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Abstract 

We present an abstract framework for default reasoning, which includes Theorist, default logic, 
logic prog~mming, autoe~is~mic logic, non-monotonic modal logics, and certain instances of 
circumscription as special cases. The framework can be understood as a generalisation of Theorist. 
The generalisation allows any theory formulated in a monotonic logic to be extended by a 
defeasible set of assumptions. 

An assumption can be defeated (or “attacked”) if its “contrary” can be proved, possibly with the 
aid of other conflicting assumptions. We show that, given such a framework, the standard semantics 
of most logics for default reasoning can be understood as sanctioning a set of assumptions, as an 
extension of a given theory, if and only if the set of assumptions is conflict-free (in the sense that 
it does not attack itself) and it attacks every assumption not in the set. 

We propose a more liberal, argumentation-theoretic semantics, based upon the notion of admis- 
sible extension in logic programming. We regard a set of assumptions, in general, as admissible if 
and only if it is conflict-free and defends itself (by attacking) every set of assumptions which at- 
tacks it. We identify conditions for the existence of extensions and for the equivalence of different 
semantics. (EJ 1997 Elsevier Science B.V. 
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1. Introduction 

Until recently, formal logic was concerned mainly with the fo~alisation of universal 

“truths”, such as those of mathematics, which hold without exception and for all time. 

The logics which have proved useful for this purpose are all monotonic, in the sense 

that any logical consequence of a set of axioms remains a logical consequence if new 
axioms are added. Because of the default character of human reasoning, that certain 

beliefs hold by default if there is no reason to believe the contrary, attempts to apply 

such monotonic logics to the formalisation of human reasoning have met with limited 

success. For this reason a number of’ “non-monotonic” Iogics 13%40,491 have been 

developed. 

In this paper, we show that many of these logics can be understood as special cases 
of a single abstract framework, based upon an argumentation-theoretic interpretation 

of the semantics of logic programming [ 16,171 and its abstractions [ 6, 10, I 1, ‘271. In 
this framework, a set of assumptions, formulated in an underlying monotonic logic, is 

regarded as an acceptable extension of a given theory, unless and until there is reason to 
believe some contrary set of assumptions. Non-monotonicity arises because the addition 
of a new sentence to a theory may provide new evidence to the contrary of a previously 

acceptable default conclusion, which now has to be withdrawn. 
We show that the standard semantics associated with most non-monotonic Jogics 

imposes a further requirement for the acceptability of a set of assumptions, namely that 

the set attacks every other assumption not in the set. (A set of assumptions attacks an 
assumption if and only if together with the given theory it implies a sentence contrary 
to the assumption in the underlying monotonic logic.) The following simple example 

illustrates informally the way in which various non-monotonic Iogics can be viewed as 

instances of the same abstract framework. 

Example 1.1. Consider the principle that 

A person is innocent unless proved guilty. 

Its informal English meaning is that if a person is accused of a crime, then the burden 

of proof is on the prosecution to show that the accused is guilty, rather than on the 

defence to show that he is not. The accused is assumed not guilty, by default, unless 
the contrary can be shown. 

The naive representation in classical logic 

VX[ -Iguilty( X) -3 innocent(X) ] 

fails to capture the default character of the principle. It imposes on the defence the 
greater burden of explicitly establishing that the accused is not guilty. In general, this 
will be harder than simply showing there is no proof that he is guilty. In particular, in 
the commonly occurring case where there is insufficient evidence to prove either that 
the accused is guilty or that he is not, the default principle gives the accused the benefit 
of doubt and concludes that he is innocent. In contrast, the representation in classical 
logic fails to imply any conclusion. 
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In classical logic, the naive representation logically implies the contrapositive 

65 

VX[ Gznocent( X) + guifty(X) 1 

and therefore treats innocence and guilt equally. The informal principle, however, ex- 

presses that innocence, rather than guilt, holds by default. Default reasoning is non- 
monotonic, because a conclusion (e.g. that a person is innocent) which is justified in 

one state of knowledge may not be justified if new knowledge becomes available. 
Theorist [ 431 employs the “naive representation” of classical logic, but overcomes its 

deficiencies by extending the theory which includes the given sentence by means of a 
maximal consistent set of assumptions of the form 

for all ground (i.e. variable-free) terms, t, of the language. The asymmetric character 

of the default is captured by not considering extensions with assumptions of the form 

+znocent( t) 

Because of this selective use of assumptions, the use of the contrapositive in this example 

does not give rise to unintended consequences. 
Like Theorist, circumscription [ 381 also employs the “naive representation” of clas- 

sical logic and minimises the extension of the predicate guifry (because minimising 
positive instances is equivalent to maximis~ng negative instances of a predicate). Al- 

though Theorist views extensions as syntactic objects and circumscription views them 
as model-theoretic, the two views are equivalent in many cases. 

Theorist and circumscription differ in another respect. Theorist is credulous, in that it 

sanctions holding a conclusion if it is a logical consequence of one maximal consistent 
extension of the given theory, whereas circumscription is sce~t~c~l, in its sanctioning a 
conclusion if it holds in all such extensions (more precisely, if it holds in all minimal 

models). 4 
Logic programming can be understood, similarly to Theorist, as extending theories by 

means of ground negative literals not p representing the assumption that not p holds by 
default unless its contrary, p, can be shown. Thus the logic programming representation 

innocent(X) + not guilty(X) 

can be understood as expressing literally that a person is innocent if the person can 
not be proved guilty; or equivalently, in our framework, as expressing that a person is 

innocent if the contrary of the ~sumption that the person is not guilty can not be shown. 
Logic programming considers all ground negative literals as possible assumptions, but 

prevents the derivation of the contrapositive 

y + not p 

’ However, Poole 1441 has also proposed an extension of Theorist, in which credulous reasoning is used for 

“explanation” and sceptical reasoning for “prediction”. 
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Of 

p + not q 

by employing only modus ponens for the implication symbol, “t”. 5 Together with 
instantiation of universally quantified variables, these two inference rules constitute the 

underlying monotonic logic upon which logic programming is based. As we shall see 

later, many different credulous and sceptical semantics for logic programming can be 

understood in such assumption-based terms. 

Default logic [49] combines classical logic with domain-specific inference rules. In 
this example, it might employ the representation 

M7guilty( X) 

innocent(X) 

where Mp stands for “p is consistent”, i.e. the contrary, up, cannot be shown, where 
“1” is classical negation. Thus the domain-specific inference rule can be interpreted as 

expressing that a person can be shown to be innocent if the contrary of the assumption 
that the person is not guilty cannot be shown. In our framework, this is very similar to 

the interpretation of the logic programming representation. 
Like logic programming, default logic prevents the derivation of the contrapositive of 

default rules. A domain-specific inference rule of the form 

4 

can be used to derive q. It does not sanction the “contrapositive inference rule” 

P 

In our framework, default logic can be understood as non-monotonically adding assump- 

tions of the form Mp to theories formulated in an underlying monotonic logic, which 
consists of classical logic augmented with domain specific inference rules. We will 
see later that the standard semantics of default logic can be understood as a credulous 

semantics in assumption-based terms. 
Autoepistemic logic [40] and non-monotonic modal logics [ 391, on the other hand, 

can both be understood as using an expression of the form ‘Lp to represent an assump- 
tion which holds by default if the contrary, namely p, cannot be shown. “L” is a modal 
operator, meaning “is believed”, is “known” or “can be shown”. “1”) as in default logic, 

is classical negation. Thus, in both autoepistemic and nonmonotonic modal logic, the 

example can be represented in the form6 

VX[ ~L@dty( X) 4 innacent( X) ] 

where “+” is ordinary material implication. 

’ This is equivalent to treating the implication p + not y as an inference rule y. 

’ Although the form of autoepistemic logic introduced in 1401 was propositional, in this paper we follow 

subsequent first-order formulations. 
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Both logics allow the derivation of the contrapositive 

of an implication of the form 

‘G + P. 

In our example, the contrapositive means that if a person is not innocent then he must 

be shown to be guilty, which is compatible with the default interpretation of the original 

sentence. 

Both these logics can be understood as non-monotonically adding assumptions of 
the form ‘Lp to theories expressed in an underlying monotonic logic. In the case of 

autoepistemic logic the underlying logic is classical logic, and additional assumptions 

of the form Lp also need to be considered explicitly. In non-monotonic modal logics, 

the underlying logic is modal logic, which, because it includes the necessitation rule of 
inference 

P - 
LP 

obviates the need to consider explicit assumption of the form Lp. In both cases, the 

standard semantics can be understood as special cases of a single, abstract, credulous 
semantics, formulated in assumption-based terms, which includes the stable model se- 

mantics [20] of logic programming and the standard semantics of default logic as 
further special cases. 

The “innocent-unless-guilty” example illustrates the common feature of all these non- 

monotonic logics, namely that they can be understood as adding assumptions to an 
underlying monotonic logic, provided the contrary cannot be shown. In the general case, 
however, the problem of showing that a sentence p cannot be shown is complicated by 
the fact that the attempt to show p can make use of other conflicting assumptions. Thus, 
for example, it is possible to have two conflicting defaults: 

a person is innocent if not proved guilty, 

a person is guilty if not proved innocent 

or even a single conflicting default 

a person is innocent if not proved innocent. 

It is the need to deal with such examples that accounts for much of the complexity of 
non-monotonic logics. 

In this paper we will investigate both credulous and sceptical ways of understanding 
what it means for a given conclusion to hold non-monotonically as a result of making 
certain default assumptions. The credulous approach justifies holding a conclusion if 
there is a suitably acceptable set of assumptions, extending the initial theory, from 

which the conclusion can be derived in the underlying monotonic logic. The sceptical 
approach, on the other hand, justifies a conclusion if it can be derived from all acceptable 
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extensions of the given theory. The notion of acceptable extension can be understood in 
several different ways. 

A se~n~ntics for default reasoning is given by specifying the notion of acceptable 

extension and identifying whether the approach is credulous or sceptical. 

The simplest notion of acceptability, which in its credulous manifestation we call the 

naive semnatics, requires simply that the initial theory be extended with some maximal 
set of assumptions which is ca~~~ct-f~ee (in the sense that the contrary of none of the 
assumptions in the set can be shown using the notion of consequence in the underlying 

monotonic logic). This semantics generalises the semantics of Theorist [ 431, in which 

the underlying logic is classical, first-order logic. 
The second, credulous semantics generalises the stable model semantics of logic 

programming and the standard semantics of default logic, autoepistemic logic and non- 
monotonic modal logic. This semantics, which we call the stable semantics, requires not 

only that an acceptable set of assumptions be conflict-free, but that, together with the 

initial theory, it implies the contrary of all assumptions not contained in the deductive 

closure of the set. 
The stable semantics can be given an argumentation-theoretic interpretation, which 

suggests other, improved semantics. We interpret a monotonic proof of the contrary 

of an assumption a! based upon an initial theory T extended with assumptions A as 
an argument against cr. Abstracting away from the detail of the actual argument and 
focussing instead on the assumptions d upon which the ~gument is based, we say that 

d attacks a. Under this interpretation, a set of assumptions is stable if and only if it 
does not attack itself (i.e. is conflict-free) and attacks every assumption it does not 

contain. 
Viewed in such ~gumentation-theoretic terms, stable semantics is unnecessarily opin- 

ionated, taking a stand on every issue (i.e. every possible assumption either belongs to a 
stable set or is attacked by it), whether or not that issue is relevant to a given conclusion 

under consideration. The third, credulous semantics, instead, regards a set of assumptions 
as acceptable if and only if it is conflict-free and its deductive closure d@ends itself 
against all attacks (by attacking all sets of assumptions which attack it). This semantics, 

called the udmissibi~i~ semantics, generalises the admissibility semantics [ 101 of logic 
programming and arguably improves upon the standard stability semantics of default 

logic, autoepistemic logic and non-monotonic modal logics. 
The fourth, credulous semantics, called the preferential semantics, simply regards an 

extension as acceptable if it is maximal admissible, in the sense that no proper superset 

of the extension is also admissible. 
The fifth, credulous semantics, called the complete semantics, is intermediate between 

the admissibility and preferential semantics. It regards an extension as acceptable if it is 
admissible and it contains all assumptions it defends. 

As mentioned above, each of these credulous semantics has a sceptical version. 

We will see that, in certain cases, circumscription can be understood as the sceptical 
version of the naive semantics, where, as in Theorist, the underlying monotonic logic 
is first-order classical logic. We will also see that the welt-foun,ded semantics of logic 

programming is the sceptical version of the complete semantics, where the underlying 
monotonic logic is the logic of Horn clauses. 
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The rest of the paper has the following structure: Section 2 introduces the abstract 
framework and the naive semantics, equivalent to the semantics of Theorist [43], and 
shows how different logics for default reasoning can be expressed as instances of the ab- 

stract framework. Section 3 investigates the stable semantics. Section 4 investigates the 

admissibility and preferential semantics. Section 5 investigates the complete semantics. 
Section 6 investigates sceptical semantics. Section 7 presents results about the exis- 
tence of (credulous and sceptical) semantics and about certain conditions under which 

they are equivalent. Section 8 describes relationships to other argumentation-theoretic 
formalisms, Section 9 gives conclusions and points to some directions for future re- 

search. 

2. Assumption-based frameworks and naive semantics 

In this paper, a deductive system is a pair (C, R) where 
l C is a formal language consisting of countably many sentences, and 

l R is a set of inference rules of the form 

where LY,cxI,..., CY, E C and n > 0. 

Notice that logical axioms, cy, can be represented as inference rules with n = 0. Any set 

of sentences T 2 L is called a theory. 

A deduction from a theory T is a sequence /It,. . . , &, where m > 0, such that, for 

all i= l,...,m, 

l pi E T, or 
l there exists “,...5njL in R such that cyt, . . . , a, E {/?I,. . . , pi-l}. P! 

T I- a means that there is a deduction from T whose last element is CY. Th(T) is the 
set {LX E L / T /- a}. 

Notice that, because all deductions have finite length, every deductive system (C, R) 
is compact in the sense that whenever T I- a, then TO /- a for some finite subset TO 

of T. Notice, too, that every deductive system is monotonic in the sense that T & T’ 

implies T/z(T) 2 Th(T’). 

Following Poole [ 431, we argue that the non-monotonic character of default reasoning 

arises because a set of assumptions that acceptably extends a given theory in a monotonic 

logic might not be acceptable if new sentences are added to the theory. Different logics 

for default reasoning can be understood as having different underlying monotonic logics, 
different kinds of assumptions and different notions of acceptability. 

At a sufficiently abstract level, however, despite these differences, the different cred- 

ulous non-monotonic logics can all be viewed as sanctioning a set of assumptions as an 
acceptable extension of a given theory if and only if, given the extension, there is no 

reason to believe the contrary of any assumption in the set. The notion of the contrary 
of an assumption is different in different logics. In the simplest case, we can understand 
the contrary of an assumption (Y as its classical negation YZ. However, other notions of 
“contrariness” are needed in other cases. 
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Definition 2.1. Given a deductive system (C, I?), an assumption-basedframework with 

respect to (C,R) is a tuple (7’,Ab,-), where 

l T,AbCCandAb + 0, _ 
. is a mapping from Ab into C, where Z denotes the contrary of ar. 

The theory T expresses a given set of beliefs, and Ab is a set of assumptions that can 
be used to extend T. 

In the sequel, when there is no danger of ambiguity, we often omit reference to 

the underlying deductive system (fZ, R) and/or to the assumption-based framework 

{T,Ab,-). 
In contrast with an earlier formalisation ]6], we do not try to reduce the notion 

of contrariness to the notion of inconsistency. Nor, if the underlying logic admits the 
notion of inconsistency, do we assume that inconsistency implies every sentence of the 

language. 
In this section, we consider the generalisation of Theorist’s semantics, where the 

requirement that an extension be maximal consistent is generalised to the requirement 
that it be maximal conflict-free. We call this generalisation the raaive se~za~t~c,~. 

Definition 2.2. Given an assumption-based framework (T, Ab,-) and A 2 Ab, 
l A is conj?ict-free if and only if for all (Y E Ab, T U A v tu,E, 
l A is nzax~maL convict-free if and only if A is conflict-free and there is no conflict- 

free A’ > A. 

Note that, given any set of assumptions A, we can form the deductive closure Th( TUA) 
of the theory T U A. The deductive closure is often called an extension in the literature 

on non-monotonic logic. This use of the term “extension” differs from our informal 

use of the term, either to refer to A itself or to T U A. In the sequel, whenever it is 
important to be precise, we will state explicitly which of these three uses of the term is 
intended. 

The naive semantics is guaranteed to exist for assumption-based frameworks that 
admit at least one conflict-free extension, as implied by the following 

Theorem 2.3. For every conflict-free set of assumptions A, there exists a maximal 
conjlict-free set of assumptions A’ such that A c A’. 

Proof. Let arc, CT{, . . . , a,, . . be an enumeration of AD - A. Let 

l Ao=A, 

l A,,+] = A, U {%) if A, U {an} is conflict-free, and Anil = A, otherwise. 

Let A’ = Ui Ai. Obviously, A C A’. Moreover, it is easy to see that A’ is maximal 

conflict-free. 0 

2.1. Theorist 

Given a deductive system (C, R) for classical first-order logic, an abductive frame- 
work [43] is a pair (T,Ab), where T C_ L is consistent and AD C C. A scenario is a 
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consistent theory T U A where d C Ab. 7 An extension Th(T U A) is the logical closure 

of a maxima1 (with respect to set inclusion) scenario [ 431. 
The assumption-based framework corresponding to (T,Ab) is (T, Ab,-), where Cu = 

-i(~, for each cr E Ab. 

Note that, since T is consistent, 8 is a conflict-free set of assumptions. Therefore, by 
Theorem 2.3, the naive semantics of (T,Ab,-) always exists. 

It follows immediately that 

Theorem 2.4. Given an abductive framework (T, Ab) and the corresponding assump- 

tion-based framework (T, Ab, -), 

* T U A is a scenario of (T, Ab) if and only if A is a conJlict-free set of assumptions 

irz (T, Ab, -) t 
l E is an extension of (T, Ab) if and only if E = Th( T U A) where A is a rn~i#~a~ 

(with respect to set inclusion) conflict-free set of assumptions in (T, Ab,-). 

Example 2.5. A simplified, propositional representation in Theorist of the “innocent- 

unless-guilty” example of the Introduction is 

T = {yguilty + innocent} 

Ab = {‘guilty} 

which has the single extension Th(T U {-guilty)). 

2.2. Logic programming 

We will assume, as is conventional, that the semantics of a logic program containing 
variables is given by the set of all its ground instances over the Herbrand universe 
corresponding to the language of the program. The Herbrand universe co~esponding to 
a given language consists of all ground terms constructible from the constant symbols 
and function symbols of the language. We use 3-18 to stand for the Herbrand base, i.e. 

the set of all ground atoms formulated in terms of the Herbrand universe. We use ?&,, 

to stand for the set (not Q j cy E ‘W3) and Lit to stand for 7-M U 3-1&),. 
A ?~or~~al logic program is a set of clauses of the form 

whereffE?iB,& ,..., /3,ELit,andn>O. 
The assumption-based framework co~esponding to such a normal logic program T is 

(T, E&,8, > -) with respect to (,!Z,‘R.j, where 
* C=LitU{atp,,...,p,IcuE~HBandP~,...,P,ELitandn~O}; 
l R is the set of all inference rules of the form 

7 Poole defines Ab to be a set of open first-order formulae and d to be a set of variable-free instances of 

formulae in Ab. fn our formulation, C and therefore A6 is a set of sentences (without free variables). Our 
formulation is equivalent to Poole’s and more convenient for our purposes. 
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whereaE~Ba~dp,,...,pnELitandn30; 

l not LX = CY, for each not CY E ‘M?,,,,. 

The interpretation of negative literals as assumptions in logic programming was intro- 
duced in ( 16,171, and formed the basis for the admissibility semantics [ lo], the stable 

theory and acceptability semantics 1281, and the ~gum~ntation-theoretic inte~retation 
for these semantics presented in [ 11,251. 

Note that we could, equivalently, represent clauses 

as inference rules 

In this representation, the theory is empty, and a logic program is represented by 
domain-specific inference rules of the underlying deductive system. This alternative 

representation highlights the similarity between logic programming and default logic 

(see Section 2.3). 

Example 2.6. The logic program 7’ 

{innocent + not guilty} 

represents the simplified “innocent-unless-guilty” example. In the corresponding assump- 

tion-based framework there are two maximal conflict-free sets of assumptions, Ai = 

{trot guilty} and A2 = {not innocent}. However, only the first, intuitively correct one 

is acceptable in all semantics for logic programming. Therefore, the naive semantics 

is not appropriate to capture the semantics for logic programming. In Sections 3, 4, 5 
and 6, we will define other abstract semantics that correspond to the logic programming 

semantics. 

Logic programming can be extended, as proposed by Geffond and Lifschitz 1211, 
by allowing, in addition to negation as failure, a second, explicit form of negation, 
written as N. This negation can be used to define negative instances of predicates 
explicitly, instead of infe~ing them implicitly using negation as failure. Abductive logic 

programming [ 25,261 is another extension of logic programming, where positive atoms 
can be explicitly indicated as assumptions and integrity constraints can be used to prevent 
unwanted assumptions. 

Both extended and abductive logic programing can be formulated as instances of 
the assumption-based framework, following [ 1,6,12,25,26,56]. 

2.3. Default logic 

Let (CO, 720) be a deductive system for classical first-order logic. Following [ 491, a 
default theory is a pair (T, D) where 
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l D is a set of default rules of the form 8 

Y 

where (Y, /It,. . . , &, y E CO, and n 3 0. 

Here, for simplicity, we have assumed that all default rules in D contain no free variables. 
(Similarly to the case of logic programming, default rules containing free variables can 
be understood as representing the set of all their ground instances.) 

Given a default theory (T, D), the corresponding deductive system, (L, R), and 

assumption-based framework, (T, Ab, -), are defined by: 

. C = Lo u {Ma 1 ci E Co}, 

. R=E&uD, 

l Ab={MPIPEC 0 and Mj? appears in one of the default rules in D}; 

l Ma = ~a. 

Intuitively, an assumption of the form Ma means that (Y is consistent, i.e. that ~a cannot 
be shown. 

We will assume that the inference rules of first-order logic in 7+, are applied only to 
formulas in CO. This assumption together with the fact that the default rules in D derive 
only formulas in CO implies the following lemma. 

Lemma 2.7. Let (T,Ab, -) be the assumption-basedframework corresponding to a de- 

.fault theory (T, D) . Then for each assumption Ma E Ab and for each set of assumptions 

A C AD 

TuAl-MU if and only if Ma E A. 

This lemma is important because, in general, frameworks which satisfy the property 

V/3 E Ab, T U A 1 p if and only if /? E A, 

(called “flatness” in Definition 4.10) are guaranteed to have sensible semantics, as we 
will see in Corollary 4.11 and Theorem 6.2. 

Example 2.8. There are several ways of expressing the “innocent-unless-guilty” ex- 

ample in default logic. Assume that the vocabulary of the language CO consists of the 
propositional symbols innocent and guilty. 

( 1) Similarly to Example 2.5 of Theorist, the default theory is 

T = {‘guilty 4 innocent} , 

In the corresponding assumption-based framework there is only one maximal 
conflict-free set of assumptions A containing Mlguilty. 

,...,M I, ’ In Reiter’s original formulation, default rules are expressed in the slightly different form “MP1y ’ 
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(2) The default theory is 

The co~esponding assumption-based framework has one maximal conflict-free 
set of assumptions as in representation 1. 

The default theory in the first part of this example is a normal default theory [ 491, 
i.e. with all default rules of the form 

Poole [43] shows that there is a one-to-one correspondence between normal default 

theories (T, D) and abductive frameworks (T, Ab) in Theorist, where each normal default 
e in D corresponds to an assumption cy in Ab and vice versa. Moreover, under this 
correspondence, the semantics 1491 of normal default theories coincides with the naive 

semantics of Theorist. These results also follow from more general results we will 
present later, in Section 3.3. 

Marek, Nerode and Remmel [ 36,371 generalise default logic by dropping the con- 
dition that the underlining monotonic logic be classical first-order logic. The resulting 

~~on-?~o~oton~c r&e solutes is defined to be a pair (Lo, R) where & is a nonempty set 
of sentences and R is a set of non-monotonic rules of the form 9 

al,..., %,MPI,...,MP,,, 
Y 

where at ,..., ty,,,pi ,..., &,r E CO. If m = 0 then the rule is an inference rule of 
some “underlying” monotonic logic. Otherwise, the rule is similar to a default rule of 

default logic. 

A theory T 2 LO with respect to a non-monotonic rule system (Co,R> can be viewed 
as an assumption-based framework (T, Ab, -) with respect to a deductive system (C, R) 

where 

2.4. 

c = ccl u {Ma / ff E Co}, 
T C Co, 
Ab = {Ma 1 LY E CO}, and 
Ma = YLY. 

Let (C,R) be a deductive system where _L is a modal language containing a modal 
operator L, and R is some set of inference rules for classical logic for the language C. 
The intended meaning of La is that LY is believed. 
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A theory T in autoepistemic logic [40] can be viewed as an assumption-based frame- 

work (T,Ab,-), where 

l A~=(L~~~EG}U{~L~ILYEC} 

l ALLY = a and E = -ILU for each cy E C. 

Example 2.9. The ~‘innocent-unless-guilty” example can be expressed naturally in au- 
toepistemic logic by the following theory 

{ 7 Lguilty -+ innocent} 

In the corresponding assumption-based framework there are two maximal conflict-free 

extensions. One contains the assumption TLguilQ, the other contains the assumption 
Ilinnocent. Only extensions of the first kind are acceptable in the standard semantics 

of autoepistem~c logic, which we will investigate in Section 3.4. 

2.5. Non-monotonic modal logics 

Non-monotonic modal logics [ 391 can be formulated in terms of deductive systems of 

the form (_C, R) where G is a first-order modal language containing a modal operator, 

L, and R is some set of inference rules for the language LG. Different choices for 

R correspond to different modal logics. However, all R contain ali instances of the 
necessitation rule: ” 

Given a theory T C C, the corresponding assumption-based framework is (T,Ab,-) 
where 

l Ab = (~Ltu j a E C]; 
l ~LCY = at for each LY E L. 

Example 2.10. Let T be the theory 

{ TLguilty -+ innocent}. 

This has the same two kinds of maximal conflict-free extensions as in Example 2.9 in 

autoepistemic logic, but cont~ning only negative assumptions. Similarly, only the first 
kind of extension, containing the assumption TLguilty, is acceptable in the standard 
semantics, which is an instance of the stable semantics defined in the next section. 

In this example, the naive semantics for autoepistemic and non-monotonic modal logic 
coincide. More generally, for some choices of ‘R, autoepistemic and non-monotonic 
modal logics coincide (e.g. see [ 531)) where for others they differ. 

lo Here we consider the necessitation rule as formulated in 1391. However, note that in monotonic modal 
logics necessitation is restricted to sentences E E G that are first-order tautologies. 
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3. Stabie semantics 

In this section we define the notion of stable semantics, which corresponds to most 

of the credulous semantics which have been proposed for default reasoning, including 

Theorist’s extensions [43], the stable model semantics of logic programming [ 201, 

extensions in default logic [49], expansions in autoepistemic logic [40] and fixed 
points in non-monotonic modal logics [ 391. 

Informally, a set of assumptions is stable if it is conflict-free and it attacks (by proving 

the contrary of) every ~sumption it does not contain. More formally 

Definition 3.1. Given an assumption-based framework (T,Ab,-), 

l a set of ~sumptions A C Ab uttuc~ an ~sumption cx E Ab if and only if T U A f- 

F 
o a set of assumptions A C: Ab attacks a set of assumptions d’ C Ab if and only if A 

attacks some assumption Q: f A’. 

If A attacks LY (respectively A’) we also say that A is an attack against (Y (respectively 

A’). Notice that an immediate consequence of Definition 3.1 is that 

l given a set of assumptions A C Ab, if A is conflict-free then A does not attack 

itsetf. 

However, the converse implication does not hold in general, because A might attack an 
~sumption which is implied by T U A but is not in A explicitly, as iliustrated by the 

following example. 

Example 3.2. Consider the autoepistemic logic theory 7’ 

{Q + l’L% s> 

and the set of assumptions A = (7Lp). A does not attack itself, since T ii A If p. 

However, A is not conflict-free, since T U A I- dq, q. 

If a set of assumptions does not attack itself and explicitly contains all the assump- 

tions which, together with the given theory, it implies, then it is conflict-free. More 

formally: 

Definition 3.3. Given an assumption-based framework (T,Ab,-), a set of assumptions 

d f Ab is closed if and only if A = {a E Ab / T U A I- a}. 

It follows imm~iately that 

l a closed set of assumptions A C Ah is conflict-free if and only if A does not attack 

itself. 

Note that a maximal conflict-free set of assumptions is necessarily closed. 
Assumption-based frameworks where all sets of assumptions are closed are simpler 

than other frameworks. In Section 4, such special frameworks are said to be flat (see 
Definition 4.10). 
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Definition 3.4. A set of assumptions A is stable if and only if 
l A is closed 

l A does not attack itself and 
l A attacks each assumption Q $ A. 

The stable semantics generalises the naive semantics, as shown by the following 

theorem. 

Theorem 3.5. For any assumption-based framework (T, Ab,-), for any set of assump- 
tions A g Ab, 

if A is stable then A is maximal conjict-free. 

Proof. Assume A is stable. Then A is conflict-free. Therefore, we need to show only 

that, for each assumption (Y $ A, A U { } . a IS not conflict-free. But this follows directly 

from the fact that for each assumption (Y $ A, A attacks (Y. 0 

The converse of Theorem 3.5 does not hold in general, as illustrated by the logic 

programming formulation of the “innocent-unless-guilty” example in Example 2.6. Here, 
the only stable set of assumptions is Al = {not guilty}. In fact, the (maximal) conflict- 
free set of assumptions 42 = {not innocent} does not attack not guilty. 

The assumption-based frameworks for which the stable semantics and the naive se- 
mantics coincide are called normal assumption-based frameworks. 

Definition 3.6. An assumption-based framework (T, Ab,-) is normal if and only if 
every maximal conflict-free set of assumptions is stable. 

The following theorem gives a sufficient condition for assumption-based framework 
to be normal. 

Theorem 3.7. An assumption-basedframework (T, Ab,-) is normal iffor each A C: Ab 
and each assumption CI $ A 

if A U {a} is not conflict-free then A attacks a. 

Proof. From Theorem 3.5, if A is stable then A is maximal conflict-free. Suppose A 
is maximal conflict-free. Then, it is closed and does not attack itself. Since for each 
assumption (Y $! A, A U { } a IS not conflict free. Hence A attacks (Y. It is obvious that A 
is stable. q 

The following theorem provides an alternative characterisation of stability. 

Definition 3.8. Given an assumption-based framework (T, Ab, -) and a set of assump- 
tions A C Ab, 

S(A) = {a 1 A does not attack cy}. 
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Theorem 3.9. A closed set of assumptions d is stable if and only if A = S(A). 

Proof. Let A be a closed set of assumptions. Then 

l A does not attack itself if and only if A C S(A); 

l A attacks each assumption cy +.$ A if and only if S(A) C. A. 0 

The notion of stable extens~o~z, i.e. of a theory 7’hfT U A) for some stable set of 
assumptions A, corresponds, more closely than the notion of stable set of assumptions, 

to the standard semantics of most non-monotonic logics, as we will see later in this 

section. Note that the set of assumptions contained in a stable extension is automatically 

closed. 

The following theorem provides four alternative characterisations of the notion of 
stable extension. The theorem shows that the different characterisations differ prim~ily 

in the way they characterise theoremhood in the underlying monotonic logic. The first 

two characterisations are the simplest, because they take the notion of monotonic the- 
oremhood to be already given. The second, in particular, corresponds to the standard 

characterisation of stable models in logic programming, extensions in autoepistemic 
logic and ftxed points in non-monotonic modal logics. The third characterises a sentence 
as a theorem if it is derivable by means of a finite number of inference steps. The fourth 

characterises the set of all theorems as the smallest set containing an initial theory 

(r i? AE) and cIosed under the operation of adding theorems. The fourth corresponds 
to the original definition of extension in default logic given in 1491, whereas the third 

corresponds to the equivalent characterisation of default logic as proved in [ 491. 

Theorem 3.10. Given an assumption-basedframework (T, AD,-) with respect to (L, R) 
and E C C, let AE = {a E Ab 1 Z $I! E}. Then thefollowing statements are equivalent: 

( 1) E is a stable e~te~ls~on of (T, Ab,-j. 
(2) E=Th(TUA~),andA~isclosed. 

(3) E = Us Ei, where 
l E, =TuAE, 

l for each i > 1 Ei+.l = Ei U {p E C / “2p3a4 E R and CYI,, . . , (Y,, E Ei}, 
and AE is closed. 

(4) E = r(E) where for each set S C L, T(S) is the smartest set such that 

l TUAs C: T(S), where As= {aEAb 1 cY$ S}, 
o fur each (y’....,(yJt E R, if a!{ , . . . , 
and & is clos$d. 

a,, E r(S) then /3 E F(S), 

Proof. (1) w (2) 

E is a stable extension 

(by definition) 

there exists A such that E = Th(T U A) and A is stable 

(by Theorem 3.9) 

E = Th( T U A) where A = {A+ E Ab i A does not attack cy} and A is closed 
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(by definition of attack) 

E=Th(TUA) whereA={cuEAb~TUA~jE}andAisclosed 

(by definition of E) 

E = Th(T U A) where A = {LY E Ab 1 Cu ft E) and A is closed 

(by definition of AE) 

E = Th(T U AE) and AE is closed. 

(2) & (3) By definition of Th, E; is the set of theorems derivable from the theory 
T u AE by means of a deduction of length i. 

(2) G+ (4) f(S) is the smallest set containing TU As and closed under theoremhood. 
Therefore r(S) = Z%(T U AsI and the condition E = r(E) is equiv~ent to E = 
ThjT u 4~) in (2). 0 

3.1. Theorist 

Theorem 3.11. For any abductive framework (T, Ab) , the corresponding assumption- 
based framework (T,Ab,-) is normal. 

Proof. Suppose there exist A C Ab and cy E Ab, CY 6 A such that AU {ty} is not conflict- 
free. Then, because an inconsistency in classical logic implies any sentence, TU&J{a} I- 
~a. Then T U A I- cy --+ -KY, and therefore T U A I- la, i.e. A attacks (Y. Therefore 
the normality of the considered assumption-based framework follows immediately from 
Theorem 3.7. q 

It follows directly from this theorem, from Theorems 3.5 and 2.4 and from Defini- 
tion 3.6 

Theorem 3.12. Given a Theorist abductive framework (T, Ab) , E is an extension of 
(T, Al?) in the sense of [ 431 v and only if E is a stable extension of the corresponding 
assumption-based framework. 

3.2. I;ogic programming 

Given a normal logic program P, let (P, AD, -) be the corresponding assumption-based 
framework (as defined in Section 2.2). 

By Theorem 3.10, equivalence between (1) and (2), E is a stable extension if and 
only if E = {q / P U AE I- q} where A E = {not p E Ab 1 p $ E}. Note that the 
condition that AE is closed is unnecessary, because every set of assumptions in such an 
assumption-based framework is closed. 

Theorem 3.13 below states that stable semantics for logic programing corresponds 
to stable model semantics [ 201, defined in terms of Herbrand models. 

A Herbrand interpretation I of a theory is any subset of the Herbrand base of the 
language of the theory. It assigns the truth value true to any ground atom in I and the 
truth value false to any ground atom not in I. The truth value of any other sentence is 
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defined in the usual way. A Herbrand model of a theory is a Herbrand interpretation in 
which every sentence in the theory is true. 

By definition [ 20)) M is a stable model of P if and only if M is the least Herbrand 
model of the program PM obtained by eliminating from P: 

l all clauses with conditions of the form not p such that p E M, 
l all negative literals from the remaining clauses. 

It is easy to see that the least Herbrand model of PM coincides with the set {p f ?-U3 j 
P u 4,,,, I- p} where AM = {not p 1 p $ M}. Therefore, M is a stable model of P if 

and only if M = {p E 70 / P U AM /- p}. A s a consequence, the following theorem 
holds: 

Theorem 3.13. M is a stable model in the sense of [ 201 of a logic program P if and 
or@ if there is a stable extension E of the corresponding assumption-based framework 
such that M = E n 7-B. 

It is similarly easy to show that there is a one-to-one correspondence between answer 
sets [ 211 of extended logic programs and stable extensions. 

Notice that the notion of stable model (and similarly of answer set) is purely syntactic. 
Extensions E are turned into models simply by restricting attention to the variable- 

free atoms or literals in E. This close correspondence between extensions and models 

suggests that there is no strong reason to prefer a model theoretic semantics over a 
purely syntactic one based on extensions. In fact, for our purposes, it is more convenient 
to deal with sets of assumptions than with extensions or models. This will become more 

apparent when we investigate the admissibility semantics in the next section. 

3.3. Default logic 

Given a deductive system (LO, 7&) for first-order logic and a default theory (K D), let 

(T, Ab,-) be the corresponding assumption-based framework with respect to (C, ‘&IUD). 
Reiter [ 491 defines a set E C CO to be an extension of (T, D) if and only if E = To(E) 

where Fe is defined as follows: for each set S C_ La, To(S) is the smallest set such 

that 

0 T c To(S), 
l To(S) is closed with respect to the first order deductive system (CO, RI)), and 
l for each rr*MPi;..*MW E D if LY E To(S) and -/?i $ S for each 1 < i < n then 

y E r,(S) 
From the definition of 4s’ = {M/3 1 ~j3 $ S} (g iven in Theorem 3.10), it follows 

immediately that 

Lemma 3.14. Let S L LO. Then ro( S) is the smallest set such that 

l T c r,(s), 
l fur each “‘y”” E ?&uD ifTo UAs t *f LY' areach 1 <i<nthenyEI”o(S). 

For any S’ C. C, let r( S’) = To( S’ n LO) U 4.71. 
From the flatness of default theories (Theorem 4.12), it follows directly that 



A. Bondarenko et al. /Artijicial Intelligence 93 (1997) 63-101 81 

Lemma 3.15. r( S’) is the smallest set such that 

. TUAs, C_ T(S'), 
a r( S') is closed with respect to the deductive system (L, R) 

Now it follows directly from Theorem 3.10, equivalence between ( 1) and (4), that 

Theorem 3.16. E C 150 is an extension in the sense of [49] of a default theory (T, D) 

if and only if there is a stable extension E’ of the corresponding assumption-based 

framework such that E = E’ n CO. 

A similar result holds for non-monotonic rule systems [36,37]. Namely E is an 
extension of a theory T in a non-monotonic rule system (L, ‘R) if and only if there 
is a stable extension E’ of the corresponding assumption-based framework such that 

E = E’ n L. 
This result follows directly from Theorem 3.10, equivalence between ( 1) and (3). 
The assumption-based frameworks corresponding to normal default theories are nor- 

mal in the sense of Definition 3.6: 

Theorem 3.17. For any normal default theory (T, D) , the corresponding assumption- 

based framework (T, Ab, -) is normal. 

Proof. The proof is similar to that of Theorem 3.11. Suppose there exist A C Ab and 

Ma E Ab, Ma $! A, such that A U {n/r a is not conflict-free. Then, there exists Mb E } 
A U {Ma} such that T U A U {Ma} /- -p. But MP occurs in (T, D) only in a default 

rule y E D. Therefore, T U AU {Ma} I- p, and therefore TU AU {Ma} is inconsistent 

and implies every sentence in LO. In particular, T U A U {Ma} /- ~a. But, as before, 

Mcu occurs in (T, D) only in a default rule y E D. Therefore, T U AU {a} I- la, and 

therefore T U A I- ~a, i.e. A attacks Ma. Hence, following Theorem 3.7, (T,Ab,-) is 

normal. 0 

3.4. Autoepistemic logic 

Given a modal language (L, R) containing a modal operator L and an autoepistemic 
theory T C: C, let (T,Ab,-) be the corresponding assumption-based framework. 

By Theorem 3.10, equivalence between ( 1) and (2)) E is a stable extension if and 
only if E = Th(T U AE) where AE = {La E Ab 1 ~Lcu $ E} U {da E Ab ( a $! E} and 
AE is closed. 

The following theorem shows the correspondence between stable extensions and the 

original stable expansion semantics of autoepistemic logic given in [40]: E is a stable 

expansion of T in the sense of [ 401 if and only if E = Th( T U {La / a E E} U { ~Lcu 1 
‘t $ E)). 

In the proof of the theorem we will refer to the fact that a consistent theory T 
can admit an inconsistent stable expansion. For example, T = {lLp} has the stable 
expansion E = {Lp, 'Lp, . . .} = L. 



Theorem 3.18. A theory E is a stable extension of the assumption-based framework 
corresponding to an autoepistemic theory T if and only if E is consistent and is a stable 
expansion [40] 0fT 

Proof. (+=) Assume that E is a stable expansion and E is consistent. We need to prove 

only that (I) {LX E Ab / --ILCY 6 E} = {La 1 a E E} and (2) d = {Lcu / a E 
E} u (~Lcx / a $ E} is closed: 

( I ) But ?La @ E implies (since, by definition of stable expansion, LY $ E implies 
~LLX E E) (Y E E. Conversely a E E implies (by definition of stable expansion) 

Lcr E E, that in turn implies (because E is consistent) ~Ltu $ E. 
(2) Assume that d is not closed. Then, either there exists La E E such that Lcu $8 A 

or there exists 1La CC- E such that 1La $ A. In the first case, if La @ A, then (Y $?z E, 
then ~LCX f E and E is inconsistent. In the second case, if -La q? A, then o E E, then 

Lru E E and E is inconsistent. Therefore d is closed. 
(+) Assume that E is a stable extension of the assumption-based framework corre- 

sponding to T. We need to prove only that ( 1) E is consistent, and (2) (La E Ab 1 
-?,!a $ E) = {La / a E E}, i.e. -La C$ E if and only if cr E E: 

( 1) Otherwise E would not be a conflict-free extension and therefore would not be 

stable. 
(2) But -La $! E, if and only if (since E = Th(TlJAE) and LIE is closed) ~LCY $! AE. 

if and only if (by de~nition of AE) CY E E. 0 

3.5. Non-monotonic modal logics 

Given a first-order modal language (C, ‘FL) containing a modal operator L and a non- 
monotonic modal theory T C C, let (T,Ab,-) be the corresponding assumption-based 

framework. 
By Theorem 3.10, E is a stable extension if and only if E = 77z(T U A,) where 

AE = {lLa, E Ab 1 a $ E} and AE is closed. 
The following theorem shows the correspondence between stable extensions and the 

original fixed point semantics for non-monotonic modal logics given in [39]: E is a 
fixed point of 7’ if and only if E = Th(T U {ALLY / a g’ E}). 

In the proof of the theorem we will use the property, following directly from the 
definition of fixed point, that a fixed point E of a theory T is inconsistent only if T is 

inconsistent. Therefore, differently from the case of autoepistemic logic, it is sufficient 

to assume that the theory T is consistent to guarantee the correspondence between stable 
extensions and fixed points. 

Theorem 3.19. A theov? E is a stable extension of the assumption-based framework 
corresponding to a non-monotonic modal theory T if and only if E is a fixed point of T 
and T is consistent. 

Proof. (=+) We need to prove only that T is consistent. But if T was inconsistent then 
E = C would not be a stable extension, since AE = 8 would not be closed. 
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(G=) Assume that E is a fixed point of T and that T is consistent. We need to prove 
only that AE = {lLa E Ab 1 a @ E} is closed. Suppose that it is not. Then, there exists 
1La E E such that 1La $ AE. But then, by definition of fixed point, if ~LCY $ AE 

then a E E. By necessitation, La E E. Therefore, E is inconsistent. This contradicts the 

hypothesis that T is consistent. 0 

4. Admissibility semantics 

Viewed from an argumentation-theoretic point of view, stable semantics seems un- 

necessarily restrictive, because it insists that a set of assumptions should take a stand 

on every issue. On the other hand, the naive semantics, which allows any conllict-free 

extension, is too liberal, because it allows intuitively unacceptable sets of assumptions. 
We need a semantics which is more tolerant than stable semantics and less liberal than 

naive semantics. Such a semantics, called the admissibility semantics, was introduced 
for logic programming by Dung [lo]. It provides a semantics in cases like those in 

Examples 4.1 and 4.2, where a stable semantics does not exist. 

Example 4.1. Consider the logic program 

{P - not P). 

This has no stable extensions. However, A = 8 is admissible in the intuitive sense that 

A is conflict-free and it is not attacked by any other set of assumptions. Moreover, A is 
maximal admissible, because the only larger set {not p} attacks itself. 

Example 4.2. Consider the autoepistemic and non-monotonic modal theory 

1-L s --) 7r, -Lt i Y} 

This has no stable extension. In fact, if it had a stable extension E = Th(T U A), with 

A a stable set of assumptions, then either A would contain ~Ls and 1Lr or not. In 

the first case, A would attack itself and therefore would not be stable. In the second 

case, A would be unable to attack all assumptions not in A. However, both Al = {~Ls} 

and A2 = {?Lt} are admissible, because each is conflict-free and can defend itself 

against any closed attack. In particular, any attack against AI or 42 must contain the 
inconsistent set {~Ls, -Lt}. Any closed attack, therefore, contains both TLTr and -Lr, 
one of which is attacked by Al or AZ. 

Definition 4.3. A closed set of assumptions A 2 Ab is admissible if and only if 
l A does not attack itself, and 

l for each closed set of assumptions A’ C Ab, if A’ attacks A then A attacks A’ 

It is easy to see that in any assumption-based framework whose underlining deductive 
system contains a notion of inconsistency such that inconsistency implies everything, 
admissible sets of assumptions are consistent. 
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Definition 4.4. A set of assumptions A C Ab is preferred if and only if A is maximal 
(with respect to set inclusion) admissible. 

As mentioned above, the notions of admissible and preferred sets of assumptions 

generalise the semantics for logic programming given by Dung [ IO]. This is expressed 
by the following theorem. 

Theorem 4.5. For each logic program T and set of assumptions A in the assump- 

tion-based framework (T, Ab, -) corresponding to T, T U A is an admissible scenario of 

T (T U A is a preferred extension of T) in the sense of [ lo] if and only if A is an 

admissible (preferred) set of assumptions in (T, Ab,-). 

This theorem follows directly from the characterisation of Dung’s admissible scenarios 

and preferred extensions given in [ 25,261. 

Throughout this section, we focus our attention on admissible sets of assumptions 
rather than on admissible and preferred extensions. However, the restriction that admis- 

sible sets A be closed means that they are like extensions in the sense that, whereas 
extensions contain all the sentences Th(T U A) derivable from T U A, closed sets of 

assumptions contain all the assumptions Th( T U A) n Ab derivable. 
Instead of understanding semantics in terms of admissible extensions or sets of as- 

sumptions, it is also possible to define semantics in terms of the ground literals in 

E = Th(T U A). In the case of logic programming, by assigning true to a ground atom 

p if p E E and false to a ground atom p if not p E E, we obtain a three-valued model 
of T. It follows directly from the result shown in [ 291, that there is a one-to-one cor- 

respondence between partial stable models [ 501 and models corresponding to preferred 

sets of assumptions. 
It is also easy to show that there is a one-to-one correspondence between admissible 

and preferred sets of assumptions and the semantics of extended logic programs proposed 
by Dung and Ruamviboonsuk [ 141. 

The following theorem shows that preferred sets of assumptions provide a strictly 

more liberal semantics than stable sets of assumptions. 

Theorem 4.6. Every stable set of assumptions is preferred but not every preferred set 

is stable. 

Proof. Let A be a stable set of assumptions. First we show that A is admissible. Let A’ 
be an arbitrary (closed) attack against A. Since A does not attack itself, it is clear that 

A’ g A. Hence, A’ - A is not empty. Since A is stable, A attacks A’ - A. Therefore A 

attacks A’. So A is admissible. Since A attacks every assumption not belonging to it, it 
is clear that A is a maximal admissible set of assumptions. Hence A is preferred. 

Example 4.1 shows that not every preferred set of assumptions is stable. 0 

In general, maximal conflict-free sets of assumptions need not be preferred, as shown 

by Example 2.6, where the only preferred set of assumptions is {not guilty}. Moreover, 
preferred sets of assumptions are not necessarily maximal conflict-free, as shown by the 
following example. 
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Example 4.7. In the assumption-based framework corresponding to the logic program 

{p c not 4, q c not r, r t not p} 

there is only one preferred set of assumptions, namely 0, which is not maximal conflict- 

free. In fact, the maximal conflict-free sets of assumptions are {WE p}, {not q) and 

{not r), which are not admissible. 

However, the naive, stable and preferred semantics coincide for normal assumption- 

based frameworks, as stated in the following theorem: 

Theorem 4.8. For any normal ussum~t~on-based framework (T, Ab,-), for any set of 
ass~m~tiorzs A C Ab, the foilo~i~g statement~~ are eql~i~ia~e~t: 

( 1) A is maximal conj?ict-free. 
(2) A is stable. 
(3) A is preferred. 

Proof. f 1) =+ (2) By Definition 3.6 of normal assumption-based framework. 

(2) + (3) By Theorem 4.6. 
(3) + ( 1) Suppose A is preferred, but not maximal conflict-free. Then, A is conflict- 

free because it is preferred. Therefore, by Theorem 2.3, there exists A’ > A such that 

A’ is maximal conflict-free. Since (T,Ab,-) is normal, A’ is stable. By Theorem 4.6, A’ 
is preferred, thus contradicting the hypothesis that A is preferred. Cl 

The following theorem and its corollary guarantee the existence of preferred sets of 

iWumpti0ns. 

Theorem 4.9. For eveq admissible set of assumptions A, there exists a preferred set 
of assumptions which contains A. 

Proof. The set of all admissible sets of assumptions that are supersets of A is a non- 

empty partial order with respect to subset inclusion. Let do, Al,. . . , A,, . . ., where n is 
an ordinal number, be any increasing sequence of admissible sets of assumptions such 
that A0 = A. It is easy to see that this sequence has an upper bound A’ = Ui>e Ai 
which is also admissible: if A’ attacked itself then some finite subset of A’, con&red 

in some Ai, would attack itself, thus contradicting the admissibility of Ai. Similarly, any 

attack against A’ is an attack against some Ai. The admissibility of Ai implies that Ai 
and therefore A’ counter attacks this attack. Therefore, by Zorn’s lemma, since every 
increasing sequence of admissible sets that are supersets of A has an upper bound, then 

there exists a maximal admissible set of assumptions containing A. 0 

It follows directly from this theorem that, if at least one admissible set of assumptions 

exists, then there also exists a preferred set. It is easy to see that if the empty set of 
assumptions is closed, then it is also admissible. This property holds trivially for flat 
frameworks, defined as follows: 
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Definition 4.10. An assumption-based framework is said to be JIat if and only if every 
set of assumptions A C Ab is closed. 

Corollary 4.11. Every jut assumption-based framework possesses at least one pre- 

ferred extension. 

Flat assumption-based frameworks have a flat structure, in the sense that all assump- 

tions are independent from one other. In general, in a non-flat assumption-based frame- 

work, an assumption cy can be implied by a set of assumptions A for one of two reasons: 

l A is inconsistent with the theory, and in the underlying monotonic logic inconsis- 

tency implies any sentence, including (Y. 

l a can be derived from A by means of the domain-specific theory, T. 
Implicit assumptions of the first kind can arise in Theorist, autoepistemic logic and 

non-monotonic modal logics and, as we will see later, in Section 6.2, in circumscription. 

Implicit assumptions of the second kind can arise in Theorist, circumscription, autoepis- 
temic logic and non-monotonic modal logics, as illustrated in Example 3.2. However, it 

is easy to see that neither kind of implicit assumption can arise in logic programming 
and in our formulation of default logic (see Lemma 2.7 for default logic). Therefore: 

Theorem 4.12. 
a The assumption-based framework corresponding to any logic program is $at. 
l The assumption-based framework corresponding to any default theory is flat. 

However, the assumption-based frameworks corresponding to autoepistemic theories 

are never flat, since the set of assumptions {La, ALLY}, for any sentence LY, is inconsistent 
for any theory T. The assumption-based frameworks corresponding to Theorist or non- 

monotonic modal theories may be flat in some cases, but are not flat in general. For 
example, the assumption-based framework corresponding to the non-monotonic modal 

theory 

is flat, while the assumption-based framework corresponding to 

is not. 
Although, arguably, it is an improvement over both the naive and the stable semantics, 

admissibility semantics can itself be improved, as the following example shows. 

Example 4.13. Consider the logic program P 

{ r*+nots, rtnott, s+-r,r*, ttr,r.*j 

which simulates, in part, the autoepistemic and non-monotonic modal theory of Exam- 
ple 4.2. The positive atom r* simulates the negative literal yr; and the last two clauses 
partially simulate the property in classical logic that an inconsistency implies anything. 
P also partly simulates the extended logic program 
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{ - r + not s, Y + not t} 

Like the theory T of Example 4.2, P has no stable extensions. However, unlike T, 

the sets A, = {not s} and A2 = {not t} are not admissible, because the closed attack 

A’ = {not s,not t}, against both AI and AZ, cannot be counterattacked by Al and A?. 

Intuitively, however, AI and A2 are both “acceptable” because A’ attacks itself and is 

therefore not an “acceptable” attack. 

Two semantics, called “stable theory” and “acceptability” semantics, have been pro- 

posed for logic programming by Kakas and Mancarella [ 281, to deal with cases like the 

one in this example. These semantics can be generalised and defined more abstractly 

for any assumption-based framework. These generalisations are straight-forward, and we 

shall not discuss them further in this paper. A formal definition of these generalisations 

can he found in 1271. 

5. Complete semantics 

Once an agent commits itself to a set of assumptions A, it is not unreasonable to 

expect that agent to accept any further assumption (Y which is “defended” by A, and 
then to accept any assumptions “defended” by A U {a}, etc. Repeatedly adding such 
assumptions to a set A eventually leads to a complete set of assumptions, which not 

only contains A, but also contains all the assumptions A “defends”. 

Definition 5.1. A set of assumptions A defends an assumption LY if and only if for each 

closed set of assumptions A’, if A’ attacks CY then A attacks A’ - A. 

Definition 5.2. Given an assumption-based framework (T, Ab,-) and a set of assump- 
tions A C Ab, 

Def( A) = {a 1 A defends cz}. 

The following theorem follows directly from the definitions: 

Theorem 5.3. A set of assumptions A is admissible if and only if 

l A is closed, and 

l A 2 Def(A). 

Whereas a closed set of assumptions is admissible if and only if it is contained in 
the set of assumptions it defends, it is complete if and only if it is identical to the set 
of assumptions it defends: 

Definition 5.4. A set of assumptions A is complete if and only if 
l A is closed, and 
. A =&f(A). 
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It follows immediately from the definition that every complete set of assumptions is 

admissjble. On the other hand, not every admissible set is complete. For example, in 
fat assumption-based frameworks 8 is always admissible, but need not be complete. 

However 

Theorem 5.5. Every stable set of assumptions is complete. 

Proof. Assume A is stable. Since every stable set of assumptions is admissible, it suffices 
to show that A contains every assumption (Y it defends. If instead A defends CL $ A, then 

A also attacks (Y. So A attacks A - A, which is impossible. cl 

Although every stable set is complete, not every preferred set need be complete, as 

the following example shows. 

Example 5.6. Consider the non-monotonic modal theory 

{YLP -+ 91 -Lr --f -q}, 

The set of assumptions {-QJ} is admissible, since it is closed, does not attack itself 

and attacks the only closed attack {lLp, +J, -Lq, , . .} = Ab against it. Moreover, the 

assumption lZ,r is defended by (1Lp}. This can be seen by the fact that the only closed 
attack against lL,r is again {T.&J, -Lr, ?Lq, . . .} which is attacked by {-Lp}. However, 
{ 1Lp, TLr} is not admissible, since it attacks itself. Furthe~ore, from Theorem 4.6, 

we know that at least one preferred set of assumptions containing {7Lp} exists. Call 

this set A. Then it is clear that +J is also defended by A. It is also clear that TLr $! A, 
because {7Lp, TLr} is not admissible. Hence A is not complete. 

However, Corollary 5.8 of the following theorem states that in the case of flat assump- 
tion-based frameworks, every preferred set of assumptions is complete. 

Theorem 5.7. Let (T, Ab,-) be a flat assumption-based framework, A C Ab be admis- 
sible and S C: Ab be a set of assumptions defended by A (i.e. S C Def (A)). Then 
A U S is also ad~liss~b~e. 

Proof. Let A’ = AU S. Since (T, Ab, -) is flat, A’ is closed. First we prove that A’ attacks 

every attack against it. In fact, each attack against A’ is either an attack against A, which 
is attacked by A (since A is admissible), or an attack against S, again attacked by A 
(since A defends ,S). Finally we prove that A’ does not attack itself. In fact, if A’ did 
attack itself, then A’ would attack either A or S. In the first case, since A is admissible, 
A attacks A’ and therefore S. Since A defends S, we have that A attacks the empty set 

of assumptions, which is impossible. In the second case, since A defends S, A attacks 
A’ - A = S - A. Again, since A defends S, we have that A attacks the empty set of 
assumptions, which is impossible. q 

It follows immediately that 
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Corollary 5.8. Every preferred set of assumptions of a flat assumption-basedframework 

is complete. 

Complete sets of assumptions need not exist in general, as demonstrated by Exam- 
ple 5.6. However, it follows directly from the existence of at least a preferred set of 

assumptions for flat assumption-based frameworks and the above Corollary 5.8, that 
complete sets of assumptions always exist for flat assumption-based frameworks. 

Complete sets generalise the notion of complete scenarios for logic programs as 

defined by Dung [ IO] : 

Theorem 5.9. For each logic program P and set of assumptions A in the assumption- 

based framework (P Ab,-) corresponding to P P U A is a complete scenario of P in 

the sense of [ lo] if and only if A is complete with respect to (P Ab, -). 

From the equivalence (proved by [ 81) between the stationary semantics [48] and 

complete scenarios semantics [29] of logic programs, it follows then that the notion of 

complete set of assumptions is equivalent to the stationary semantics. 

6. Sceptical semantics 

Until now we have focused our attention on various credulous semantics. We shall now 

investigate sceptical semantics. In general, we can define a sceptical semantics which 
accepts a conclusion if and only if the conclusion holds in every (credulously) “accept- 

able” extension, where “acceptability” is understood in terms of maxima1 conflict-free, 

stable, admissible, preferred or complete extensions. In this section we will investigate 

two sceptical semantics. The first is the sceptical version of the complete semantics, the 
second is the sceptical version of the naive semantics. 

6.1. Well-founded semantics 

The well-founded semantics of logic programming [ 601 is a sceptical semantics which 

accepts a conclusion if and only if it holds in all complete extensions. This leads to the 

following generalisation in our framework. 

Definition 6.1. A set of assumptions A is well-founded if and only if A is the intersec- 

tion of all complete sets of assumptions. 

Note that, because Def is monotonic (see Definition 5.2)) it possesses a unique least 
fixed point, which coincides with U{Def( 0) 1 i is an ordinal number}. If this fixed point 
is closed then it is (minimally) complete and therefore well-founded. This is guaranteed 

to be the case for flat assumption-based frameworks (see Definition 4.10) : 

Theorem 6.2. For every Jlat assumption-based framework, the well-founded set of 
assumptions is minimal (with respect to set inclusion) complete and coincides with the 
least fixed point of the operator Def. 
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Proof. Since the framework is flat, 8 is admissible. From Theorem 5.7, it follows imme- 

diately that for each ordinal i, the set ~~~e~(~) j i 6 tz and n is an ordinal number} is 
admissible. Therefore, the least fixed point of Def, lJ{Def (8) / i is an ordinal number}, 

is admissible, and therefore does not attack itself (and is closed). Hence, it is complete 

and therefore well-founded. Cl 

Therefore, for flat assumption-based frameworks, a well-founds, sceptical agent is 
willing to make default assumptions A but it is not willing to commit itself to d 

sufficiently to assume A in the course of defending A against attack. Rather, it restricts 

itself either to defending A without making any assumptions at all or to defending 

A with the aid of assumptions which can be justified without assuming A to start 

with. 
From Theorem 4.2 it follows that the well-founded set of assumptions is complete for 

every logic program and default theory. Moreover, in the case of logic programming, 

this set corresponds to the well-founded semantics of Van Gelder, Ross and Schlipf 

1601: 

Theorem 6.3. Let P be a normal logic program and (P,Rb,-) the ~orrespond~~~g 

assumption-based framework. Then A C Ab is well-founded with respect to (T,Ab,-) ij 

and only if {p 1 P U A I- p} U {up 1 not p E A} is the well-founded model of i? 

This theorem follows directly from the results shown in [ lo]. 

Note that Theorem 6.2 gives a bottom-up method for computing the well-founded 
semantics of a flat assumption-based framework by computing u{Defi(@) 1 i is an 

ordinal number}. 

The well-founded semantics is more sceptical than the semantics obtained by tak- 
ing the intersection of all preferred or stable extensions, as implied by the foilowing 

Theorems 6.4 and 6.5 and as illustrated by Example 6.6: 

Theorem 6.4. For every jlat assumption-based framework, the well-founded set of 

assumptions is contained in every preferred set of assumptions. 

Proof. Note that the well-founded set of assumptions is complete for any flat assump- 
tion-based framework and is contained in every complete set by definition. Moreover, 

every preferred set of assumptions of a flat assumption-based framework is complete, 

by Theorem 5.8. Cl 

It follows directly from this theorem and from Theorem 4.6 that 

Theorem 6.5. For every JIat assumption-based framework, the well-founded set oj 

assumptions is contained in ever); stable set of assumptions. 

Example 6.6. Let T be the logic program: 

{p t-not q, q + notp, r + p, r +-- 4) 
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There are two stable sets of assumptions, {not p} and {not q}, which coincide with 
the preferred sets of assumptions. The conclusion r is justified by both of them. The 

well-founded set of assumptions, however, is 8, and does not justify r. 

However, the well-founded set of assumption is not always contained in every admis- 

sible set of assumptions. In particular, the empty set of assumptions is always admissible 

for flat assumption-based frameworks, but need not to be well-founded. For this reason, 
the semantics obtained by taking the intersection of all admissible extensions is more 
sceptical than the well-founded semantics. 

6.2. Circumscription 

Whereas circumscription [ 381 is usually defined model-theoretically, we interpret 

circumscription syntactically, in terms of sets of assumptions, when every model is a 

Herbrand model. This is the case, for example, when the theory T contains no function 

symbols and satisfies unique names axioms and domain closure axioms. 
When every model is a Herbrand model, circumscription is the sceptical version of 

Theorist. Whereas in Theorist the set of assumptions Ab can be any subset of ,C, in 

our treatment of circumscription the set of assumptions Ab consists of ground literals 

(atoms and their negation) for predicates which are fixed and ground negative literals 

for predicates which are minimised. 

More formally, let T be a theory in a first-order language C. Let P be a set of 
predicate symbols of C whose interpretation is to be minimised, 2 a set of predicate 

symbols of C whose interpretation is to be varied and & the set of remaining predicate 

symbols of L, whose interpretation is to be fixed. Ab = 7-B~ U ‘IfB? U ‘MB”, where 

l IFlB, p is the set of all sentences of the form 

y(tr,...,t,,) 

with p E P, 
l W3: is the set of all sentences of the l’orm 

with q E Q, 
l IFIB” is the set of all sentences of the form 

with q E Q, 
and tl,... , t,, are ground terms constructible from the vocabulary of C. 

We will show (whenever every model is a Herbrand model) that a sentence (Y 

follows from the circumscription of T if and only if CY holds in all maximal conflict- 
free extensions of (T, Ab,-), where 3 = -p (so that conflict-freedom and consistency 
coincide). 

In the standard formulation [ 321, a sentence follows from the circumscription of T, 
CIRC[T; P; 21, minimising the interpretation of predicate symbols in P and allowing 



the interpretation of predicates symbols in 2 to vary if and only if the sentence holds 
in all (P, 2)-minimal models of T, defined as follows: Let M and N be models of T. 

Then, N 6,~ M if and only if M and N differ only in the inte~retation of P and 
2, and the interpretation of P in N is a subset of its interpretation in M. A model M 

of T is (P, 2)-minimal if and only if, for every model N of T such that N <p,z M, 

M <P,Z N. 

Theorem 6.7. If every model qf T is a Herbrand model of T, then 
( 1) every (P, 2)-minimal model h4 of T is a model of a maximal conflict-free 

extension of (7; Ab, -); 
(2) every model of a maximal cor$ict-free extension of (T, Ab,-) is a (P, 2)-minimal 

model of T. 

Proof. ( 1) Let A4 be a (P, 2)-minimal Herbrand model of T. Let A be the set of 

assumptions Mr U M$ U Me, where, for S = P or s = &?, Ms = {~a & ?-@ 1 CY $! M} 
and MS = {IX E 7iBs 1 a E M}. F rom the (P, 2)-minimality of M, it is clear that MC 
is maximal and therefore T U 44: U Mk? U M” i_ MP. 

Therefore, T U A is maximal conflict-free. Moreover, by construction of A, M is 

obviously a model of T U A. 
(2) Let M be a model of a maximal conflict-free extension TUA. From the maximality 

of T u A, for every atom 4 in a predicate in Q, either 9 E A or 74 E A. Further, again 

from the maximality of T U A, for every atom p in a predicate in P, if up $ A then 
T u A I- p. Therefore, all models of T U A coincide on the extension of P and Q. 
Assume now that M is not (P, 2)-minimal. Then, there must be a model N such that 

N G73.2 M. Therefore, N and M coincide on the extension of & and every P-atom 
that is false in M is also false in N. Hence, N is also a model of T U A that does not 

coincide with M on the extension of P. This is a contradiction. Cl 

It follows directly from this theorem and from the definition of circumscription, 
that 

Corollary 6.8. If every model of T is a Herbrand model of T, then, for any sentence 
a E C, cy holds in CIRC(T; P; 2) if and only if CY holds in all maximal con$ict-free 
extensions of (T, Ab, -) . 

If cx in Corollary 6.8 is restricted to ground clauses, then the corollary still holds under 
more general conditions, for example when every model of T contains a submodel 
which is a Herbrand model. With this restriction on the sentences ty, CoroIlary 6.8 
also follows from Theorem 2.8 (or the equivalent proposition 2.10) and Theorem 2.5 
of [ 231, and Theorem 2.6 of [44]. A version of Corollary 6.8, where T satisfies 
uniqueness of names axioms (and equality axioms), domain closure axioms, C contains 
no function symbols and there are no fixed predicates has been proved by Ginsberg 
[22, corollary 2.21. A more general version of Corollary 6.8 above has been proved by 

Poole [45, Theorem 4.5.11. The if-half of Corollary 6.8 is related to Observation 3.4.11 
in [35]. 
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7. Existence, coincidence and uniqueness of semantics 

In this section, we investigate two classes of flat assumption-based frameworks. We 

show that for the first class, stratified assumption-based frameworks, the well-founded 

semantics, which exists by Theorem 6.2, is also stable (and therefore preferred). Thus, 

for stratified frameworks, well-founded, preferred and stable semantics always exist, 
coincide, and are unique. We show that for the second class, order-consistent assump- 

tion-based frameworks, any preferred set of assumptions, which is guaranteed to exist 

by Corollary 4.11, is also stable. Thus, for order-consistent frameworks, preferred and 

stable semantics exist and coincide (but might not be unique). 
Both classes of framework are characterised in terms of their attack relationship 

graphs. 

Definition 7.1. The attack relationship graph of a flat assumption-based framework 
(7’, Ab,-) is a directed graph whose nodes are the assumptions in Ab and such that there 

exists an edge from an assumption S to an assumption cx if and only if 6 belongs to a 
minimal (with respect to set inclusion) attack A against a. 

Definition 7.2. A flat assumption-based framework is struti$ed if and only if its at- 
tack relationship graph is well-founded, i.e. it contains no infinite path of the form 

a1,...,a,,..., where for every n > 0 there is an edge from cz,+t to LY,. 

Example 7.3. The framework corresponding to the logic program 

{p + not 4, q + not P} 

is not stratified, because its attack relationship graph has an infinite path: 

notp,not q ,..., notp,not q ,.... 

Example 7.4. The framework corresponding to the logic program 

{P(X) + notp(s(X)), P(O)) 

is not stratified, because its attack relationship graph has an infinite path: 

notp(O),notp(s(O)),notp(s(s((O))),.... 

Theorem 7.5. For any stratified assumption-bused framework, there exists a unique 

stable set of assumptions, which coincides with the well-founded set of assumptions. 

Proof. We need to show only that the well-founded set of assumptions is stable. From 
this and from the fact that the well-founded set of assumptions is contained in every 
stable set, it follows that there exists a unique stable set, which coincides with the 

well-founded set of assumptions. 

Let (T,Ab,-) be a stratified assumption-based framework and let A C Ab be the well- 
founded set of assumptions of (T, Ab,-). Trivially, A does not attack itself. Moreover, 
since (T,Ab,-) is flat, A is closed. It remains to show that A attacks every (Y +! A. 
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Assume the contrary. We will construct an infinite sequence of assumptions ao, . . . , 
a I,, . . , such that 

* for each i 3 0, ai if A and CX~ is not attacked by A, 

e for each i 2 0, there is an edge from LY;+I to LYE in the attack relationship graph, 
contradicting the assumption that (7’,Ab,-) is stratified. 

First, from the assumption that A is not stable, it is clear that there exists an crr~ $ A 

such that cya is not attacked by d. Suppose we have already constructed a finite sequence 

Qla,..., cy,, satisfying the above two properties. Then cy, $ A. Therefore, A does not 

defend CY,, and there exists a minimal A’ such that A’ attacks (II,, but A does not attack 

.4’ - A. SO there exists Qi+l E A’ - A such that ai+t is not attacked by A. It is clear that 

there exists an edge from cu;+_t to LUG. Cl 

There are meaningful frameworks which have a stable semantics but are not stratified, 

for example the framework corresponding to the logic program in Example 7.3. We will 
show that for the class of order-consistent frameworks, which contains this program, a 

stable semantics always exists. 
We will call an assumption S “hostile” to an assumption cr if either it belongs to a 

minimal attack against cx or it is hostile to an assumption which is friendly to a. An 

assumption /3 is “friendly” to LY if p is (Y or /3 is hostile to an assumption S which 

is hostile to LY. An assumption S is “two-sided” towards an assumption LU if it is both 
hostile and friendly. Equivalently: 

Definition 7.6. Given a flat assumption-based fr~ework (~ Ab,-}, let 6, a! E Ab. 
o 6 is fviendly to Q if and only if there exists in the attack relationship graph for 

(T, Ab,-) a path with an even number of edges from S to (II. 
o S is hostile to cy if and only if in the attack relationship graph for (7’,Ab,-) there 

exists a path with an odd number of edges from S to LY. 
l S is two-sided to a, written S + cr, if and only if in the attack relationship graph 

for {T,Ab,-) there exist both a path with an even number of edges and a path with 

an odd number of edges from S to (Y. 

Definition 7.7. A flat assumption-based framework (T,Ab,-) is order-consistent if the 
relation 4 is well-founded, i.e. there exists no infinite sequence cyt , . . . , a,, . . . where 

for every iz 3 0, ff,+r + ff,. 

Example 7.8. The framework corresponding to the logic program 

{P +- Got P> 

is not order-consistent, because there exists an infinite sequence l~at p, . . . ) rtot p, . . . . 

It is easy to see that 

Theorem 7.9. Every strati$ed assumption-based framework is order-consistent. 

Theorem 7.10. For every order-consistent assi~mption-based framewurk stable sets of 
assumptions are preferred sets of assumptions and vice versa. 
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Proof. Since every stable set of assumptions is preferred, we need to prove only that 
every preferred set of assumptions is stable. Let (7’,Ab,-) be an order-consistent assump- 

tion-based framework and let A & Ab be a preferred set of assumptions which is not 

stable. We will construct an admissible set A0 containing A as a proper subset, thereby 

contradicting the assumption that A is preferred. 
Let Ab’ = Ab - (A U {a 1 A attacks a}). Since A is not stable, it is clear that Ab’ is 

not empty. 
Let CY E Ab’ be such that there exists no /3 E Ab’ such that LY > p. (The existence of 

such a is guaranteed by the order-consistency of the framework.) 

Define SO (respectively St ) to be the set consisting of all those p E Ab’ such that there 
exists a path with an even (respectively odd) number of edges in the attack relationship 

graph from p to cy. It follows from the definition of LY that So and Si are disjoint. Note 
that due to the definition of CX, LY E SO. Hence SO f 8. 

Note that there exists at least one attack A against each /3 E Si such that 0 # A - A C: 

So. (Otherwise either /3 is attacked by A or p is defended by A. Either way, p $ Ab’.) 

This implies that A U SO attacks each assumption in Si. 
Let A0 = A U SO. We want to show now that A0 is admissible. Let A’ be an attack 

against some assumption in SO. If A attacks A’ then there is nothing to prove. Assume 

now that A does not attack A’. Therefore 8 # A’ - A C Ab’. Hence A’ - A C SI. Hence 
A0 attacks A’ - A. This means that A0 attacks A’. Further, we show that A0 does not 

attack itself. If A0 did attack itself, then A0 would attack A or SO. If A0 did attack SO, then 

AD’ fl (A0 - A) C S1. From SO = A0 - A, it follows SO C S1, which is impossible. If A0 

did attack A, then, since A is preferred, A would attack A, contradicting the assumption 

that A is preferred, or SO, contradicting the assumption that SO C Ab’. Therefore A0 is 
admissible and contains A as a proper subset. 0 

It follows directly from the definitions that the abstract notions of stratification and 

order-consistency generalise the notions of stratification and order-consistency for logic 
programming: 

Theorem 7.11. If P is a stratified logic program [ 41, then the corresponding assump- 
tion-based framework (P Ab,-) is stratijed. Similarly, if P is an order-consistent logic 

program [ 5 I], then the corresponding assumption-based framework (P Ab, -) is order- 

consistent. 

8. Related work 

The role of argumentation in human reasoning has been studied both inside and 

outside the field of artificial intelligence. Outside artificial intelligence, both Toulmin’s 
[58] philosophical analysis of argumentation and Lorenz and Lorenzen’s [34] logical 
analysis of classical logic as an argumentation game are particularly noteworthy. 

Among the earliest investigations of argumentation in artificial intelligence, the work 
of Alvarado [2] and Birnbaum, Flowers and McGuire [ 31 focused on understanding 
the structure of arguments in editorials and political dialogues. 
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Pollock’s work [41] bridges the fields of philosophy and artificial intelligence and, 
like this paper, addresses the use of argumentation for default reasoning. He constructs 

a theory of defeasible reasoning that takes into account the relations between arguments 
supporting contradictory conclusions. Dung [I I ] showed that Pollock’s theory of de- 

feasible reasoning corresponds to the computable part of the well-founded semantics of 
Section 6. I in this paper. In his later work [ 421, Pollock develops an alternative, cred- 
ulous semantics for defeasible reasoning. It is easy to see that this corresponds to the 

“stable theory” semantics for normal logic programs proposed by Kakas and Mancarella 
[ 281 and mentioned at the end of Section 4. 

Simari and Loui [54] extend Pollock’s sceptical semantics to incorporate Poole’s 

formalisation of the principle that specific defaults have higher priority than more general 

defaults. 
Vreeswijk [ 611 analyses different kinds of priorities that can arise between conflicting 

arguments and uses this analysis to decide how to resolve the conflict. But he does not 
develop this into a complete logic for default reasoning. 

Touretzky, Horty and Thomason, [59] argue that Pollock’s argumentation system 

cannot be used to formalise non-monotonic inheritance reasoning. Dung and Son [ 151 
counterargue against [ 593 by showing that non~monotonic inheritance can be formalised 
using the argumentation-theoretic methods of this paper. 

The approach to argumentation taken in this paper is most closely related to our earlier 

formalisations [ 6,111, which were based upon the argumentation-theoretic interpreta- 
tion of negation as failure in logic programming introduced by Kakas, Kowalski and 
Toni [ZS] . This was inspired, in part, by Dung’s admissibility and preferred semantics 

[ 101 for logic programming, which was motivated, in turn, by Eshghi and Kowalski’s 
abductive interpretation of stable model semantics [ 16, 173. Dung subsequently for- 

malised [ 1 l] argumentation in abstract terms, taking the notion of attack and argument 

as primitive. 
In this paper, we revert to the approach taken in [ 251 and developed further in 

161 in which assumptions are taken as primitive and both attacks and arguments are 

defined in terms of the monotonic derivability of conclusions based upon sets of as- 

sumptions. 
Kakas [ 241 generalised the argumentation-theoretic interpretation of negation as fail- 

ure and applied it to other logics for default rezoning. In p~ticul~, he proposed an 
argumentation-theoretic semantics for default logic different from the standard semantics 

and analogous to the acceptability semantics 1271 for logic programming. 
Toni and Kakas [ 551 develop abstract argumentation-theoretic proof procedures for 

computing admissibility, weak stability [ 281 and acceptability semantics [ 271 for default 
reasoning in general and normal logic progranlming in particular. In the companion paper 
] 131 we show how an abstract proof procedure for the admissibility semantics can be 
derived systematically from its specification. 

Recently, a number of authors have investigated other applications of argumentation to 

logic programming, Kakas, Mancarella and Dung [ 271 and Kakas and Dimopoulos ]9] 
investigate argumentation-theoretic semantics and proof procedures for extended logic 
programs without negation as failure, but with priorities between clauses. Alferes and 
Pereira [ 11 use argumentation to expand the well-founded model of normal and extended 
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logic programs. You and Cartwright [62] investigate the tractability of argumentation 

semantics for extended logic programming. 
Independently of these developments, Geffner [ 181 shows that the well-founded se- 

mantics of logic programming can be understood in argumentation-theoretic terms. He 
also presents a bottom-up proof procedure for this semantics. Based upon Geffner’s 

notion of argumentation, Torres [ 571 proposes an argumentation-theoretic semantics for 
negation as failure that is equivalent to Kakas and Mancarella’s stable theory seman- 

tics [28]. 
Although our approach is based upon the abductive interpretation of negation as failure 

[ 16, 171 and Dung’s admissibility and preferred semantics [ 101, it parallels many other 
approaches to argumentation developed independently in artificial intelligence. Among 

these, the work of Lin and Shoham’s [33] is most clearly related to ours both in its 

aims and its methods. 
Lin and Shoham [33] similarly develop an abstract argumentation-theoretic frame- 

work with the goal of capturing the semantics of many existing non-monotonic logics. 
They show that different variants of a single abstract notion of complete set of arguments 
corresponds to the standard semantics of default logic and autoepistemic logic. They 

also show a relationship to the semantics of stratified logic programs and the semantics 
of circumscription. Their notion of complete set of arguments is similar to our notion 

of stable set of assumptions. 
Brewka and Konolige [7] also investigate default reasoning at a similar level of 

abstraction in abductive terms, but without employing an explicit notion of argument. 
They propose a new semantics, which they apply to a variety of non-monotonic logics, 

and which they argue improves upon the standard semantics of these logics. 
Marek, Nerode and Remmel [ 36,371 use their non-monotonic rule systems to provide 

an abstract framework to reconstruct the standard semantics of many non-monotonic 

logics. But they do not employ explicit notions of abduction or argumentation, and they 
do not consider the case of circumscription. 

A number of other authors have employed argumentation for developing proof pro- 

cedures rather than for semantics. Geffner and Pearl [ 191, for example, develop such 
a proof procedure for a conditional logic which has a sceptical model-theoretic se- 

mantics similar to circumscription. However, the proof procedure is incomplete for this 
semantics. we conjecture that the reason for this incompleteness may be that the proof 
procedure computes the well-founded semantics instead. 

Ginsberg [ 221 and Baker and Ginsberg [ 51 develop an argumentation-theoretic proof 

procedure for circumscription. Like our argumentation-theoretic semantics of circum- 
scription, their proof procedure is restricted to a case where arbitrary interpretations and 
Herbrand interpretations coincide. 

Argumentation has become an important topic of research recently in the field of 
artificial intelligence and law. Prakken [46], for example, extends default logic using 
argumentation-theoretic notions to establish a preference between arguments based upon 

priorities between different default rules. Prakken and Sartor [47] formalise similar 

notions using the language of extended logic programs augmented with priorities. They 
extend Dung’s [ 121 grounded semantics, which is a well-founded semantics for extended 
logic programs, to incorporate such priorities. Kowalski and Toni [ 311, on the other 
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hand, argue that priorities can be dealt with by expressing the assumption that a rule 
is not defeated by a higher priority rule by means of an explicit condition of the rule 
rather than by dealing with priorities in the semantics. 

9. Conclusions and future work 

The abstract argumentation-theoretic semantics we developed in this paper shows 

that most formalisations of default reasoning can be viewed as extending a given 

theory by means of assumptions. In each case, these assumptions can be understood 

as expressing that their contraries cannot be shown. In most cases, the existing se- 
mantics sanction an extension if it is maximal conflict-free or if it is stable in the 

sense that it attacks all assumptions not in the extension. Many of these seman- 
tics are credulous, sanctioning a conclusion if it holds in some acceptable exten- 
sion. Others are sceptical, sanctioning a conclusion if it holds in all acceptable ex- 

tensions. 
We have argued that stable semantics, which is the standard semantics of most formal- 

isations of default reasoning, is too restrictive and have proposed admissibility semantics 

as an alternative. As we have remarked earlier, admissibility semantics can also be im- 

proved by generalising the stable theory semantics [28] and acceptability semantics 

[27] for logic programming of Kakas and Mancarella. 

Admissibility semantics and its improvements have the further advantage over stable 
semantics that they can be implemented more easily by means of a natural refinement 

of the semantics. In a companion paper [ 131, we show how most proof procedure for 

such semantics can be derived from the semantics. For this purpose we formalise the 
proof procedure as a logic program and the semantics as a program specification. We 
use well established techniques for logic program synthesis and verification to derive 
the program from the specification. 

We foresee three main research direction for the work presented in this paper: 
( I) Other existing logics and other semantics for default reasoning can be investi- 

gated in argumentation-theoretic terms. In particular, it would be useful to deter- 

mine whether any of the many existing proposals for improving the semantics 
of existing logics correspond to the admissibility semantics and its improve- 

ments. 
(2) The abstract argumentation theoretic framework should be developed further with 

the aim of identifying other improvements. If possible, we should evaluate the 

different existing logics in argumentation terms with the aim of identifying the 
best features of the individual logics and incorporating them into a single for- 
malism. 

(3) The argumentation theory should be applied to other problems of practical 
reasoning in areas such as law. We are particularly interested in the possi- 
bility that argumentation can help to reconcile conflicts between different sets 
of hypotheses. Some preliminary thoughts of this kind have been presented 

in [30]. 



A. Bondarenko et al. /Artificial Intelligence 93 (1997) 63-101 99 

Acknowledgements 

This research was supported by the Fujitsu Research Laboratories and by the EEC 

activity KIT01 I-LPKRR. The first author was partially supported by the grant 93-01 l- 

16016 of the Russian Foundation for Fundamental Research. The authors are grateful 

to Murray Shanahan for helpful discussions, and to Victor Marek and the referees for 

helpful comments. 

References 

J.J. Alferes and L.M. Pereira, An argumentation-theoretic semantics based on non-refutable falsity, in: 

Dix, Pereira, Przymusinski, eds., Proceedings ICLP’94 Workshop on Non-Monofonic Extensions ofLogic 
Programming ( 1994). 
S.J. Alvarado, Argument comprehension, in: S. Shapiro. ed., Encyclopedia of Artificial Infelligence 
30-52. 
L. Bimbaum, M. Flowers and R. MC&ire, Towards an artificial intelligence model of argumentation, 

in: Proceedings AAAI-80, Stanford, CA ( 1980) 3 13-3 IS. 
K.R. Apt, H. Blair and A. Walker, Towards a theory of declarative knowledge, in: J. Minker, ed., 

Foundations oj Deductive Databases and Logic Programming (Morgan Kaufmann, Los Altos, CA, 

1988). 

A.B. Baker and M.L. Ginsberg, A theorem prover for prioritised circumscription, in: Proceedings IJCAI- 
89, Detroit, MI ( 1989) 463-467. 

A. Bondarenko, F. Toni and R.A. Kowalski, An assumption-based framework for non-monotonic 

reasoning, in: A. Nerode and L. Pereira, eds., Proceedings 2nd International Workshop on Logic 
Pro,q-amming and Non-Monotonic Reasoning (MIT Press, Cambridge, MA, 1993) 171-l 89. 

17 I G. Brewka and K. Konolige, An abductive framework for general logic programs and other non- 

monotonic systems, in: Proceedings IJCAI-93, Chambery, France ( 1993) 9-15. 

( 8 I A. Brogi, E. Lamma, P Mello and P. Mancarella, Normal logic programs as open positive programs, in: 

Proceedings ICSLP-92 ( 1992). 

I9 I Y. Dimopoulos and A.C. Kakas, Logic programming without negation as failure. in: Proceedings ILPS-95 
(MIT Press, Cambridge, MA, 1995). 

I 101 P.M. Dung, An argumentation theoretic foundation of logic programming, .I. Logic Pro~rumming 22 
( 1995) IS 1-l 77; a shortened version appeared as “Negation as hypothesis: an abductive foundation for 

logic programming”, in: Proceedings ICLP-91 (MIT Press, Cambridge, MA, 199 1). 

P.M. Dung, The acceptability of arguments and its fundamental role in non-monotonic reasoning, logic 

programming and n-person games, Art$ciul Intelligence 77 ( 1995) 32 I-357. 
PM. Dung, An argumentation semantics for logic programming with explicit negation. in: Proceedirzgs 
ICLP’93 (MIT Press, Cambridge, MA) 616-630. 

PM. Dung, R.A. Kowalski and E Toni, Argumentation-theoretic proof procedures for non-monotonic 

reasoning, Draft, 1996. 

PM. Dung and P Ruamviboonsuk, Well-founded reasoning with classical negation, in: A. Nerode, V.W. 

Marek and D. Subrahmanian, eds., Proceedings 1st International Workshop on Logic Programming trnd 
Nonmonofonic Reusoning ( 199 1) 120- 135. 

P.M. Dung and T.C. Son, Non-monotonic inheritance, argumentation and logic programming, in: V.W. 

Marek, A. Nerode and M. Truszczynski, eds., Proceedings 3rd fnternarional Workshop on Logic 
Programming and Non-Monotonic Reasoning, Lecture Notes in Artificial Intelligence 928 (Springer, 

Berlin, 1995) 316-329. 

K. Eshghi and R.A. Kowalski, Abduction through deduction, Technical Report, Imperial College, London 
(1988). 

K. Eshghi and R.A. Kowalski, Abduction compared with negation as failure, in: Proceedings ICLP-89 
(MIT Press, Cambridge, MA, 1989). 



100 A. Bondarenko et al./Art~~ial Intelligence 93 (1997) 63-101 

1 181 H. Geffner, Beyond negation as failure, in: Proceedings KR-91, Cambridge, MA ( 1991) 218-229 
[ 19 I H. Geffner and J. Pearl, Conditional entailment: bridging to approaches to default reasoning, Arf#icial 

Intelligence 53 ( 1992) 209-244. 
[ZO] M. Gelfond and V. Lifschitz, The stable model semantics for logic progmmming, in: Proceedings 

ICSLP-88 (MIT Press, Cambridge, MA, 1988). 
[ 211 M. Gelfond and V. Lifschitz, Logic programs with classical negation, in: D.H.D. Warren and P Szeredi, 

eds., Proceedings ICLP-90 (MIT Press, Cambridge, MA, 1990) 579-597. 
/22 \ M.L. Ginsberg, A circumsc~ptive theorem prover, Arr~cjal ~~tell~ge~~ce 39 ( 1989) 209-230. 
j 231 K. lnoue and N. Helft, On theorem provers for circumscripton. in: Proceedings UT-90 ( 1990) 115-123. 
[ 241 AC. Kakas, Default reasoning via negation as failure, in: G. Lakemeyer and B. Nebel, eds., Proceedings 

ECAI-92 Workshop on Foundations of Knowledge Representation and Reasoning, Lecture Notes in 
Artificial IntelIigence 810 (Springer, Berlin). 

[ 25 j A.C. Kakas, R.A. Kowalski and E Toni, Abductive logic programming. J. Logic and Computation 2 
(1993). 

I26 1 A.C. Kakas, R.A. Kowalski and E Toni, The role of abduction in logic programming, in: Handbook of 
Logic in Arti~c~al Inteliige~ce and Logic Progrummi~g 5 (Oxford University Press, Oxford, to appear). 

1271 AC. Kakas, P Mancarella and PM. Dung, The acceptability semantics for logic programs, in: P Van 
Hentenryck, ed., Proceedings ICLP-94 (MIT Press, Cambridge, MA, 1994) 504-5 19. 

I28 1 A.C. Kakas and P Mancarella, Stable theories for logic programs, in: Proceedings ISLP-91 (MIT Press, 
Cambridge. MA, 199 1) . 

1291 A.C. Kakas and P Mancarella, Preferred extensions are partial stable models, 1. I&c Programming 14 
(1992). 

[ 30 1 R.A. Kowalski and E Toni, Argument and reconciliation, in: Proceedings FGCS Workshop on Application 

of L.ogic Programming to Legal Reasoning, Tokyo, Japan ( 1994). 
13 1 / R.A. Kowaiski and P, Toni, Abstract argumentation artificial intelligence and law, to appear. 
[ 321 V. Lifschitz, Circumscription, in: D. Gabbay, C. Hogger and J.A. Robinson, eds., Handbook of Logic in 

Artificial Intelligence and Logic Programming 3 (Oxford University Press, Oxford, 1994) 297-352. 
[ 33 1 E Lin and Y. Shoham, Argument systems: A uniform basis for non-monotonic reasoning, in: Proceedings 

KR-89, Cambridge, MA ( 1989). 
1341 P. Lorenzen and K. Lorenz, Diabgische Logik (Wissenschaftliche Buchgesellschaft, Darmstadt, 1977). 
135 ] D. Makinson, General patterns in non-monotonic reasoning, in: D. Gabbay, C. Hogger and J.A. Robinson, 

eds., Handbook of Logic in ArtQicial Intelligence and Logic Programming, Vol. 3 (Oxford University 
Press, Oxford) 1994) 35-I 10. 

136 [ W. Marek, A. Nerode and 1. Remmel, A theory of non-monotonic rule systems 1, Ann. Math. Art$ 

Intell. 1 (1990) 241-273. 
1371 W. Marek, A. Nerode and J. Remmel, A theory of non-monotonic rule systems II, Ann. Math. Artif: 

Inteli. S ( 1992) 229-263. 
f 38) J. McCarthy, Circumsc~ption-A form of non-monotonic reasoning, A~r~ciu~ ~nte~~~~e~ce 13 ( 1980) 

27-39. 
[ 39 I D. McDermott, Nonmonotonic logic II: non-monotonic modal theories, J. ACM 29 ( 1982). 
[ 401 R. Moore, Semantical considerations on non-monotonic logic, Artificial Intelligence 25 ( 1985). 
141 1 J.L. Pollock, Defeasible reasoning, C~~g~it~~e Sci. 11 (1987) 481-Sl8. 
I42 f J.L. Pollock, Justification and defeat, Artificial intelligence 67 ( 1994) 377-407. 
[ 43 I D. Poole, A logical framework for default reasoning, Arrrjicial Intelligence 36 ( 1988) 27-47. 
1441 D. Poole, Explanation and prediction: an architecture for default and abductive reasoning, Comput. fntell. 

J. 5 (1989) 97-110. 
[ ~$5 1 D. Poole, Default logic, in: D. Gabbay, C. Hogger and J.A. Robinson, eds., Handbook of Logic in 

Art$cial Intelligence and Logic Programming 3 (Oxford University Press, Oxford, 1994) 189-2 15. 
1461 H. Prakken, Logical tools for modelling legal argument, Ph.D. Thesis, Free University Amsterdam 

(1993). 
[ 47 1 H. Prakken and G. Sartor, On the relation between legal language and legal ~ument: Assumptions, 

applicability and dynamic priorities, in: Proceedings ICAIL-95 ( 1995) I-10. 
I48 1 T.C. Przymusinski, Semantics of disjunctive logic programs and deductive databases, in: Proceedings 

DOOD-91 (1991). 



A. Bondarenko et al. /Art$cial Intelligence 93 (1997) 63-101 101 

149 I R. Reiter, A logic for default reasoning, Artificial Intelligence 13 ( 1980) 8 I- 132. 
[50] D. Sac& and C. Zaniolo, Stable models and non-determinism for logic programs with negation, in: 

Proceedings ACM SIGMOD-SIGACT Symposium on Principles of Database Systems ( 1990) 

[ 5 I 1 T. Sato, Completed logic programs and their consistency, J. Logic Programming 9 ( 1990) 33-44. 
152 1 K. Satoh and N. Iwayama, A correct top-down proof procedure for general logic programs with integrity 

constraints, in: E. Lamma and P. Mello, eds., Proceedings 3rd International Workshop on Extensions of 
Logic Programming, Lecture Notes in Artificial Intelligence 660 (Springer, Berlin, 1992) 19-34. 

1531 G. Shvarts, Autoepistemic modal logics, in: Proceedings Third Conference on Theoretical Aspects of 
Reusoning about Knowledge, Pacific Grove, CA ( 1990) 

[ 541 G.R. Simari and R.P. Loui, A mathematical treatment of defeasible reasoning and its implementation, 

Artijicial Intelligence 53 ( 1992) 125-157. 
[55] E Toni and A.C. Kakas, Computing the acceptability semantics, in: V.W. Marek, A. Nerode and M. 

Truszczynski, eds., Proceedings 3rd International Workshop on Logic Programming and Non-monotonic 
Reasoning, Lecture Notes in Artificial Intelligence 928 (Springer, Berlin, 1995) 401-415 

1561 F. Toni and R.A. Kowalski, Reduction of abductive logic programs to normal logic programs, in: L. 

Sterling, ed., Proceedings ICLP-95 (MIT Press, Cambridge, MA) 367-38 1. 

[ 57 I A. Torres, Negation as failure to support, in: A. Nerode and L. Pereira, eds., Proceedings 2nd 
International Workshop on Logic Programming and Non-Monotonic Reasoning (MIT Press, Cambridge, 

MA, 1993) 223-243. 

[58 1 S. Toulmin, The Uses of Arguments (Cambridge University Press, Cambridge, MA, 1958). 

[59] D.S. Touretzky, J.F. Horty and R.H. Thomason, A sceptic’s managerie: conflictors, preemptors, reinstaters 

and zombies in non-monotonic inheritance, in: Proceedings IJCAI-91, Sydney (Morgan Kaufmann, Los 

Altos, CA, 1991) 478-483. 

[ 60 I A. Van Gelder, K.A. Ross and J.S. Schlipf, Unfounded sets and the well-founded semantics for general 

logic programs, in: Proceedings ACM SIGMOD-SIGACT Symposium on Principles of Database Systems 
(1988). 

[ 6 1 I G. Vreeswijk, The feasibility of defeat in defeasible reasoning, in: Proceedings KR-91, Cambridge, MA 

(Morgan Kaufmann, Los Altos, CA, 199 1) 

I621 J.H. You and R. Cartwright, Tractable argumentation semantics via iterative belief revision, in: 

Proceedings ILPS-94 (MIT Press, Cambridge, MA, 1994) 239-253. 


