 be the enumeration of 
P according to �,38 and let X be a non-contradictory set of literals. A sequence X0, X1, . . . , Xn where n = |P |,39 is defined 
by:

1. X0 = ∅.
2. For 1 ≤ i ≤ n,

Xi =
⎧⎨
⎩

Xi−1 if bd−(ri) ∩ Xi−1 �= ∅
Xi−1 if hd(ri) ∈ X and bd−(ri) ∩ X �= ∅
Xi−1 ∪ {hd(ri)} otherwise

Define C	(X) = Xn . �
Definition 7.7. (See [10].) Let 	 = (P , �) be a prerequisite-free fully prioritized program. A set of classical literals S is a 
BE-preferred answer set of 	 iff S is an answer set of P and C	(S) = S . �

In the next step, we recall the definition of BE-preferred answer sets of fully prioritized (possibly not prerequisite-free) 
logic programs.

For a lp-rule r of the form h ← l1, . . . , ln, not_ln+1, . . . , not_ln+k , let r− denote the prerequisite-free rule h ←
not_ln+1, . . . , not_ln+k .

Definition 7.8. (See [10,15].) Let 	 = (P , �) be a fully prioritized logic program and X be a set of classical literals. The 
BE-reduction of 	 wrt X is the logic program 	X = (P X , �X ) obtained from (P , �) as follows:

1. P X = {r− | r ∈ P and bd+(r) ⊆ X }, and
2. for any r′

1, r
′
2 ∈ P X , r′

1 �X r′
2 iff r1 � r2 where ri = max�{ r ∈ P | r− = r′

i }. �
In other words, viewing a fully prioritized program as a list of rules where the more preferred rules are listed before the 

less preferred ones, 	X is obtained from 	 by 1) eliminating rules r whose prerequisites bd+(r) are not satisfied by X and 
2) deleting all prerequisites from the remaining rules. If some rules appear more than once then the repeating copies that 
appear later in the list are deleted.

Definition 7.9 (BE-preferred answer sets). (See [10].) Let P be an extended logic program and S be an answer set of P.

1. S is a BE-preferred answer set of a fully prioritized logic program 	 = (P , �) iff S is a BE-preferred answer set of 
	S = (P S , �S ), the BE-reduction of 	 wrt S.

2. S is a BE-preferred answer set of prioritized logic program (P , ≺) iff S is a BE-preferred answer set of a fully prioritized 
logic program (P , �) such that ≺⊆�. �

Before proceeding to show that the credulous cumulativity property is satisfied wrt BE-preferred answer set semantics, 
we present a lemma characterizing the structure of BE-preferred answer sets of prerequisite-free fully prioritized logic 
programs.

Lemma 7.2. Let 	 = (P , �) be a fully prioritized prerequisite-free logic program and X be an answer set of P . Then X is a BE-preferred 
answer set of 	 iff for each r ∈ P \ �P ,X , if hd(r) /∈ X then

bd−(r) ∩ {hd(r′) | r′ ∈ �P ,X and r � r′ } �= ∅

37 I.e. � is a strict partial order such that for every pair of distinct rules r, r′, either r � r′ or r′ � r.
38 I.e. ri � r j iff j < i.
39 Note that a logic program is a finite set of lp-rules.
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Proof. See Appendix L. �
Lemma 7.3. Let 	 = (P , �) be a fully prioritized logic program and S be a BE-preferred answer set of 	 and � ⊆ S. Then there is 
strict total order �′ on P + � such that �⊆�′ and S is also a BE-preferred answer set of (P + �, �′).

Proof. See Appendix L. �
The following theorem shows that the credulous cumulativity property is satisfied wrt the BE-answer set semantics for 

prioritized extended logic programs.

Theorem 7.7. Let 	 = (P , ≺) be a prioritized logic program and S be a BE-preferred answer set of 	. Further let � ⊆ S. Then S is also 
a BE-preferred answer set of 	 + �.

Proof. Let � be a strict total order over P such that ≺⊆� and S be a BE-preferred answer set of (P , �). From Lemma 7.3, 
there is a total order �′ such that �⊆�′ and S is a BE-preferred answer set of (P + �, �′). Therefore ≺⊆�′ . Therefore 
S is also a BE-preferred answer set of 	 + � = (P + �, ≺). �
7.4. Relationship to ASPIC+

ASPIC+ [35,34] is an influential and complex approach to structured argumentation incorporating many key concepts 
from distinct approaches to structured argumentation [38,40,7,15,10]. The semantics of ASPIC+ is based on the intuitive 
idea of defining attack relations based on preferences between arguments when a less preferred argument cannot attack 
a more preferred one as advocated in [3,6]. A recent work of Hunter and Williams [27] demonstrates the practicality of 
preference-based abstract argumentation by applying it in aggregating evidence about treatments in medicine.

We first recall below several key definition in ASPIC+ [34,35] adapted to our framework.
For simplification, a basic knowledge base K = (RS, RD, ∅, BE) is often abbreviated as a triple (RS, RD, BE).

Definition 7.10. An ASPIC+-structured argumentation framework is a pair (K , �) where K is a basic knowledge base and � is 
a binary relation over the set of arguments in ARK .40

We write A � B iff A � B and B �� A. �
Definition 7.11. Given an ASPIC+-structured argumentation framework SA = (K , �), the ASPIC+-attack relation (or just AP-
attack relation for short) attAP(SA) ⊆ ARK × ARK is defined as follows.

(A, B) ∈ attAP(SA) iff one of the following conditions is satisfied:

1. A undercuts B.
2. A rebuts B (at B ′) and A �� B ′ . �

It is easy to see that the following lemma holds.

Lemma 7.4. Let SA = (K , �) be an ASPIC+-structured argumentation framework. It holds that

1. attAP(SA) ⊆ attbs(K ), and
2. the ASPIC+-attack relation attAP(K ) satisfies the properties of subargument structure and attack closure. �

Modgil and Prakken apply ASPIC+ to reasoning with rule preferences by presenting four ways to derive argument pref-
erences from the preferences between rules. Based on these derived argument preference relations, four attack relations41

are derived. We recall them in the following Definitions 7.12, 7.13, 7.14.

Remark 7.1. In [34,35], the Definitions 7.12, 7.13, 7.14 are given only for knowledge bases with preorder-preference relations. 
We adapt them to general knowledge bases directly.

Definition 7.12. Let K be a knowledge base and � be the preference relation over defeasible rules of K and �, �′ be two 
finite sets of defeasible rules of K and y ∈ {E, D},42 define:

40 In [34], defeasible rules of the form “δ : b1, . . . , bn ⇒ abd” are also allowed. Such rules could be captured in our framework by two rules “δ :
b1, . . . , bn ⇒ newδ ” and “newδ → abd” where newδ is a new atom not appearing in any other rule.
41 Called defeats in [35,34].
42 E, D stand for Elitist and Democratic respectively.
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� �y �′ iff � �= ∅ and one of the following conditions holds:

1. �′ = ∅.
2. y = E and ∃d ∈ � s.t. ∀d′ ∈ �′ : d � d′ .
3. y = D and ∀d ∈ �∃d′ ∈ �′ : d � d′ .

We write � �y �′ iff � �y �′ and �′ � �y�. �
Definition 7.13. Let K be a knowledge base, A, B be two arguments in ARK and y ∈ {E, D}.

1. B is preferred to A according to the last link principle and the y-ordering (or y-principle), denoted by A �ly B if and 
only if ldr(A) �y ldr(B).

2. B is preferred to A according to the weakest link principle and the y-ordering (or y-principle), denoted by A �wy B if 
and only if dr(A) �y dr(B). �

Remark 7.2. Note that for ease of reference, we often talk interchangeably of elitist (resp. democratic) ordering or elitist 
(resp. democratic) principle.

According to Definition 7.11 there are four different attack relations which are recalled in the definition below.

Definition 7.14. Let K be a knowledge base, A, B be two arguments in ARK . For x ∈ {l, w} and y ∈ {E, D}, define

(A, B) ∈ attxy(K ) if and only if

• A rebuts B (at B ′) such that A ��xy B ′ , or
• A undercuts B. �

We start our analysis of the attack relation assignments attxy , x ∈ {l, w} and y ∈ {E, D}, with a simple and easy lemma.

Lemma 7.5. For each basic knowledge base K , for x ∈ {l, w} and y ∈ {E, D}, attxy(K ) = attbs(K ).

Proof. It follows immediately from Definition 7.12 that for any basic knowledge base, for any two finite sets of defeasible 
rules �, �′ , for y ∈ {E, D}, � �y �′ iff � �= ∅ and �′ = ∅. It holds immediately that if A rebuts B then (A, B) ∈ attx,y(K ) for 
any x ∈ {l, w} and y ∈ {E, D}. �

From Lemma 7.4, it is easy to see that the following lemma holds.

Lemma 7.6. Every attack relation assignment attxy, for x ∈ {l, w} and y ∈ {E, D}, satisfies the properties of context-independence, 
subargument structure, attack closure and effective rebuts. �

It turns out that attack relation assignments based on the elitist ordering attxE , x ∈ {w, l}, satisfy the property of attack 
monotonicity but not the property of credulous cumulativity, while the situation is reverse for attack relation assignments 
based on the democratic ordering.

Theorem 7.8. Let K be a sensible class of knowledge bases. Both attack relations assignments attlE and attwE satisfy the property of 
attack monotonicity for K.

Proof. See Appendix H. �
Theorem 7.9. Let K be a sensible class of knowledge bases satisfying the self-contradiction property. Both attack relation assignments 
attlD and attwD satisfy the property of credulous cumulativity for K.

Proof. See Appendix H. �
The following lemma reveals further relationships between the attack relation assignments attxy .

Lemma 7.7. attlE � attnr � attlD � attbs.43

43 Note that for attack relation assignments att, att′ , att � att′ iff for each knowledge base K, att(K ) ⊆ att′(K ).
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Proof. See Appendix H. �
The following example shows that both semantics based on the elitist-ordering satisfy neither the consistency postulate 

nor the credulous cumulativity property in general.

Example 7.1. Consider a knowledge base K consisting of

1. an empty base of evidence, and
2. four strict rules

r1 : a2,a3,a4 → ¬a1 . . . . . . . . . r4 : a1,a2,a3 → ¬a4

together with four defeasible rules

di : ⇒ ai, 1 ≤ i ≤ 4

and

3.

� = {d1,d2} × {d1,d2} ∪ {d3,d4} × {d3,d4}
It is clear that � is a preorder and the knowledge base is consistent and closed under transposition.
There are in total 8 arguments:

Ai ≡ [⇒ ai], 1 ≤ i ≤ 4

and

B1 ≡ [A2, A3, A4 → ¬a1], . . . . . . , B4 ≡ [A1, A2, A3 → ¬a4]
We first show

{d1,d3,d4} �E {d2}
From d1 � d2, it is clear that {d1, d3, d4} �E {d2}. From d2 � d3, it is obvious that {d2} � �E {d1, d3, d4}.

Similarly, it holds:

{d2,d3,d4} �E {d1} {d1,d2,d3} �E {d4} {d1,d2,d4} �E {d3}
Therefore Bi does not attack Ai for 1 ≤ i ≤ 4 according to the attack relation attxE(K ) for x = l, w . Therefore attxE(K ) = ∅.
All arguments belong to the unique stable (complete) extension whose set of conclusions is S = {a1, ¬a1, . . . , a4, ¬a4}, 

which is obviously inconsistent.
Since � = {a1, . . . , a4} ⊆ S is inconsistent wrt set of strict rules of K, K + � is not consistent. Hence the credulous 

cumulativity property is violated for the sensible class of knowledge bases closed under transposition. �
Note that Example 1.2 shows that attack relation assignments based on the democratic ordering principle do not satisfy 

the attack monotonicity property.

Theorem 7.10.

1. Attack relations assignments based on the elitist ordering satisfy in general neither the consistency postulate nor the credulous 
cumulativity property for sensible classes of knowledge bases that are closed under transposition or contraposition.

2. Attack relations assignments based on democratic ordering satisfy in general neither the attack monotonicity property nor the 
property of irrelevance of redundant defaults for sensible classes of knowledge bases.

Proof. Example 1.2 shows the second assertion.
Example 7.1 shows the first assertion for the case of closure under transposition. To show this assertion for the case of 

closure under contraposition, just add the absurd rules α, ¬α → l for each domain atom α and each domain literal l. The 
resulting knowledge bases are closed under contraposition (Lemma B.1 in Appendix B).

In the new knowledge base, apart from the 8 previous arguments, it should be clear that each new argument contains 
at least one occurrence of some absurd rule. Therefore for each new argument X, dr(X) = ldr(X) = {d1, . . . , d4}.44

44 To see this point, consider arguments containing exactly one occurrence of absurd rules and also as their last rule. Therefore, there are two subargu-
ments containing no absurd rules with conclusions ai , ¬ai for i = 1, .., 4. Therefore these two subarguments must be Ai, Bi for some i.
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From {d1, . . . , d4} �E {di}, it follows X �xE Ai , i = 1, . . . , 4, x = l, w . Hence X does not attack any other argument. The 
unique stable belief set is still the same like before. �

There could be more than one way to interpret the elitist and democratic principles leading to different orderings be-
tween arguments. One could for example strengthen slightly the elitist principle as in the following example.

Definition 7.15 (Strengthened elitist principle).

1. Let �, �′ be sets of defeasible rules. We say that � is less preferred than �′ wrt the strengthened elitist principle, denoted 
by � �sE �′ , iff
• � �E �′ and
• if �′ �= ∅ then ∃d ∈ � ∃d′ ∈ �′: d ≺ d′ .

2. We say that an argument A is less preferred than an argument B wrt the last link principle and the strengthened elitist 
principle, denoted by A �lsE B , iff ldr(A) �sE ldr(B).

3. For each knowledge base K, attlsE(K ) ⊆ ARK × ARK is an attack relation defined by: (A, B) ∈ attlsE(K ) iff one of the 
following conditions holds:
• A rebuts B (at B ′) such that A ��lsE B ′ .
• A undercuts B. �

Let us consider again the Example 7.1. It is not difficult to see that the following assertions hold:

{d1,d3,d4} � �sE{d2}, {d2,d3,d4} � �sE{d1}, {d1,d2,d3} � �sE{d4}, {d1,d2,d4} � �sE{d3}.
Therefore Bi attacks Ai for each i = 1, . . . , 4. Therefore there are three stable extensions that are also consistent.

Lemma 7.8. �sE ⊂ �E .

Proof. It is obvious that �sE ⊆ �E . In Example 7.1, it is clear that {d1, d3, d4} �E {d2}. As elaborated above, it holds that 
{d1, d3, d4} � �sE{d2}. Therefore �sE ⊂ �E . �
Lemma 7.9. Let K be a sensible class of knowledge bases satisfying the self-contradiction property. Further let K ∈K and E be a stable 
extension wrt the attack relation assignment attlsE. Then cnl(E) is consistent and closed.

Proof. See Appendix H. �
Prakken in [39] has studied an even stronger version of elitist principle where in Definition 7.12 the preorder relation �

is replaced by its strict order ≺, i.e. � is said to be less preferred than �′ wrt the strict elitist principle, denoted by � �σ E �′ , 
iff �′ = ∅ or �′ �= ∅ and ∃d ∈ � ∀d′ ∈ �′: d ≺ d′ .

It is not difficult to see that �σ E is a subset of �sE . To see that there is a proper-subset-relationship, consider the 
example where {d0} �sE {d0, d1} given d0 ≺ d1, but {d0} � �σ E {d0, d1}.

It is proved in [39] that strict elitism satisfies the consistency postulate when combined with both the last link and weak-
est link principles. We leave for future works the questions concerning other properties of the attack relation assignments 
for both strengthened and strict elitist principles.

The discussion in this chapter shows that ASPIC+ is a fertile framework for studying the semantics of structured argu-
mentation in which a rich and diverse set of argument orderings could be defined. The ordinary properties proposed in this 
paper could be used for evaluating and classifying the attack relations obtained from these argument orderings.

8. Discussion and conclusion

We have presented in this paper an axiomatic analysis of semantics for structured argumentation both with and without 
preferences between defeasible rules by giving a set of simple and intuitive properties that could be used to analyze the 
attack relations underlying the semantics of structured argumentation. We have shown that the normal attack relation 
assignment could be viewed as a normal form for ordinary attack relation assignments in the sense that the normal attack 
relation assignment is ordinary and the stable extensions wrt any ordinary attack relation assignments are also stable 
extensions wrt the normal attack relation assignment. This insight suggests that one can study the stable semantics of 
ordinary attack relation assignment by looking at the stable semantics of the normal attack relation assignment.

Many distinct interpretations of preferences between defaults have been proposed and explored intensively in the lit-
erature [8,6,10,15,34,35]. In this paper, we follow a minimalist approach and embrace a view of the preference between 
defaults that is shared by the other interpretations. This suggests that the semantics for any more elaborated interpretations 
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of default preferences could be characterized by a subset of the set of stable extensions wrt normal attack relation assign-
ments. Theorem 6.2 suggests that an axiomatic characterization for the new interpretation could be obtained by adding new 
properties to the axioms of the ordinary semantics presented in this paper.

Gelfond and Son [24] proposed to represent prioritized default reasoning in answer set logic programming. Similarly 
to our view, Gelfond and Son [24] consider the role of preferences of defaults as a tool for conflict resolution where the 
knowledge base should specify explicitly which rule is to be picked when two rules are applicable but where accepting both 
leads to contradiction. Gelfond and Son’s approach could be viewed as a kind of “off-the-shelf” programming solution that 
could be easily implemented in logic programming. Gorogiannis and Hunter, Amgoud and Besnard as well as Hunter and 
Woltran [25,2,1,28,45] studied the structure of arguments and their semantics based on classical or abstract Tarski logics. 
The relationship between these approaches and the ASPIC+ framework has also been studied in [34]. Garcia and Simari’s 
defeasible logic programming [21] studied attacks based on the specificity principle while Bondarenko, Dung, Kowalski and 
Toni [7] considered assumption-based attacks.

An interesting challenge is to study the possibilities to integrate our approach with these approaches. A combination of 
our approach with Gelfond and Son’s one could provide a methodology for developing prioritized default reasoning where 
guidelines for the conflict relations should be provided to capture the normal semantics. Such combinations would be both 
ordinary and suitable for quick deployment in applications. Some interesting results have been presented in Lemma 7.4
showing that the ASPIC+-attack relations already embody in them self key features of ordinary semantics. The results in 
section 7.4 suggests that there is much in common between ASPIC+ semantics and the ordinary semantics. Though the 
formal interpretation of the elitist and democratic principles in [34,35] are appealing, a deeper analysis of these principles 
may be helpful to an integrated framework for structured argumentation.

In this paper, we focus our attention on stable semantics. We believe many of the results in this paper also hold for other 
semantics like complete extension semantics. For example, the credulous cumulativity property should hold wrt complete 
extension semantics for the same reasons it holds wrt stable semantics. We show below that it is indeed the case. We first 
adapt the definition of credulous cumulativity property for complete extension semantics.

Definition 8.1 (Credulous cumulativity wrt complete extensions). Let K be a sensible class of knowledge bases. An attack 
relation assignment att is said to satisfy the property of credulous cumulativity for K wrt complete extension semantics if 
and only if for each K ∈K, for each complete belief set S of K wrt att and for each finite subset � ⊆ S of literals,

1. K + � belongs to K and
2. S is a complete belief set of K + � wrt att. �

An identical proof of Lemma 4.1 where references to stable extensions are simply replaced by complete extensions shows 
that credulous cumulativity implies both the consistency and closure postulates for complete extensions.

The following theorem shows that the credulous cumulativity property wrt complete extension semantics is also satisfied 
by the normal attack relation assignment.

Theorem 8.1. Let K be a sensible class of knowledge bases that are closed under transposition or contraposition. Then the normal 
attack relation assignment attnr satisfies the credulous cumulativity property for K wrt complete extensions semantics.

Proof. See Appendix J. �
We conclude this section with a discussion of the relationship between our notion of credulous cumulativity and Gab-

bay’s “skeptical” version of cumulativity [20]. Skeptical cumulativity has been studied extensively by Kraus, Lehman and 
Magidor [29], Brewka [9], Geffner and Pearl [26], Dung and Son [18]. Skeptical cumulativity intuitively states that adding a 
skeptical conclusion to the knowledge base does not change the other conclusions. Brewka [9] generalized and adapted the 
idea of skeptical cumulativity to default logic. We adopt Brewka’s concept as the semantics of both default logic and our 
knowledge bases are based on the notion of extensions.

A stable belief set could be viewed as representing a possible world given a background knowledge base K . In this spirit, 
we could say that a set � of domain literals is predictable wrt K iff � is a subset of some stable belief set of K .

An expansion K + � of K by a predictable � is then said to be a predictable expansion of K . Skeptical cumulativity 
could be viewed as stating that the stable belief sets of predictable expansions of a knowledge base K coincide with the 
stable belief sets of K. This intuition is formalized in the following definition adapted from Brewka’s formulation of skeptical 
cumulativity for default logics [9].

Definition 8.2. We say that an attack relation assignment att satisfies the skeptical cumulativity property for a sensible class 
of knowledge bases K iff

1. all predictable expansions of knowledge bases in K belong to K, and
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2. for each predictable expansion K + � of K ∈ K, the set of stable belief sets of K + � coincides with the set of stable 
belief set S of K where � ⊆ S . �

It is obvious that skeptical cumulativity implies credulous cumulativity. But the reverse does not hold as the example 
below shows.

Example 8.1. Consider a basic knowledge base K = (RS, RD, �, BE) where RS = ∅, �= ∅, BE = ∅ and RD consists of three 
defeasible rules

d1 : ⇒ a d2 : ⇒ ¬a d3 : a ⇒ b

It is clear that S = {a, b} is a stable belief set of K wrt attack relation attbs(K ). It is also clear that S is a stable belief set 
of K ′ = K + {b}. But K ′ has another stable belief set {¬a, b} (wrt attbs(K ′)) that is not a stable belief set of K . Therefore the 
skeptical cumulativity property does not hold for the basic attack relation assignment attbs . �
Appendix A. Recall proof of Lemma 3.1

For a strict argument A over a set of domain literals X ⊆ L, the set of premises of A, denoted by Prem(A), is the set of 
conclusions of subarguments of A of the form [α], α ∈ X .

Lemma A.1. Let K be a knowledge base closed under contraposition or transposition and A be a strict argument (wrt K + X) with 
conclusion σ and Prem(A) ⊆ X. Then for each α ∈ Prem(A), there is a strict argument B (wrt K + (X ∪ {¬σ })) with Prem(B) ⊆
Prem(A) ∪ {¬σ } and conclusion ¬α.

Proof. If K is closed under contraposition, the lemma is obvious. We prove the lemma for the case of closure under trans-
position by induction on the structure of A.

Base Case: A = [α], α ∈ X . Obvious.
Inductive Case: Suppose A is of the form [A1, . . . , An → σ ] where Cnl(Ai) = αi . Let α ∈ Prem(A). Without loss of gener-

ality, let α ∈ Prem(An). From the closure under transposition, the rule α1, . . . , αn−1, ¬σ → ¬αn also belongs to RS. Let B be 
the argument A1, . . . , An−1, ¬σ → ¬αn .

From the induction hypothesis, there is an argument T whose premises are in Prem(An) ∪ {¬αn} and whose conclusion 
is ¬α.

Let T ′ be the argument obtained from T by replacing each occurrence of premise ¬αn by the argument B . It is clear 
that Prem(T ′) ⊆ Prem(A) ∪ {¬σ } and Cnl(T ′) = ¬α. �
Lemma 3.1. If K is closed under transposition or contraposition then K satisfies the self-contradiction property.

Proof. Let X be a minimal inconsistent set of domain literals. Since X is inconsistent, there is a domain literal λ such that 
X �K λ and X �K ¬λ.

• Let K be closed under contraposition. Let x ∈ X . It is clear {x, λ} �K λ. Since K is closed under contraposition, it follows 
obviously {λ, ¬λ} �K ¬x. Therefore X �K ¬x.

• Let K be closed under transposition. There are two arguments A0, A1 with premises in X and conclusions λ, ¬λ

respectively. From the minimality of X, it holds: X = Prem(A0) ∪ Prem(A1). Let x ∈ X . Without loss of generality, 
suppose x ∈ Prem(A0). From the Lemma A.1, it follows that there exists an argument B with conclusion ¬x and 
Prem(B) ⊆ Prem(A0) ∪ {¬λ}. Let A be the argument obtained by replacing each subargument of the form [¬λ] in B
by argument A1. It is clear that Prem(A) ⊆ X and the conclusion of A is ¬x. �

Appendix B

Lemma B.1. Let RS consist of rules of the forms

a1, . . . ,ai−1,ai+1, . . . ,an → ¬ai

and

ai,¬ai → l

where 1 ≤ i ≤ n and l is a literal over a1, . . . , an.
Then RS is closed under contraposition.
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Proof. Let S be a set of literals and S � λ and σ ∈ S . We show S \ {σ } ∪ {¬λ} � ¬σ . There are two cases:

1. S is consistent.
(a) λ ∈ S .

If σ = λ then we are done. Suppose σ �= λ. Then {λ, ¬λ} ⊆ S \ {σ } ∪ {¬λ}. We are done.
(b) λ /∈ S .

Because S is consistent and λ /∈ S , λ must be derived from S using a rule of the form a1, . . . , ai−1, ai+1, . . . , an → ¬ai . 
Without loss of generality, we could assume λ = ¬a1. Therefore S = {a2, . . . , an}. We are done.

2. S is inconsistent.
(a) There is i: {ai, ¬ai} ⊆ S .

• σ ∈ {ai, ¬ai}.
Obviously ¬σ ∈ S \ {σ } ∪ {¬λ}. We are done.

• σ /∈ {ai, ¬ai}.
Obviously {ai, ¬ai} ⊆ S \ {σ } ∪ {¬λ}. We are done as absurd rules derive any thing.

(b) There is no i: {ai, ¬ai} ⊆ S .
Since S is inconsistent, there is i such that there are strict arguments over S supporting ai , ¬ai without using absurd 
rules. The only such arguments are [ai] and a1, . . . , ai−1, ai+1, . . . , an → ¬ai . Therefore S = {a1, a2, . . . , an}.
• λ = ai .

If σ �= ai , obviously {ai, ¬ai} ⊆ S \ {σ } ∪ {¬λ}. We are done. Suppose σ = ai , we are also done obviously.
• λ = ¬ai .

If σ = ai , we are done. If σ = a j �= ai , we have S \ {σ } ∪{¬λ} = {a1, . . . , a j−1, a j+1, . . . , an} � ¬a j . We are done. �
Appendix C

Lemma 4.2. Let K be a knowledge base, A ∈ ARK and � ⊆ BE be finite. It holds that X ′ is a subargument of an argument X ∈ A ↑ �

iff there exists a subargument A′ of A such that X ′ ∈ A′ ↑ �.

Proof. We prove by induction on the structure of A.

1. A = [α], α ∈ BE. The lemma holds obviously.
2. A = [A1, . . . , An, r].

• “Only IF”. There are two cases:
Case 1: X = [α], α ∈ BE. Hence X ′ = X . The lemma holds obviously for A′ = A.
Case 2: X = [X1, . . . , Xn, r] for Xi ∈ Ai ↑ �. If X ′ = X then just set A′ = A. We are done.
Suppose X ′ �= X . Hence X ′ is a subargument of some Xi , say X1. From induction hypothesis, there is some subargu-
ment A′

1 of A1 such that X ′ ∈ A′
1 ↑ �. Set A′ = A′

1, we are done.
• “IF” If A′ = A, we are done.

Suppose A′ �= A. Hence A′ is a subargument of some Ai , say A1. From induction hypothesis, X ′ is subargument of 
some X ∈ A1 ↑ �. Hence X ′ is a subargument of Y = [X, A2, . . . , An, r]. It is clear Y ∈ A ↑ �. �

Theorem 4.1. Let K be a sensible class of knowledge bases such that for each K = (RSB, BE) ∈ K, for each evidence ω ∈ BE, K + dω

belongs to K. Further let att be an attack relation assignment satisfying the properties of attack monotonicity and context-independence 
for K. Then att also satisfies the property of irrelevance of redundant defaults for K.

Proof. Let K be a knowledge base and ω ∈ BE and K ′ = K + dω . For each argument X ∈ ARK ′ , let st(X) be the argument 
obtained from X by replacing each occurrence of defeasible rule dω in X by ω. It is clear that st(X) ∈ X ↑ ω. For any set of 
arguments AS ⊆ ARK ′ , let st(AS) = {st(X) | X ∈ AS}.

1. We show that the stable belief sets of K, K’ coincide.
(a) Let E be a stable extension of K and S = cnl(E). Due to the context-independence, E is conflict-free wrt att(K ′).

We show that S is a stable belief set of K ′ .
Let E ′ = {X ∈ ARK ′ s.t. st(X) ∈ E and E ∪ {X} is conflict-free wrt att(K’)}. It is obvious that E ⊆ E ′ and S = cnl(E ′).
We show that E ′ is stable extension of (AR′

K , att(K ′)).
We first show E ′ is conflict-free wrt att(K’). Suppose there are X, Y ∈ E ′ s.t. X attacks Y wrt att(K ′). From the 
attack monotonicity, st(X) attacks Y wrt att(K’) implying that E attacks Y wrt att(K ′). Contradiction since E ∪ {Y } is 
conflict-free wrt att(K ′).
We show that E ′ attacks each argument in ARK ′ not belonging to it. Let X ∈ ARK ′ \ E ′ . From the definition of E ′ , it 
follows immediately that st(X) /∈ E or E ∪ {X} is not conflict-free wrt att(K’).
If st(X) /∈ E then there is A ∈ E s.t. A attacks st(X) wrt att(K). Due to the context independence, A attacks st(X) wrt 
att(K’). Due to attack monotonicity, A attacks X wrt att(K’). Hence E’ attacks X wrt att(K’).
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Suppose now st(X) ∈ E and E ∪ {X} is not conflict-free wrt att(K’). If X does not attack E wrt att(K ′) then E attacks 
X wrt att(K ′) since E ∪ {X} is not conflict-free wrt att(K’). We are done.
Suppose X attacks E wrt att(K’). Therefore st(X) attacks E wrt att(K’). Thus st(X) attacks E wrt att(K) due to the 
context-independence. Contradiction to the fact that st(X) ∈ E and E is conflict-free. This case hence does not occur.

(b) Let E’ be a stable extension of (AR′
K , att(K ′)). Therefore st(E ′) ⊆ E ′ (otherwise E ′ attacks st(E ′) wrt att(K’). Due to 

attack-monotonicity, E ′ attacks itself wrt att(K’), a contradiction). Let E = st(E ′). E is hence conflict-free wrt att(K’). 
Due to the context-independence, E is hence conflict-free wrt att(K).
Let X ∈ ARK \ E . We show that E attacks X wrt att(K). From st(X) = X , it follows X /∈ E ′ . Therefore E ′ attacks X wrt 
att(K’). From attack monotonicity and E = st(E ′), E attacks X wrt att(K’). From the context-independence, E attacks 
X wrt att(K).
E hence attacks every argument in ARK not belonging to E wrt att(K). E is stable wrt att(K).

2. We show that the complete belief sets of K, K’ (wrt att) coincide.
(a) Let E be a complete extension of (ARK , att(K )). Due to the context-independence, E is conflict-free wrt att(K ′).

Property 1. For each A ∈ ARK , A is defended by E wrt att(K) iff A is defended by E wrt att(K’).

Proof. “⇐” Let A be defended by E (wrt att(K ′)). Let X ∈ ARK attack A wrt att(K ). Due to the context-independence, 
X also attacks A wrt att(K ′). Therefore E attacks X wrt att(K ′). Due to the context independence, E attacks X wrt 
att(K ). We proved that A is defended by E wrt att(K).
“⇒” Let A be defended by E (wrt att(K )). Let X ∈ ARK ′ attack A wrt att(K ′). Due to the attack monotonicity, st(X)

also attacks A wrt att(K ′). Due to the context independence, st(X) also attacks A wrt att(K). Hence E attacks st(X) 
wrt att(K). Due to the context independence, E attacks st(X) wrt att(K ′). Therefore E attacks X wrt att(K ′) (due to 
attack monotonicity). We proved that A is defended by E wrt att(K’). �
Property 2. Let A ∈ ARK ′ such that A is defended by E wrt att(K’). Then st(A) is defended by E wrt att(K’).

Proof. Let X ∈ ARK ′ attack st(A) wrt att(K’). Due to the attack monotonicity, st(X) also attacks st(A) wrt att(K ′). 
Hence st(X) attacks A wrt att(K’) due to the attack monotonicity. Therefore E attacks st(X) wrt att(K’). Due to attack 
monotonicity, E attacks X wrt att(K’). �
It follows immediately from Properties 1, 2: For each A ∈ ARK ′ , if A is defended by E wrt att(K’) then st(A) is 
defended by E wrt att(K) implying that st(A) ∈ E . Let E ′ = E ∪ {A ∈ ARK ′ s.t. A is defended by E wrt att(K’)}. From 
Property 1, each argument in E ′ is defended by E wrt att(K’). It is also clear E ′ ⊆ E ∪ {A ∈ ARK ′ | st(A) ∈ E}. Hence 
st(E ′) ⊆ E ⊆ E ′ .
We show that E ′ is conflict-free wrt att(K’). Suppose ∃X, Y ∈ E ′ : (X, Y ) ∈ att(K ′). Since Y is defended by E wrt 
att(K’), E attacks X wrt att(K’). Since X is also defended by E wrt att(K’), E attacks E wrt att(K’). From context-
independence, E attacks E wrt att(K). Contradiction.
From st(E ′) ⊆ E and the attack monotonicity, it follows immediately that any argument in ARK ′ attacked by E ′ wrt 
att(K ′) is also attacked by E wrt att(K ′). Hence any argument in ARK ′ defended by E ′ wrt att(K ′) is also defended 
by E wrt att(K ′) and hence belongs to E ′ . E ′ is a complete extension of (ARK ′ , att(K ′)). From st(E ′) ⊆ E ⊆ E ′ , it 
follows immediately Cnl(E ′) = Cnl(E).

(b) Let E ′ be a complete extension of (AR′
K , att(K ′)). As each attack against st(E ′) wrt att(K’) is an attack against E ′ wrt 

att(K’), all attacks against st(E ′) (wrt att(K’)) are counter-attacked (wrt att(K’)) by E ′ . Therefore st(E ′) ⊆ E ′ .
Let E = st(E ′) ⊆ ARK .
We show that E is a complete extension of (ARK , att(K )).
Due to the context independence and E ⊆ E ′ , it is clear that E is conflict-free.
Let A ∈ ARK be defended by E wrt att(K).
We first show A is defended by E ′ wrt att(K’).
Let X ∈ ARK ′ attack A wrt att(K’). Therefore st(X) attacks A wrt att(K’) due to the attack monotonicity. Due to the 
context-independence, st(X) attacks A wrt att(K). Since A is defended by E wrt att(K), st(X) is attacked by E wrt 
att(K). From E = st(E ′), st(X) is attacked by st(E ′) wrt att(K). From the context-independence, st(X) is attacked by 
st(E ′) wrt att(K’). From st(E ′) ⊆ E ′ , E ′ attacks st(X) wt att(K’). From attack monotonicity, E’ attacks X wrt att(K’).
Since E ′ is complete, A ∈ E ′ . Hence A ∈ E . We proved that E is complete. �

Appendix D

Lemma D.1. Let K be a sensible class of knowledge bases and att be an attack relation assignment satisfying the basic axioms for K. 
Further let K ∈K and E be a stable extension of (ARK , att(K )) and B ∈ ARK \ E such that B is not undercut by any argument in E.
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Then there is a subargument X of B such that

1. X /∈ E and all proper subarguments of X belong to E, and
2. for each argument A ∈ E, if (A, X) ∈ att(K ) then A directly rebuts X.

Proof. Since E is stable extension, E attacks B. From Definition 4.1, it is obvious that B is defeasible. Let SU be the set of 
subarguments of B not belonging to E. Since B /∈ E , SU is not empty. As there exists no infinite sequence of arguments (Ai)i
such that Ai+1 is a proper subargument of Ai , there is no infinite sequence of arguments (Bi)i such that for each i, Bi ∈ SU
and Bi+1 is a proper subargument of Bi . Therefore there exists X ∈ SU such that no proper subarguments of X belong to 
SU. Hence all proper subarguments of X belong to E. From X /∈ E , and E is a stable extension, E attacks X wrt att(K).

Let A ∈ E such that (A, X) ∈ att(K ). Since X is a subargument of B, and B is not undercut by any argument in E, X is not 
undercut by any argument in E. Hence X is not undercut by A.

We first prove that X is basic defeasible. Suppose the contrary. Therefore X = [X1, . . . , Xn, r] and r is a strict rule. Since 
all proper subarguments of X belong to E, ∀i : cnl(Xi) ∈ cnl(E). From Lemma 4.1, cnl(E) is closed. Therefore cnl(X) ∈ cnl(E). 
Because (A, X) ∈ att(K ), X = [X1, . . . , Xn, r] and r is a strict rule and for every i, Xi and all subarguments of Xi belong 
to E , A contradicts X (at X) (Definition 4.10). Hence cnl(E) is contradictory. Contradiction. We have proved that X is basic 
defeasible.

Because (A, X) ∈ att(K ), all proper subarguments of X belong to E and A does not undercut X, it is clear that A directly 
rebuts X . �
Appendix E

Lemma E.1 (Reduced general characteristic lemma). Let att be an ordinary attack relation assignment defined for a sensible class K of 
knowledge bases. Further let K ∈ K and E be a stable extension of (ARK , att(K )) and B ∈ ARK \ E such that B is not undercut by any 
argument in E.

Then there is a subargument X of B such that

1. X /∈ E and all proper subarguments of X belong to E, and
2. for each argument A ∈ E such that (A, X) ∈ att(K ), following properties hold:

(a) A directly rebuts X.
(b) (Normal condition) There is no defeasible rule d ∈ ldr(A) such that d ≺ last(X).

Proof. The proof proceeds in two steps. In the first step, we introduce a helpful notation and prove a lemma. The main 
proof is given in the second step.

1. For simplicity, for any arbitrary defeasible rule d of the form b1, . . . , bn ⇒ h with bd(d) ⊆ BE, define [|d|] to be of the 
form [[b1], . . . , [bn], d].
It is clear that for any basic defeasible argument B = [B1, . . . , Bn, d], B is a weakening of [|d|] (if [|d|] is defined) by 
{B1, . . . , Bn}. The following lemma follows immediately from the link-oriented property.

Lemma E.2. Let K be knowledge base and A, B ∈ ARK such that
(a) B is basic defeasible, and
(b) [|last(B)|] ∈ ARK , and
(c) A does not attack any proper subargument of B wrt att(K).
It holds that if (A, B) ∈ att(K ) then (A, [|last(B)|]) ∈ att(K ). �

2. From Lemma D.1, it follows immediately that there is a subargument X of B s.t. conditions 1 and 2a hold. We only need 
to show the NC condition.
Let (A, X) ∈ att(K ) and A ∈ E . Hence A directly rebuts X . Let dX = last(X).
Suppose there is d ∈ ldr(A) s.t. d ≺ dX .
Let � = ldr(A) \{d} and � = bd(d) ∪hd(�) ∪bd(dX ). From Lemma 4.3, mbd(A) ⊆ E . From the definition of X, bd(dX ) ⊆ E . 
Therefore � ⊆ cnl(E). Let K ′ = K + �.
Let D be the argument obtained from A by replacing each argument Z ∈ mbd(A) whose last default belongs to � (i.e. 
last(Z) ∈ �) by its conclusion cnl(Z) and replacing each argument Y ∈ mbd(A) whose last default is d (i.e. last(Y ) = d) 
by [|d|].
It is clear that D ∈ ARK ′ and cnl(D) = cnl(A). It is also clear that X ∈ ARK ′ . From (A, X) ∈ att(K ) and the context-
independence of att, it follows (A, X) ∈ att(K ′). It is not difficult to see that D ∈ A ↑ �. Therefore (D, X) ∈ att(K ′)
following the property of attack monotonicity.
From cnl(D) = cnl(A) and the fact that all proper arguments of X belong to E and the conflict-freeness and consistency 
of E and the property of attack closure, it is clear that D does not attack any proper subargument of X.
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Since bd(dX ) ⊆ �, it holds [|dX |] ∈ ARK ′ . From the effective rebut property, (D, [|dX |]) /∈ att(K ′). It is clear that X is a 
weakening of [|dX |]. Since D does not attack any proper subargument of X wrt att(K ′) and (D, X) ∈ att(K ′), (D, [|dX |]) ∈
att(K ′) (following Lemma E.2). Impossible since (D, [|dX |]) /∈ att(K ′). �

Appendix F. Credulous cumulativity of attnr

Lemma F.1. Let X ∈ A ↓ AS and X ′ be a subargument of X such that X ′ is not a subargument of any argument in AS. Then there exists 
a subargument A′ of A s.t. X ′ ∈ A′ ↓ AS.

Proof. We prove by induction on the structure of A.

1. A = [α], α ∈ BE. Therefore A ↓ AS = {[α]} ∪ {Z ∈ AS | cnl(Z) = α}. Since X ′ is not a subargument of any argument in AS, 
X ′ = [α] and [α] /∈ AS. Let A′ = A. It is clear that X ′ ∈ A′ ↓ AS.

2. A = [A1, . . . , An, r]. Therefore X = [X1, . . . , Xn, r] for Xi ∈ Ai ↓ �. If X ′ = X then just set A′ = A. We are done.
Suppose X ′ �= X . Hence X ′ is a subargument of some Xi , say X1. From induction hypothesis, there is some subargument 
A′

1 of A1 such that X ′ ∈ A′
1 ↓ AS. Set A′ = A′

1, we are done. �
From the definition of normal attack relation assignment and Lemmas 4.3, 6.4 it is easy to see that the following lemma 

holds.

Lemma F.2. For each knowledge base K , for each complete extension E of (ARK , attnr(K )) and each argument A ∈ ARK , it holds that 
A ∈ E iff each maximal basic defeasible subargument of A belongs to E (i.e. mbd(A) ⊆ E). �
Lemma F.3. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction. Then for each knowledge base 
K ∈K, each complete extension E of (ARK , attnr(K )), cnl(E) is closed.

Proof. Let E be a complete extension of (ARK , attnr(K )) and S = cnl(E).
Let S � α. If α ∈ S , we are done.
Suppose α /∈ S . Therefore there is a finite � ⊆ S of domain literals s.t. � � α. Let A0 be a strict argument over � wrt the 

set of strict rule RS of K. It is clear A0 ∈ ARK+� .
Let A be a weakening of A0 by replacing each subargument of the form [α], α ∈ �, in A0 by an argument Xα ∈ E s.t. 

cnl(Xα) = α. Therefore A ∈ ARK . It is clear each argument in mbd(A) is a subargument of some argument in {Xα | α ∈ �}. 
From Lemma 4.3, mbd(A) ⊆ E . From Lemma F.2, A ∈ E . Therefore α ∈ S . Impossible since we assume that α /∈ S . This case 
hence cannot occur.

We have proved that S is closed. �
Lemma F.4. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction.

Then for each knowledge base K ∈K, each complete extension E of (ARK , attnr(K )), cnl(E) is consistent.

Proof. Let E be a complete extension of (ARK , attnr(K )) and S = cnl(E). From Lemma F.3, it is obvious that S is closed.
We next show the consistency of S. Suppose the contrary. Since S is closed, S is contradictory. Thus there are two 

arguments A, B ∈ E such that cnl(B) = ¬cnl(A). Let AS = mbd(A) ∪ mbd(B) ⊆ E . Therefore cnl(AS) ∪ BE is inconsistent (wrt 
strict rules RS of K).

Let M be a minimal inconsistent subset of cnl(AS) ∪ BE. Since BE is consistent, M ∩ cnl(AS) �= ∅. Let AS0 ⊆ AS such that 
cnl(AS0) = M ∩ cnl(AS). Hence AS0 �= ∅.

Let �0 = {last(X) | X ∈ AS0} and C ∈ AS0 such that last(C) be minimal wrt ≺ in �0. From self-contradiction property, 
it follows M � ¬hd(last(C)). Thus there is an argument Y s.t. mbd(Y ) ⊆ AS0 and cnl(Y ) = ¬hd(last(C)). From Lemma F.2, 
it follows Y ∈ E . It is clear that ldr(Y ) ⊆ �0. Therefore, there is no default d′ ∈ ldr(Y ) s.t. d′ ≺ last(C). Therefore (Y , C) ∈
attnr(K ).

From C ∈ AS0 ⊆ AS ⊆ E , it follows E is not conflict-free wrt attnr(K ). Impossible. �
Lemma 6.6. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction. Then the normal attack relation 
assignment attnr satisfies the credulous cumulativity property for K.

Proof. Let K ∈ K and E be a stable extension of (ARK , attnr(K )), S = cnl(E) and � ⊆ S be a finite set of domain literals. 
Further let E ′ = E ↑ � = ⋃

A∈E A ↑ � and K ′ = K + �. It is clear that E ⊆ E ′ ⊆ ARK ′ , cnl(E) = cnl(E ′) and BE ∪ � ⊆ S .
We show that E ′ is a stable extension of (ARK ′ , attnr(K ′)).
From Lemma F.4, it follows S is consistent. S is hence not contradictory.
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As E is conflict-free wrt attnr(K ), E ′ is also free from the undercut-attacks. From Lemma 4.2 and Lemma 4.3, it follows 
that E ′ contains all subarguments of its arguments. Since S = cnl(E ′) is not contradictory and E ′ contains all subarguments 
of its arguments, E ′ is free from rebuts. Therefore E ′ is conflict-free wrt attnr(K ′).

Property. Let A = [X1, . . . , Xn, r] ∈ ARK ′ and r be a strict rule. It holds: A belongs to E ′ iff ∀i : Xi ∈ E ′ .

Proof. Since E ′ contains all subarguments of its arguments, we only need to prove the “if”-direction.
Suppose ∀i : Xi ∈ E ′ . Therefore ∀i ∃Yi ∈ E : Xi ∈ Yi ↑ �. Let B = [Y1, . . . , Yn, r]. From Lemma F.2, mbd(B) ⊆ E . Therefore 

B ∈ E (also from Lemma F.2). From A ∈ B ↑ �, it follows immediately A ∈ E ′ . �
Let Z ∈ ARK+� \ E ′ . We show that E ′ attacks Z wrt attnr(K ′).
It is clear that there exists a subargument X of Z such that all proper subarguments of X belong to E ′ and X /∈ E ′ . 

From S = cnl(E) = cnl(E ′) and BE ∪ � ⊆ S and the above property, it follows X = [X1, . . . , Xn, d] and d is defeasible and 
∀i : Xi ∈ E ′ .

We show that E’ attacks X wrt attnr(K ′).
There are two cases:
Case 1: X ∈ ARK . Then X /∈ E . Hence E attacks X wrt attnr(K ). From Lemma 6.4, attnr satisfies the context-independence 

property. Hence E ′ attacks X wrt attnr(K ′).
Case 2: X /∈ ARK . Therefore X ∈ ARK+� \ ARK . Let �′ be a minimal subset of � such that X ∈ ARK+�′ . Further let AS be a 

minimal subset of E such that cnl(AS) = �′ .
Let Y be obtained from X by replacing each subargument [α], α ∈ �′ , of X by an argument Aα ∈ AS where cnl(Aα) = α. 

It is clear Y ∈ ARK and Y ∈ X ↓ AS. Therefore X ∈ Y ↑ �′ (Lemma 6.1). Because �′ ⊆ �, it is clear X ∈ Y ↑ �.
It is easy to see that Y = [Y1, . . . , Yn, d] where ∀i : Yi ∈ Xi ↓ AS.
We show that ∀i : Yi ∈ E . Suppose ∃i : Yi /∈ E . From Yi ∈ ARK , E attacks Yi wrt attnr(K ). There are two cases:

• E undercuts Yi . Since E does not undercut any argument in AS, E undercuts Xi . From Xi ∈ E ′ , E undercuts itself. Impos-
sible. This case hence does not happen.

• E rebuts Yi at Y ′
i . Therefore Y ′

i /∈ E . From AS ⊆ E and E contains all subarguments of its arguments, it follows that 
Y ′

i is not a subargument of any argument in AS. From Yi ∈ Xi ↓ AS and Lemma F.1, it follows that there exists a 
subargument X ′

i of Xi s.t. Y ′
i ∈ X ′

i ↓ AS. Therefore E contradicts X ′
i at X ′

i . From Xi ∈ E ′ and E ′ contains all subarguments 
of its arguments, it follows that X ′

i ∈ E ′ . Thus E ′ is contradictory. Contradiction to the consistency of cnl(E ′) (Note that 
cnl(E ′) = cnl(E)).

We show Y /∈ E . Suppose Y ∈ E . From X ∈ Y ↑ �, X ∈ E ′ . Contradiction.
Therefore Y ∈ ARK \ E and Y = [Y1, . . . , Yn, d] and ∀i : Yi ∈ E . Therefore ∃C ∈ E s.t. (C, Y ) ∈ attnr(K ). From context-

independence (Lemma 6.4), (C, Y ) ∈ attnr(K ′). From AS ⊆ E and C ∈ E , it follows that C does not attack AS wrt attnr(K ). 
From the context-independence property, C does not attack AS wrt attnr(K ′). Since Y is a weakening of X wrt AS and attnr

satisfies the axiom of link-orientation (Lemma 6.4), (C, X) ∈ attnr(K ′). From E ⊆ E ′ , we have C ∈ E ′ . Hence E ′ attacks X wrt 
attnr(K ′). �
Appendix G

Theorem 7.1. Every enumeration-based extension of K is a stable extension of (ARK , attnr(K )).

Proof. Let E be an enumeration-based extension of K. We show that E is a stable extension of (ARK , attnr(K )).
As E is a stable extension of (ARK , attbs(Kbasic)), and attnr(K ) ⊆ attbs(Kbasic), E is conflict-free wrt attnr(K ).
Let X be an argument not belonging to E. We show E attacks X wrt attnr(K ). Let SU X be the set of subarguments of 

X not belonging to E. Hence there exists one such argument such that no proper subarguments of it belong to SU X . Let 
A be such an argument. Thus all proper subarguments of A belong to E. Therefore A is basic defeasible (otherwise A ∈ E
following Lemma F.2 as E is a stable extension of (ARK , attbs(Kbasic)) and attbs(Kbasic) = attnr(Kbasic)).

Since E is a stable extension of (ARK , attbs(Kbasic)), there is an argument B ∈ E that either undercuts or rebuts A. If B 
undercuts A then it is obvious B undercuts X and hence (B, X) ∈ attnr(K ).

Suppose B rebuts A. It is clear that B rebuts A at A. Let last(A) = d. Therefore bd(d) ⊆ cnl(E). From cnl(B) = ¬hd(A), it 
follows d /∈ �E .

There are two cases:

1. �d′ ∈ ldr(B) s.t. d′ ≺ d. Therefore (B, X) ∈ attnr(K ).
2. There is d′ ∈ ldr(B) ⊆ �E such that d′ ≺ d. Let (di)i≥1 be an enumeration of �E as described in Definition 7.1. From 

d′ ∈ �E , ∃i s.t. d′ = di . Let n = min{ j | d j ≺ d}. Hence dn ≺ d. From Definition 7.1, it follows {hd(dk)|k < n} ∪ BE �K ¬hd(d). 
Therefore, there exists a strict argument Z over {hd(dk)|k < n} ∪ BE such that cnl(Z) = ¬hd(d). For each dk, k < n, there 
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exists a basic defeasible argument Xk ∈ E such that last(Xk) = dk . Let Y be obtained by replacing each premise hd(dk)

in Z by Xk . Therefore ldr(Y ) ⊆ {dk | k < n} and cnl(Y ) = ¬hd(d). From Xk ∈ E , Z is strict, and E is a stable extension 
of (ARK , attbs(Kbasic)) and attbs(Kbasic) = attnr(Kbasic) and Lemma F.2, we conclude Y ∈ E . From the definition of n, it 
follows that there is no rule in ldr(Y ) that is strictly less preferred than d. Therefore, Y rebuts X (at A) and there is no 
rule in ldr(Y ) that is strictly less preferred than last(A). We have proved (Y , X) ∈ attnr(K ). �

Lemma 7.1. Suppose K is stratified and A, B ∈ ARK such that (A, B) ∈ attnr(K ). Then ρ(A) ≤ ρ(B).

Proof. Suppose A undercuts or rebuts B at B ′ . Therefore ρ(B ′) ≤ ρ(B). If A undercuts B ′ (at B ′), it follows directly from 
Definition 7.2, ρ(A) ≤ ρ(last(B ′)) = ρ(B ′) ≤ ρ(B).

Suppose A rebuts B at B ′ . Therefore there is no d ∈ ldr(A) s.t. d ≺ last(B ′) implying that there is no d ∈ ldr(A) s.t. 
ρ(d) > ρ(last(B ′)). Hence for each d ∈ ldr(A), it holds: ρ(d) ≤ ρ(last(B ′)) implying that ρ(A) ≤ ρ(B ′) ≤ ρ(B). �
Theorem 7.2. Suppose K is a consistent and stratified knowledge base satisfying the self-contradiction property. Then each stable 
extension of (ARK , attnr(K )) is an enumeration-based extension of K.

Proof. Let E be a stable extension of (ARK , attnr(K )). From Lemmas 6.6, 4.1, it follows immediately that cnl(E) is consistent. 
As E is conflict-free wrt attnr(K ), arguments in E do not undercut each other. Thus from the consistency of cnl(E), and 
Lemma 4.3, arguments in E do not rebut each other. Therefore, E is conflict-free wrt attbs(Kbasic). Hence E is a stable 
extension of (ARK , attbs(Kbasic)). Let �i = {d ∈ �E | ρ(d) = i }. Define an enumeration of �E as follows:

1. List arbitrarily all rules in �0 resulting in (di)i≤n0 .
2. Suppose the list (di)i≤ni of rules in �0 ∪ . . .∪�i has been constructed. (di)i≤ni+1 is obtained by from (di)i≤ni by append-

ing to it an arbitrary list of rules in �i+1.

We show that (di)i≥1 is an enumeration of E as defined in Definition 7.1.

1. It is obvious that if di ≺ d j then j < i.
2. We show {hd(dk)|k < i} ∪ BE �K bd(di). Since di ∈ �E , there is an argument A ∈ E s.t. last(A) = di . Since all defeasible 

rules in dr(A) \ {di} have a rank less than ρ(di), they all belong to (d j) j<i . From (hd(dr(A)) \ {di}) ∪ BE �K bd(di), it 
follows {hd(dk)|k < i} ∪ BE �K bd(di).

3. Let d ∈ RD \ �E such that bd(d) ⊆ cnl(E) and there is j such that d j ≺ d (i.e. ρ(d) < ρ(d j)).
There exists hence a basic defeasible argument B with last(B) = d and whose proper subarguments all belong to E. 
Since E is stable extension of (ARK , attnr(K )), there is an argument A ∈ E s.t. (A, B) ∈ attnr(K ). From ρ(A) ≤ ρ(d)

(Lemma 7.1) and ρ(d) < ρ(d j), it follows immediately that all defeasible rules in A are listed before d j in (di)i≥1. 
Therefore {hd(dk)|k < j} ∪ BE �K ¬hd(d) or {hd(dk)|k < j} ∪ BE �K abd . �

Appendix H

Theorem 7.8. Let K be a sensible class of knowledge bases. Both attack relations assignments attlE and attwE satisfy the property of 
attack monotonicity for K.

Proof. It is not difficult to see that for X ′ ⊆ X , if X ′ �E Y then X �E Y , and if Y �E X then Y �E X ′ .
Let S ⊆ BE and A ∈ ARK and A′ ∈ A ↑ S . Let f w = dr and fl = ldr.

• Suppose (A, B) ∈ attxE . If A undercuts B then A′ also undercuts B. Hence (A′, B) ∈ attxE .
Let A rebuts B (at B ′). Therefore fx(A) � �E fx(B ′), From fx(A′) ⊆ fx(A) it follows fx(A′) � �E fx(B ′). Hence (A′, B) ∈ attxE .

• Suppose (C, A′) ∈ attxE . If C undercuts A′ then C undercuts A. Let C rebuts A′ (at B ′). Therefore C ��xE B ′ , i.e. fx(C)

� �E fx(B ′). From A′ ∈ A ↑ S and Lemma 4.2, there is a basic defeasible subargument B of A such that B ′ ∈ B ↑ S . 
From fx(B ′) ⊆ fx(B), it follows fx(C) � �E fx(B). Hence (C, B) ∈ attxE . Since attxE satisfies the property of subargument 
structure (Lemma 7.6), (C, A) ∈ attxE . �

Theorem 7.9. Let K be a sensible class of knowledge bases satisfying the self-contradiction property. Both attack relation assignments 
attlD, attwD satisfy the property of credulous cumulativity for K.

Proof. Let K ∈K and E be a stable extension of (ARK , attxD(K )) for x ∈ {l, w}, S = cnl(E) and � ⊆ S be a finite set of domain 
literals. Further let E ′ = E ↑ � = ⋃

A∈E A ↑ � and K ′ = K +�. It is clear that E ⊆ E ′ ⊆ ARK ′ , cnl(E) = cnl(E ′) and BE ∪� ⊆ S .
We show that E ′ is a stable extension of (ARK ′ , attxD(K ′)).
From Lemma H.1 below, it follows S is consistent. S is hence not contradictory.
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As E is conflict-free wrt attxD(K ), E ′ is also free from the undercut-attacks. From Lemma 4.2 and Lemma 4.3, it follows 
that E ′ contains all subarguments of its arguments. Since S = cnl(E ′) is not contradictory and E ′ contains all subarguments 
of its arguments, E ′ is free from rebuts. Therefore E ′ is conflict-free wrt attxD(K ′).

Property 1. Let A = [X1, . . . , Xn, r] ∈ ARK ′ and r be a strict rule. It holds: A belongs to E ′ iff ∀i : Xi ∈ E ′ .

Proof. Since E ′ contains all subarguments of its arguments, we only need to prove the “if”-direction.
Suppose ∀i : Xi ∈ E ′ . Therefore ∀i ∃Yi ∈ E : Xi ∈ Yi ↑ �. Let B = [Y1, . . . , Yn, r]. Therefore mbd(B) ⊆ E . It follows that 

B ∈ E (Lemma H.2). From A ∈ B ↑ �, it follows immediately A ∈ E ′ . �
Property 2. Let A ∈ E ′ and AS be a subset of E such that cnl(AS) = �. Further let B be obtained from A by replacing each subargument 
[α], α ∈ �, of A by an argument Aα ∈ AS where cnl(Aα) = α. It holds that B ∈ E.

Proof. Suppose B /∈ E . It is clear that B ∈ ARK . Therefore E attacks B wrt attxD(K ). There are two cases:

• E undercuts B . Since E does not undercut any argument in AS, E undercuts A. From A ∈ E ′ , E undercuts itself. Contra-
diction. This case hence does not happen.

• E rebuts B at B ′ . Therefore B ′ /∈ E . From AS ⊆ E and E contains all subarguments of its arguments, it follows that B ′ is 
not a subargument of any argument in AS. From B ∈ A ↓ AS and Lemma F.1, it follows that there exists a subargument A′
of A s.t. B ′ ∈ A′ ↓ AS. Therefore E contradicts A′ at A′ . From A ∈ E ′ and E ′ contains all subarguments of its arguments, it 
follows that A′ ∈ E ′ . Thus E ′ is contradictory. Contradiction to the consistency of cnl(E ′) (note that cnl(E ′) = cnl(E)). �

Let Z ∈ ARK+� \ E ′ . We show that E ′ attacks Z wrt attlD(K ′).
It is clear that there exists a subargument X of Z such that all proper subarguments of X belong to E ′ and X /∈ E ′ . 

From S = cnl(E) = cnl(E ′) and BE ∪ � ⊆ S and the above Property 1, it follows X = [X1, . . . , Xn, d] and d is defeasible and 
∀i : Xi ∈ E ′ .

We show that E’ attacks X wrt attxD(K ′).
There are two cases:
Case 1: X ∈ ARK . Then X /∈ E . Hence E attacks X wrt attxD(K ). Hence E ′ attacks X wrt attxD(K ′).
Case 2: X /∈ ARK . Therefore X ∈ ARK+� \ ARK . Let �′ be a minimal subset of � such that X ∈ ARK+�′ . Further let AS be a 

minimal subset of E such that cnl(AS) = �′ .
Let Y be obtained from X by replacing each subargument [α], α ∈ �′ , of X by an argument Aα ∈ AS where cnl(Aα) = α.
It is clear Y ∈ ARK and Y = [Y1, . . . , Yn, d] where each Yi is obtained from Xi by replacing each subargument [α], α ∈ �′ , 

of Xi by an argument Aα ∈ AS with cnl(Aα) = α.
Therefore from the above Property 2, it holds that ∀i : Yi ∈ E .
We show Y /∈ E . Suppose Y ∈ E . It is clear that Y ∈ X ↓ AS. Therefore X ∈ Y ↑ �′ (Lemma 6.1). Because �′ ⊆ �, it is clear 

X ∈ Y ↑ �. From X ∈ Y ↑ �, X ∈ E ′ . Contradiction.
Therefore it holds that Y ∈ ARK \ E and ∃C ∈ E s.t. (C, Y ) ∈ attxD(K ). From context-independence (Lemma 7.6), (C, Y ) ∈

attxD(K ′).
There are two cases:

• C undercuts Y. Since AS ⊆ E , it follows C undercuts X. Therefore E ′ attacks X wrt attxD .
• C rebuts Y. Since Y = [Y1, . . . , Yn, d] and Yi ∈ E , it follows that C rebuts Y at Y. Therefore C also rebuts X at X.

– Let x = w.
We show that (C, X) ∈ attwD(K ′). Suppose the contrary that (C, X) /∈ attwD(K ′). Therefore dr(C) �D dr(X). From 
dr(X) ⊆ dr(Y ), it follows dr(C) �D dr(Y ). Hence (C, Y ) /∈ attwD(K ). Contradiction. We have proved that (C, X) ∈
attwD(K ′). Therefore E ′ attacks X wrt attwD .

– Let x = l.
We show that (C, X) ∈ attlD(K ′). Suppose the contrary that (C, X) /∈ attlD(K ′). Therefore ldr(C) �D {d}. Hence (C, Y ) /∈
attlD(K ). Contradiction. We have proved that (C, X) ∈ attlD(K ′). Therefore E ′ attacks X wrt attlD . �

Lemma H.1. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction.
Then for each knowledge base K ∈K, each complete extension E of (ARK , attxD(K )), x ∈ {l, w}, cnl(E) is consistent and closed.

Proof. Let E be a complete extension of (ARK , attxD(K )) and S = cnl(E). From Lemma H.3, it is obvious that S is closed.
We next show the consistency of S. Suppose the contrary. Since S is closed, S is contradictory. Thus there are two 

arguments A, B ∈ E such that cnl(B) = ¬cnl(A). Let AS = mbd(A) ∪ mbd(B) ⊆ E . Therefore cnl(AS) ∪ BE is inconsistent (wrt 
strict rules RS of K).

Let M be a minimal inconsistent subset of cnl(AS) ∪ BE. Since BE is consistent, M ∩ cnl(AS) �= ∅. Let AS0 be a minimal 
subset of AS such that cnl(AS0) = M ∩ cnl(AS). Hence AS0 �= ∅.
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1. Let x = l.
Let �0 = {last(X) | X ∈ AS0} and C ∈ AS0 such that last(C) be minimal wrt ≺ in �0. From self-contradiction property, it 
follows M � ¬hd(last(C)). Thus there is an argument Y s.t. mbd(Y ) ⊆ AS0 and cnl(Y ) = ¬hd(last(C)). From Lemma H.2, 
it follows Y ∈ E . It is clear that ldr(Y ) ⊆ �0. Therefore, there is no default d ∈ ldr(Y ) s.t. d ≺ last(C).
We show (Y , C) ∈ attlD(K ). Suppose (Y , C) /∈ attlD(K ). Therefore ldr(Y ) �D {last(C)}, i.e. ldr(Y ) �D {last(C)} and
{last(C)} � �D ldr(Y ). Therefore ∀d ∈ ldr(Y ) : d � last(C) and ¬(∃d ∈ ldr(Y ) : last(C) � d) implying that ∀d ∈ ldr(Y ) : d ≺
last(C). Since we have proved before there is no default d ∈ ldr(Y ) s.t. d ≺ last(C), it follows that ldr(Y ) = ∅. Therefore 
(Y , C) ∈ attlD(K ). Contradiction to the assumption that (Y , C) /∈ attlD(K ). We have proved that (Y , C) ∈ attlD(K ).
From C ∈ AS0 ⊆ AS ⊆ E and Y ∈ E , it follows E is not conflict-free wrt attlD(K ). Contradiction. S is thus consistent.

2. Let x = w.
Let �0 = {last(X) | X ∈ AS0} and C ∈ AS0. From self-contradiction property, it follows M � ¬hd(last(C)). Thus there is an 
argument Y s.t. mbd(Y ) ⊆ AS0 and cnl(Y ) = ¬hd(last(C)). From Lemma H.2, it follows Y ∈ E .
Since E is conflict-free, (Y , C) /∈ attwD . Hence Y is defeasible and dr(Y ) �D dr(C).
From dr(C) � �D dr(Y ), it follows that there is d ∈ dr(C) s.t. for each d′ ∈ dr(Y ) : d � d′ . Since Y is defeasible, mbd(Y ) �= ∅. 
Let C ′ ∈ mbd(Y ). Therefore C ′ �= C and dr(C ′) ⊆ dr(Y ). From the self-contradiction property, it follows M � ¬hd(last(C ′)). 
Thus there is an argument Y ′ s.t. mbd(Y ′) ⊆ AS0 and cnl(Y ′) = ¬hd(last(C ′)). From Lemma H.2, it follows Y ′ ∈ E . From 
the minimality of AS0, it follows that C ′ ∪mbd(Y ′) = AS0. From C �= C ′ , it follows C ∈ mbd(Y ′). From the conflict-freeness 
of E, it follows dr(Y ′) �D dr(C ′). From dr(C) ⊆ dr(Y ′), it follows dr(C) �D dr(C ′). From dr(C ′) ⊆ dr(Y ), it follows dr(C) �D

dr(Y ). Contradiction. S is thus consistent. �
From the definition of attxD , x ∈ {l, w}, it follows immediately

Lemma H.2. For each knowledge base K , for each complete extension E of (ARK , attxD(K )), x ∈ {l, w}, and for each argument A ∈ ARK , 
it holds that A ∈ E iff each maximal basic defeasible subargument of A belongs to E (i.e. mbd(A) ⊆ E). �
Lemma H.3. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction. Then for each knowledge base 
K ∈K, each complete extension E of (ARK , attxD(K )), x ∈ {l, w}, cnl(E) is closed.

Proof. Let E be a complete extension of (ARK , attxD(K )) and S = cnl(E).
Let S � α. If α ∈ S , we are done.
Suppose α /∈ S . Therefore there is a finite � ⊆ S of domain literals s.t. � � α. Let A0 be a strict argument over � wrt the 

set of strict rule RS of K. It is clear A0 ∈ ARK+� .
Let A be a weakening of A0 by replacing each subargument of the form [α], α ∈ �, in A0 by an argument Xα ∈ E s.t. 

cnl(Xα) = α. Therefore A ∈ ARK . It is clear each argument in mbd(A) is a subargument of some argument in {Xα | α ∈ �}. 
From Lemma 4.3, mbd(A) ⊆ E . From Lemma H.2, A ∈ E . Therefore α ∈ S . Impossible since we assume that α /∈ S . This case 
hence cannot occur.

We have proved that S is closed. �
Lemma 7.7. attlE � attnr � attlD � attbs .45

Proof. Let K be a knowledge base. It is obvious that attlE(K ), attnr(K ), attlD(K ) are all subsets of attbs(K ).

1. We show attlE(K ) ⊆ attnr(K ) by showing attbs(K ) \ attnr(K ) ⊆ attbs(K ) \ attlE(K ).
Let (A, B) ∈ attbs(K ) \ attnr(K ). Hence A rebuts B and for each basic defeasible subargument X of B s.t. cnl(A) = ¬cnl(X), 
there is dX ∈ ldr(A) : dX ≺ last(X). Therefore ldr(A) �E {last(X)} and {last(X)} � �E ldr(A). Therefore ldr(A) �E {last(X)}. 
Hence A does not attack B by rebut at X wrt attlE(K ). Hence (A, B) /∈ attlE(K ).

2. We show attnr(K ) ⊆ attlD(K ) by showing attbs(K ) \ attnr(K ) ⊇ attbs(K ) \ attlD(K ).
Let (A, B) ∈ attbs(K ) \ attlD(K ). Hence A rebuts B and for each basic defeasible subargument X of B s.t. cnl(A) = ¬cnl(X), 
A �lD X .
Therefore ∅ �= ldr(A) �D {last(X)} and {last(X)} � �D ldr(A), i.e. ∀d ∈ ldr(A) : d � last(X) and ∀d ∈ ldr(A) : last(X) � d. 
Hence ldr(A) �= ∅ and ∀d ∈ ldr(A) : d ≺ last(X).
It follows immediately that for all basic defeasible subargument X of B s.t. cnl(A) = ¬cnl(X), ∃d ∈ ldr(A) : d ≺ last(X). 
As A does not undercut B, it follows obviously that (A, B) /∈ attnr(K ). �

Lemma 7.9. Let K be a sensible class of knowledge bases satisfying the self-contradiction property. Further let K ∈K and E be a stable 
extension wrt the attack relation assignment attlsE. Then cnl(E) is consistent and closed.

45 Note that for attack relation assignments att, att′ , att � att′ iff for each knowledge base K, att(K ) ⊆ att′(K ).
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Proof. Let S = cnl(E). From Lemma H.4, it is obvious that S is closed.
We next show the consistency of S. Suppose the contrary. Since S is closed, S is contradictory. Thus there are two 

arguments A, B ∈ E such that cnl(B) = ¬cnl(A). Let AS = mbd(A) ∪ mbd(B) ⊆ E . Therefore cnl(AS) ∪ BE is inconsistent (wrt 
strict rules RS of K).

Let M be a minimal inconsistent subset of cnl(AS) ∪ BE. Since BE is consistent, M ∩ cnl(AS) �= ∅. Let AS0 ⊆ AS such that 
cnl(AS0) = M ∩ cnl(AS). Hence AS0 �= ∅.

Let �0 = {last(X) | X ∈ AS0} and C ∈ AS0 such that last(C) be minimal wrt ≺ in �0. From self-contradiction property, it 
follows M � ¬hd(last(C)). Thus there is an argument Y s.t. mbd(Y ) ⊆ AS0 and cnl(Y ) = ¬hd(last(C)). From Lemma H.5, it 
follows Y ∈ E . It is clear that ldr(Y ) ⊆ �0.

We show that Y ��lsE C . Suppose the contrary that Y �lsE C . Therefore there is y ∈ ldr(Y ) s.t. y ≺ last(C). This is impossi-
ble since last(C) is minimal wrt ≺ in �0 and ldr(Y ) ⊆ �0.

Therefore (Y , C) ∈ attlsE(K ). From C ∈ AS0 ⊆ AS ⊆ E , it follows E is not conflict-free wrt attlsE(K ). This is impossible since 
E is a stable extension wrt attlsE . �
Lemma H.4. Let K be a sensible class of knowledge bases that satisfy the property of self-contradiction. Then for each knowledge base 
K ∈K, for each complete extension E of (ARK , attlsE(K )), cnl(E) is closed.

Proof. Let E be a complete extension of (ARK , attlsE(K )) and S = cnl(E).
Let S � α. If α ∈ S , we are done.
Suppose α /∈ S . Therefore there is a finite � ⊆ S of domain literals s.t. � � α. Let A0 be a strict argument over � wrt the 

set of strict rule RS of K. It is clear A0 ∈ ARK+� .
Let A be a weakening of A0 by replacing each subargument of the form [α], α ∈ �, in A0 by an argument Xα ∈ E s.t. 

cnl(Xα) = α. Therefore A ∈ ARK . It is clear each argument in mbd(A) is a subargument of some argument in {Xα | α ∈ �}. 
From Lemma 4.3, mbd(A) ⊆ E . From Lemma H.5, A ∈ E . Therefore α ∈ S . Impossible since we assume that α /∈ S . This case 
hence cannot occur.

We have proved that S is closed. �
From the definition of attack relation assignments attlsE , and Lemmas 4.3, 7.4 it is easy to see that the following lemma 

holds.

Lemma H.5. For each knowledge base K , for each complete extension E of (ARK , attlsE(K )) and each argument A ∈ ARK , it holds that 
A ∈ E iff each maximal basic defeasible subargument of A belongs to E (i.e. mbd(A) ⊆ E). �
Appendix I

Theorem 7.3. Let att be an attack relation assignment satisfying the properties of subargument structure and context-independence 
for a sensible class of knowledge bases K. Then att satisfies the second BE-principle for K.

Proof. Let K ∈K, E be a stable extension of (ARK , att(K )), S = cnl(E) and r be a rule not applicable wrt S . Let K ′ = K + r.
We show that E is also a stable extension of K ′ .
From the property of context-independence, E is conflict-free wrt att(K ′). We only need to show that E attacks (wrt 

att(K ′)) each argument in ARK ′ not belonging to E.
Let A be an argument in ARK ′ not belonging to E. If A is also an argument in ARK then E attacks A wrt att(K ) and hence 

also wrt att(K ′) (due to the property of context-independence).
Suppose that A is not an argument in ARK . Hence r appears in A. As r is not applicable in S, there is a subargument B 

of A without containing r and whose conclusion does not belong to S. Hence E attacks B wrt att(K ) (and therefore also wrt 
att(K ′) due to the property of context-independence). B is hence defeasible. Therefore from the property of subargument 
structure, E attacks A (wrt att(K ′)). E is hence a stable extension of K ′ . �
Lemma I.1. Let K be a sensible class of knowledge bases and att be an attack relation assignment satisfying the properties of subargu-
ment structure and attack closure for K. Further let K ∈ K and E be a stable extension of (ARK , att(K )) such that cnl(E) is consistent. 
Then cnl(E) is generated by the set of rules appearing in arguments in E.

Proof. Let � be the set of rules appearing in E. We show that S = cnl(E) is generated by �.

1. It is obvious that for each literal σ , σ ∈ S iff there is an argument A such that cnl(A) = σ and all rules appearing in A 
belong to �.

2. To show that for each rule γ ∈ RS ∪ RD, γ ∈ � iff (γ is strict and bd(γ ) ⊆ S and hd(γ ) ∈ S) or (γ is defeasible and 
bd(γ ) ⊆ S and hd(γ ) ∈ S and abγ /∈ S), we only need to show the “if”-direction.
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Suppose γ /∈ �. Let bd(γ ) = {α1, . . . , αn}. From bd(γ ) ⊆ S and S = cnl(E), there are arguments Ai ∈ E s.t. cnl(Ai) = αi . 
Since γ /∈ �, argument A = [A1, . . . , An, γ ] does not belong to E. Hence there is B ∈ E such that (B, A) ∈ att(K ). From 
the property of attack closure, B either undercuts or contradicts A. Since ∀i : Ai ∈ E and (γ is strict or abγ /∈ S), B does 
not undercut A. Therefore B contradicts A. From Lemma 4.3, all subarguments of Ai belong to E. From the consistency 
of cnl(E), B does not contradicts any subargument of any Ai . Therefore B contradicts A at A. Hence ¬hd(γ ) ∈ cnl(E). 
cnl(E) is thus inconsistent. Contradiction. �

Theorem 7.4. Let att be an ordinary attack relation assignment defined for a sensible class K of knowledge bases. Then att satisfies the 
first BE-principle for K.

Proof. Let K ∈K. Suppose S, S ′ are sets of literals as specified in Definition 7.4. We show that S is not a stable belief set of 
K wrt att.

Suppose S is a stable belief set of K wrt att. Let E be a stable extension of (ARK , att(K )) such that cnl(E) = S . From 
Lemma 4.1, S is consistent and from Lemma I.1, � ∪ {d} is the set of rules appearing in arguments in E.

Let d′ be of the form α1, . . . , αn ⇒ γ . As � ∪ {d′} is the generating set of S ′ , there are arguments A1, . . . , An with 
conclusions α1, . . . , αn respectively and all rules of Ai belong to �.

We show ∀i : Ai ∈ E . Suppose Ai /∈ E for some i. Hence E either undercuts or rebuts Ai . Hence there is a rule δ appearing 
in Ai s.t. abδ ∈ S or ¬hd(δ) ∈ S . Contradiction since δ ∈ � and � ∪ {d} is the generating set of S.

Therefore {α1, . . . , αn} ⊆ S . Since S is generated by �∪{d}, it follows A = [A1, . . . , An, d′] /∈ E . Since E is stable, E attacks A 
(wrt att(K)). Since ∀i : Ai ∈ E , it follows that abd′ ∈ S or ¬γ ∈ S .

Suppose abd′ ∈ S . Hence there is a strict rule r ∈ � with head abd′ . Therefore abd′ ∈ S ′ . Hence d′ does not belong to the 
set of rules generating S ′ , i.e. d′ /∈ � ∪ {d′}. Contradiction. We have hence proved ¬γ ∈ S .

From the reduced characteristic Lemma E.1, there is B ∈ E such that B attacks A (wrt att(K )) by directly rebutting A and 
there is no defeasible rule δ ∈ ldr(B) s.t. δ ≺ d′ .

From B directly rebutting A, it follows cnl(B) = ¬cnl(A) = ¬γ . As S ′ is consistent, it follows ¬γ /∈ S ′ . Hence the last rule 
of B belongs to � ∪ {d} but not to � ∪ {d′} implying that the last rule of B is d. B is hence basic defeasible. From �δ ∈ ldr(B)

s.t. δ ≺ d′ and ldr(B) = {d}, it follows d ⊀ d′ . Contradiction to the assumption that d ≺ d′ . Hence the assumption that S is a 
stable belief set is wrong. �
Appendix J. Proof of Theorem 8.1

Theorem 8.1. Let K be a sensible class of knowledge bases that are closed under transposition or contraposition. Then attnr satisfies 
the credulous cumulativity axiom for K wrt complete extensions semantics.

Proof. Let K ∈ K. K is hence consistent and closed under transposition or contraposition. Let E be a complete extension of 
(ARK , attnr(K )), S = cnl(E) and � ⊆ S a finite set of domain literals. Further let AS ⊆ E s.t. � = cnl(AS).

We show that E ′ = E ↑ � = ⋃{X ↑ � | X ∈ E} is a complete extension of (ARK ′ , att(K ′)) for K ′ = K + �.
Since E is free from undercut-attacks, it is easy to see that E ′ is also free from undercut-attacks. From Lemmas 4.2, 4.3, 

E ′ contains all subarguments of its arguments. Since S is not contradictory (Lemma F.4), E ′ is free from rebuts. E ′ is hence 
conflict-free wrt attnr(K ′).

Property 1. E ′ is admissible.

Proof. Suppose A′ ∈ ARK ′ attacks B ′ ∈ E ′ wrt attnr(K ′).
We need to show that E ′ attacks A′ wrt attnr(K ′). From E ′ = E ↑ �, there is B ∈ E s.t. B ′ ∈ B ↑ �.
From the attack monotonicity of attnr , it follows (A′, B) ∈ attnr(K ′).
Let A be a weakening of A′ by replacing each subargument [α], α ∈ � \ BE by an Xα ∈ AS s.t. cnl(Xα) = α. It is clear 

A ∈ ARK .
We show that there is C ∈ E attacking A wrt attnr(K ). There are two cases:

• If (A, B) ∈ attnr(K ) then there is C ∈ E attacking A wrt attnr(K ).
• Suppose (A, B) /∈ attnr(K ). Therefore (A, B) /∈ attnr(K ′). From Lemma J.1, E attacks A or B wrt attnr(K ). Since B ∈ E , 

E attacks A wrt attnr(K ). Hence there is C ∈ E attacking A wrt attnr(K ).

Due to the context-independence property, C also attacks A wrt attnr(K ′).
As A is a weakening of A′ by AS and C does not attack AS (wrt attnr(K ) and hce also wrt attnr(K ′)), C attacks A′ wrt 

attnr(K ′) (due to the property of link-orientation). From C ∈ E ⊆ E ′ , it follows E ′ attacks A′ wrt attnr(K ′). �
Property 2. E ′ is complete.
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Proof. Suppose E ′ is not complete. Hence there is A′ ∈ ARK ′ s.t. A′ is defensible wrt E ′ (wrt attnr(K ′)) but A′ /∈ E ′ . Let A
be obtained from A′ by replacing each subargument [α], α ∈ � \ BE by an Xα ∈ AS s.t. cnl(Xα) = α. It is clear A ∈ ARK and 
A ∈ A′ ↓ AS.

Therefore A /∈ E (otherwise A′ ∈ E ′ from Lemma 6.1), A is hence not defensible wrt E, i.e. there is B ∈ ARK attacking A, 
but not counter-attacked by E (wrt attnr(K )).

Therefore B does not attack those subarguments in AS ⊆ E . Since attnr satisfies the link-oriented property, B attacks A′
wrt attnr(K ′). Since A′ is defensible by E ′ , there is X ′ ∈ E ′ attacking B wrt attnr(K ′). Since E does not attack B wrt attnr(K ), 
X ′ attacks B wrt attnr(K ′) by rebut at B ′ (if X ′ undercuts B, E would also undercut B, a contradiction).

From X ′ ∈ E ′ , it follows there is X ∈ E s.t. X ′ ∈ X ↑ �. Hence from Lemma J.3, there is AS0 ⊆ E s.t. X ∈ X ′ ↓ AS0.
From X ∈ E , X does not attack B wrt attnr(K ). We hence have (X ′, B) ∈ attnr(K ′), (X, B) /∈ attnr(K ′) and X is a weakening 

of X ′ by AS0 ⊆ E . From Lemma J.1, it follows that E attacks X or B wrt attnr(K ′). Since X ∈ E , E attacks B wrt attnr(K ′). Due 
to the context-independence of attnr , E attacks B wrt attnr(K ). Contradiction. �
Lemma J.1. Let K be a knowledge base closed under transposition or contraposition. Let E ⊆ ARK be admissible in (ARK , attnr(K )), 
� ⊆ cnl(E) be a finite set of domain literals and AS ⊆ E s.t. � = cnl(AS).

Further let K ′ = K + �, A, B ∈ ARK and A′ ∈ ARK ′ such that A ∈ A′ ↓ AS and (A′, B) ∈ attnr(K ′) and (A, B) /∈ attnr(K ′). Then E 
attacks A or B wrt attnr(K ).

Proof. From (A′, B) ∈ attnr(K ′) and (A, B) /∈ att(K ′), it follows that A′ does not undercut B. Therefore both A, A′ rebut B 
(at B1).

Therefore there is no d ∈ ldr(A′) s.t. d ≺ last(B1) and there is d ∈ ldr(A) \ ldr(A′) s.t. d ≺ last(B1).
Let d′ ∈ min≺{d ∈ ldr(A) \ ldr(A′) | d ≺ last(B1)}. From that fact that there is no d ∈ ldr(A′) s.t. d ≺ last(B1), it follows 

clearly d′ ∈ min≺(ldr(A) ∪ {last(B1)}).
Let H ∈ mbd(A) such that H ∈ E and last(H) = d′ . From Lemma J.2, it follows that there is an argument Y in ARK

contradicting H at H and mbd(Y ) ⊆ mbd(A) ∪ {B1}. From the definition of d′ , it is clear that Y rebuts H (at H) s.t. �d ∈
ldr(Y ) : d ≺ d′ . Hence Y attacks H wrt attnr(K ).

Due to the admissibility of E wrt attnr(K ), E attacks Y at some basic defeasible subargument Y ′ . From mbd(Y ) ⊆ mbd(A) ∪
{B1}, it follows Y ′ is a subargument of some argument in mbd(A) ∪ {B1}. Thus E attacks A or B wrt attnr(K ). �
Lemma J.2. Let K be a knowledge base closed under transposition or contraposition. Suppose an argument A directly rebuts a basic 
defeasible argument B and d ∈ ldr(A). Then there is an argument C with conclusion ¬hd(d) such that mbd(C) ⊆ mbd(A) ∪ {B}.

Proof. Let � = hd(mbd(A)) and T be the strict argument from ARK+� obtained by replacing in A all subarguments from 
mbd(A) by their conclusions. Thus cnl(T ) = cnl(A) and hd(mbd(A)) ⊆ Prem(T ).46 From Lemma A.1, there exists a strict 
argument T ′ (wrt K + � + {¬cnl(T )}) with conclusion ¬hd(d) and Prem(T ′) ⊆ Prem(T ) ∪ {¬cnl(T )} = Prem(T ) ∪ {cnl(B)}. 
Let C ∈ ARK be obtained from T ′ by replacing each subargument [α], α ∈ Prem(T ′) ∩ hd(mbd(A) ∪ {B}) by an argument 
Xα ∈ mbd(A) ∪ {B}. Since T ′ is strict, it is obvious that mbd(C) ⊆ mbd(A) ∪ {B}. �
Lemma J.3. Let att be an attack relation assignment satisfying the axiom of subargument structure and K be a knowledge base. Further 
let E be a complete extension of (ARK , att(K )), � ⊆ cnl(E) be a finite set of domain literals and X ∈ E. Then for each X ′ ∈ X ↑ �, there 
is AS ⊆ E s.t. X ∈ X ′ ↓ AS.

Proof. We prove the lemma by induction on the structure of X.

1. X = [α] for α ∈ BE. Hence X ′ = X and AS = {X}.
2. X = [X1, . . . , Xn, r]. Therefore from Lemma 4.3, Xi ∈ E for all i.

If X ′ = [cnl(r)] then AS = {X}.
Let X ′ = [X ′

1, . . . , X
′
n, r]. Therefore X ′

i ∈ Xi ↑ �. From induction hypothesis, there is ASi ⊆ E s.t. Xi ∈ X ′
i ↓ ASi . Let AS =

AS1 ∪ . . . ∪ ASn . Therefore X ∈ X ′ ↓ AS. �
Appendix K. Closure operator

It is clear that for any X ⊆ L, CNRS(X) ⊆ CNRS(CNRS(X)). Suppose CNRS(CNRS(X)) \ CNRS(X) �= ∅. Let α ∈ CNRS(CNRS(X)) \
CNRS(X). Therefore there is a strict argument A wrt RS over the domain literals in CNRS(X) s.t. cnl(A) = α. Therefore for 
each premise λ of A, there is a strict argument Aλ wrt RS over X s.t. cnl(Aλ) = λ. Expand A by expanding each premise λ
of A by Aλ . The obtained argument is a strict argument over X. Therefore α ∈ CNRS(X). Contradiction.

46 Prem(A) is the set of premises of A consisting of conclusions of subarguments of A of the form [α].
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Appendix L. Extended logic programming

Theorem 7.6. Let S be a DST-preferred answer set of a prioritized logic program 	 and � ⊆ S. Then S is also a DST-preferred answer 
set of 	 + �.

Proof. Let (ri)i≥1 be an enumeration of rules in �P ,S as defined in Definition 7.5. Further let P ′ = P + �. It is obvious that 
�P ′,S = �P ,S + �.

For ease of reference, from now until the end of this proof, we identify � and the set of rules {ω ← | ω ∈ �}.
Further let n0 be the number of elements in � \ P . Define an enumeration (r′

i)i≥1 of rules in �P ′,S as follows:

• (r′
i)1≤i≤n0 is an arbitrary enumeration of the rules in � \ P .

• For each k ≥ 1: r′
n0+k = rk .

To show that S is a preferred answer set of 	 + �, we show for all i, j:

1. bd+(r′
i) ⊆ {hd(r′

k)|k < i};
2. if r′

i ≺ r′
j then j < i;

3. if r′
i ≺ r and r ∈ P ′ \ �P ′,S then

(a) bd+(r) � S , or
(b) bd−(r) ∩ {hd(r′

k)|k < i} �= ∅.

1. If i ≤ n0, it is clear that bd+(r′
i) = ∅ ⊆ {hd(r′

k)|k < i}.
Let i = n0 + j and k > 1. It holds immediately:
bd+(r′

i) = bd+(r′
n0+ j) = bd+(r j) ⊆ {hd(rk)|k < j} = {hd(r′

k)|n0 < k < n0 + j} ⊆ {hd(r′
k)|k < n0 + j} = {hd(r′

k)|k < i}.
2. Let r′

i ≺ r′
j . From r′

i ≺ r′
j , it immediately follows that r′

i, r
′
j ∈ P . Therefore i = n0 + k and j = n0 + t and rk ≺ rt . Therefore 

t < k. Hence j < i.
3. Let r′

i ≺ r and r ∈ P ′ \ �P ′,S . It follows r′
i, r ∈ P . Therefore i = n0 + j and j > 1. Suppose bd+(r) ⊆ S . There-

fore bd−(r) ∩ {hd(rk)|k < j} �= ∅. From {hd(rk)|k < j} = {hd(r′
k) | n0 < k < n0 + j} ⊆ {hd(r′

k) | k < n0 + j}, it follows 
bd−(r) ∩ {hd(r′

k)|k < i} �= ∅. �
Lemma 7.2. Let 	 = (P , �) be a fully prioritized prerequisite-free logic program and X be an answer set of P . Then X is an BE-preferred 
answer set of 	 iff for each r ∈ P \ �P ,X , if hd(r) /∈ X then

bd−(r) ∩ {hd(r′) | r′ ∈ �P ,X and r � r′ } �= ∅

Proof. Let (ri)i≥1 be the enumeration of P according to � (i.e. ri � r j iff j < i) and X0, X1, . . . , Xn be the sequence defined 
as in Definition 7.6, i.e. X0 = ∅ and for 1 ≤ i ≤ n,

Xi =
⎧⎨
⎩

Xi−1 if bd−(ri) ∩ Xi−1 �= ∅
Xi−1 if hd(ri) ∈ X and bd−(ri) ∩ X �= ∅
Xi−1 ∪ {hd(ri)} otherwise

It is not difficult to see that for 1 ≤ i ≤ n, Xi = Xi−1 ∪ {hd(ri)} iff bd−(ri) ∩ Xi−1 = ∅ and (hd(ri) /∈ X or bd−(ri) ∩ X = ∅).

1. “Only-If-Part”.
Suppose X is a BE-preferred answer set of 	 and r ∈ P \ �P ,X such that hd(r) /∈ X .
We first show by induction that for each 0 ≤ j ≤ n,

X j = {hd(r′) | r′ ∈ �P ,X and (r j � r′ or r′ = r j) }
• Base Step: j = 0. Obvious since both sides of the equation are empty.
• Inductive Step. There are two cases:

– X j = X j−1.
Therefore bd−(r j) ∩ X j−1 �= ∅ or (hd(r j) ∈ X and bd−(r j) ∩ X �= ∅). Since X is BE-preferred, it follows that X j ⊆ X . 
Therefore it holds that bd−(r j) ∩ X �= ∅. Since X is an answer set of P, it follows from bd−(r j) ∩ X �= ∅ that 
r j /∈ �P ,X . From induction hypothesis, we can conclude: X j = X j−1 = { hd(r′) | r′ ∈ �P ,X and (r j−1 � r′ or r′ =
r j−1) } = { hd(r′) | r′ ∈ �P ,X and (r j � r′ or r′ = r j) }.

– X j �= X j−1.
Therefore hd(r j) ∈ X j . Since X is a BE-preferred answer set, X j ⊆ X . It follows hd(r j) ∈ X . Therefore bd−(r j) ∩ X = ∅
(otherwise, it would hold that Xi = Xi−1. Impossible since X j �= X j−1 in this case). Hence r j ∈ �P ,X . From induction 
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hypothesis, it is easy to see X j = {hd(r j)} ∪ X j−1 = {hd(r j)} ∪ { hd(r′) | r′ ∈ �P ,X and (r j−1 � r′ or r′ = r j−1) } =
{ hd(r′) | r′ ∈ �P ,X and (r j � r′ or r′ = r j) }.

We show that bd−(r) ∩ { hd(r′) | r′ ∈ �P ,X and r � r′ } �= ∅. As r1, r2, . . . , rn is an enumeration of P according to �, there 
is a unique i s.t. r = ri . Hence hd(ri) /∈ Xi . Therefore Xi = Xi−1 implying that bd−(ri) ∩ Xi−1 �= ∅ or hd(ri) ∈ X and 
bd−(ri) ∩ X �= ∅.
Since hd(ri) /∈ X , it follows bd−(ri) ∩ Xi−1 �= ∅. Since X is BE-preferred, Xi ⊆ X . Therefore ri /∈ �P ,X .
From Xi = { hd(r′) | r′ ∈ �P ,X and (ri � r′ or r′ = ri) } and ri /∈ �P ,X , it follows Xi = { hd(r′) | r′ ∈ �P ,X and ri � r′ } =
{ hd(r′) | r′ ∈ �P ,X and r � r′ }.
From Xi = Xi−1 and bd−(ri) ∩ Xi−1 �= ∅, it follows bd−(r) ∩ { hd(r′) | r′ ∈ �P ,X and r � r′ } �= ∅.

1. “If-Part”.
Suppose for each r ∈ P \ �P ,X , if hd(r) /∈ X then bd−(r) ∩ { hd(r′) | r′ ∈ �P ,X and r � r′ } �= ∅. Further let Pi = {r1, . . . , ri}, 
0 ≤ i ≤ n.
We first show by induction that for each i,

Xi = {hd(r) | r ∈ Pi ∩ �P ,X } ⊆ X

• Base step: i = 0. Obvious.
• Inductive step. Suppose Xi−1 = { hd(r) | r ∈ Pi−1 ∩ �P ,X } ⊆ X . We show Xi = { hd(r) | r ∈ Pi ∩ �P ,X } ⊆ X .

There are two cases:
– Xi = Xi−1.

Therefore bd−(ri) ∩ Xi−1 �= ∅ or hd(ri) ∈ X and bd−(ri) ∩ X �= ∅. From Xi−1 ⊆ X , it follows that bd−(ri) ∩ X �= ∅. 
Hence ri /∈ �P ,X . Therefore Pi−1 ∩ �P ,X = Pi ∩ �P ,X . From induction hypothesis, we can state: Xi = Xi−1 =
{ hd(r) | r ∈ Pi−1 ∩ �P ,X } = { hd(r) | r ∈ Pi ∩ �P ,X } ⊆ X .

– Xi �= Xi−1.
Therefore bd−(ri) ∩ Xi−1 = ∅ and (hd(ri) /∈ X or bd−(ri) ∩ X = ∅).
There are two cases:
∗ hd(ri) /∈ X .

Since X is an answer set of P, it follows that the head of each rule in �P ,X belongs to X. Therefore ri /∈ �P ,X . 
Therefore, bd−(ri) ∩ { hd(r′) | r′ ∈ �P ,X and ri � r′ } �= ∅. Since r1, . . . , rn is an enumeration of P according to �, 
it holds: {r′ ∈ �P ,X | ri � r′ } = Pi−1 ∩ �P ,X . Therefore from the inductive hypothesis: { hd(r′) | r′ ∈ �P ,X and
ri � r′ } = {hd(r′) | r′ ∈ Pi−1 ∩ �P ,X } = Xi−1. Therefore bd−(ri) ∩ Xi−1 �= ∅ implying that Xi = Xi−1. Contradic-
tion. This case hence cannot occur.

∗ hd(ri) ∈ X .
Therefore bd−(ri) ∩ X = ∅. Thus ri ∈ �P ,X . It holds obviously ri ∈ Pi ∩ �P ,X . From induction hypothesis:
Xi = {hd(ri)} ∪ Xi−1 = {hd(ri)} ∪ { hd(r) | r ∈ Pi−1 ∩ �P ,X } = { hd(r) | r ∈ Pi ∩ �P ,X } ⊆ X .

From Xn = { hd(r) | r ∈ Pn ∩ �P ,X } = { hd(r) | r ∈ �P ,X } = X , it follows that X is a BE-preferred answer set of (P , �). �
Lemma 7.3. Let 	 = (P , �) be a fully prioritized logic program and S be a BE-preferred answer set of 	 and � ⊆ S. Then there is 
strict total order �′ on P + � such that �⊆�′ and S is also a BE-preferred answer set of (P + �, �′).

Proof. From Theorem 7.5, S is also an answer set of Q = P + �. For each ω ∈ �, let Cω denote the clause ω ←. Let �′ be 
a strict total order on P + � such that �⊆�′ and for each ω ∈ �, each C ∈ P , it holds that Cω �′ C if Cω �= C .

From Lemma 7.2, it holds:

• S is a BE-preferred answer set of (P , �) iff
S is a BE-preferred answer set of (P S , �S) iff
for each r ∈ P S \ �P S ,S , if hd(r) /∈ S then

bd−(r) ∩ {hd(r′) | r′ ∈ �P S ,S and r �S r′ } �= ∅
• S is a BE-preferred answer set of (Q , �′) iff

S is a BE-preferred answer set of (Q S , �′S) iff
for each r ∈ Q S \ �Q S ,S , if hd(r) /∈ S then

bd−(r) ∩ {hd(r′) | r′ ∈ �Q S ,S and r �′S r′ } �= ∅

It is not difficult to see that Q S = P S + � and �Q S ,S = �P S ,S + �. Therefore it follows that Q S \ �Q S ,S = P S \ �P S ,S . It 
follows immediately that for each r ∈ Q S \ �Q S ,S = P S \ �P S ,S ,

{ r′ | r′ ∈ �P S ,S and r �S r′ } = { r′ | r′ ∈ �Q S ,S and r �′S r′ }
Since S is a BE-preferred answer set of (P , �), it holds:
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For each r ∈ P S \ �P S ,S , if hd(r) /∈ S then

bd−(r) ∩ {hd(r′) | r′ ∈ �P S ,S and r �S r′ } �= ∅
Because Q S \ �Q S ,S = P S \ �P S ,S and for each r ∈ Q S \ �Q S ,S = P S \ �P S ,S , { r′ | r′ ∈ �P S ,S and r �S r′ } = { r′ | r′ ∈

�Q S ,S and r �′S r′ }, it follows:
For each r ∈ Q S \ �Q S ,S , if hd(r) /∈ S then

bd−(r) ∩ {hd(r′) | r′ ∈ �Q S ,S and r �′S r′ } �= ∅
S is hence a BE-preferred answer set of (P + �, �′). �

Appendix M. Lemma 5.4

Let K be the sensible class of all consistent basic knowledge bases closed under transposition. Let att be the attack 
relation assignment defined as in Example 5.2. Following assertions hold:

1. For each K ′ ∈K, the stable extensions of (ARK ′ , att(K ′)) and (ARK ′ , attbs(K ′)) coincide.
2. The reverse of Theorem 5.1 does not hold for K.

Proof. Let K be the knowledge base defined in Example 5.1. It is clear that K ∈ K. Let A0, . . . , A3 be arguments defined as 
in Fig. 6.

For ease of reference, we recall the attack relation assignment att defined for K below:
For each K ′ ∈K:

att(K ′) =
{

attbs(K ′) if {A0, A1} � ARK ′
attbs(K ′) ∪ {(A0, A1), (A1, A0)} otherwise

As K ∈K, it follows from the elaboration in Example 5.1 that att does not satisfy the property of subargument structure 
for K.

1. Let K ′ ∈K. We show that the stable extensions of (ARK ′ , att(K ′)) and (ARK ′ , attbs(K ′)) coincide.
If att(K ′) = attbs(K ′), there is nothing to prove here.
Let att(K ′) = attbs(K ′) ∪ {(A0, A1), (A1, A0)}. Since K ′ is closed under transposition, A2, A3 ∈ ARK ′ .
(a) Let E be a stable extension of (ARK ′ , att(K ′)). It is obvious that E is conflict-free wrt attbs(K ′).

We show that E attacks every argument not belonging to E wrt attbs(K ′).
Suppose the contrary. Hence there is X ∈ ARK ′ \ E s.t. E does not attack X wrt attbs(K ′) but there is C ∈ E s.t. 
(C, X) ∈ att(K ′) \ attbs(K ′). Therefore (C, X) = (A0, A1) or (C, X) = (A1, A0). Let us consider each case.
• Let (C, X) = (A0, A1). Hence C = A0 and X = A1.

We first show that [d0] ∈ E . Suppose the contrary. Therefore E attacks [d0] wrt att(K ′). From att(K ′) = attbs(K ′) ∪
{(A0, A1), (A1, A0)}, it follows that E attacks [d0] wrt attbs(K ′). Therefore E attacks A0 wrt attbs(K ′). Hence E 
attacks A0 wrt att(K ′). Impossible as A0 ∈ E and E is conflict-free wrt att(K ′).
We show that A2 ∈ E . Suppose the contrary. There is hence ∃Y ∈ E s.t. (Y , A2) ∈ att(K ′). From att(K ′) = attbs(K ′) ∪
{(A0, A1), (A1, A0)}, it follows that (Y , A2) ∈ attbs(K ′). Therefore (Y , [d0]) ∈ attbs(K ′). From att(K ′) = attbs(K ′) ∪
{(A0, A1), (A1, A0)}, it follows that E is not conflict-free wrt att(K ′). Impossible as [d0] ∈ E and E is conflict-free 
wrt att(K ′). Therefore A2 ∈ E .
It is clear that (A2, A1) ∈ attbs(K ′). Contradiction to the assumption that E does not attack X wrt attbs(K ′).

• Let (C, X) = (A1, A0). The proof is similar to the previous case.
We have proved that E is also a stable extension of (ARK ′ , attbs(K ′)).

(b) Let E be a stable extension of (ARK ′ , attbs(K ′)). It is easy to see that for each argument X, X ∈ E iff mbd(X) ⊆ E .
We only need to show that E is conflict-free wrt att(K ′).
Suppose the contrary that E is not conflict-free wrt att(K ′). Therefore there are arguments X, Y ∈ E s.t. (X, Y ) ∈
att(K ′). Since E is conflict-free wrt attbs(K ′), it follows that (X, Y ) = (A0, A1) or (X, Y ) = (A1, A0). Therefore [di] ∈ E
for both i = 0, 1. Therefore argument A0, . . . , A3 all belong to E. Since (A2, A1), (A3, A0) ∈ attbs(K ′), E is not conflict-
free wrt attbs(K ′). Contradiction.
Thus E is conflict-free wrt att(K ′).

2. As K ∈K, it follows from the elaboration in Example 5.1 that att does not satisfy the property of subargument structure 
for K. Therefore the reverse of Theorem 5.1 does not hold for K. �
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