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Abstract

We study defeasible knowledge bases with conditional pref-
erences (DKB). A DKB consists of a set of undisputed facts
and a rule-based system that contains different types of rules:
strict, defeasible, and preference. A major challenge in defin-
ing the semantics of DKB lies in determining how conditional
preferences interact with the attack relations represented by
rebuts and undercuts, between arguments.
We introduce the notions of preference attack relations as sets
of attacks between preference arguments and the rebuts or
undercuts among arguments as well as of preference attack
relation assignments which map knowledge bases to prefer-
ence attack relations. We present five rational properties (re-
ferred to as regular properties), the inconsistency-resolving,
effective rebuts, context-independence, attack monotonicity
and link-orientation properties generalizing the properties of
the same names for the case of unconditional preferences.
Preference attack relation assignment are defined as regular
if they satisfy all regular properties. We show that the set
of regular assignments forms a complete lower semilattice
whose least element is referred to as the canonical preference
attack relation assignment. Canonical attack relation assign-
ment represents the semantics of preferences in defeasible
knowledge bases as intuitively, it could be viewed as being
uniquely identified by the regular properties together with the
principle of minimal removal of undesired attacks. We also
present the normal preference attack relation assignment as
an approximation of the canonical attack relation assignment.

Keywords: Conditional preferences, regular properties,
minimal removal principle, preference attack relation as-
signments, canonical and normal preference attack relation
assignments.

Introduction
There are extensive research on rule-based systems with
prioritized rules (see, e.g., Modgil and Prakken (2014);
Amgoud and Cayrol (2002); Brewka (1989); Delgrande,
Schaub, and Tompits (2003); Schaub and Wang (2001);
Brewka and Eiter (1999)). Prakken and Sartor (1997) is ar-
guably the first attempt to study the application of priorities
of defeasible rules to define a preference order between ar-
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guments and then using this preference order to remove un-
desired attacks. Amgoud and Cayrol (2002) has studied dif-
ferent ways to define preference order between arguments.
Prakken (2010) and Modgil and Prakken (2013; 2014) have
proposed ASPIC+, a rich framework for structured argu-
mentation with prioritized rules with several distinct systems
of preference orders between arguments.

The rich diversity of proposed attack relations poses a se-
rious challenge for any potential user of structured argumen-
tation as such a user would have to decide which attack rela-
tion should be selected and implemented for her/his domain.
To address this problem, general principles for the character-
ization and evaluation of alternative attack relations for rule-
based systems are needed. Caminada and Amgoud (2007)
have introduced the postulates of consistency and closure for
argument-based systems. A subargument closure postulate
stating that any extension should contain all subarguments
of its arguments has been studied by Martinez, Garcia, and
Simari (2006), Amgoud (2014), Modgil and Prakken (2013).

The three proposed postulates give important insights into
the characteristics of attack relations in structured argumen-
tation. But they are not sufficient to guarantee intuitive se-
mantics, as they do not take into account the preferences
among defeasible rules. Dung (2016) has proposed a set of
simple and intuitive properties, referred to as regular prop-
erties, to study the attack relations. Dung and Thang (2018)
have showed that these properties coupled with the minimal
removal principle stating that the removal of attacks should
be kept to a minimum, uniquely identify the canonical attack
relations that could be viewed as representing the intended
attack relations for structured argumentation with prioritized
rules.

Until now, axiomatic analysis of attack relations has been
carried out mostly for systems with unconditional prefer-
ences. In the next example, an extended version of the Sher-
lock Holmes example from Dung (2016); Dung and Thang
(2018), we can see that conditional preferences could be a
natural part of many defeasible knowledge bases.

Example 1 (Adapted from Dung (2016)). Sherlock Holmes
is investigating a case involving three persons P1, P2 and S
together with the dead body of a big man. Furthermore S is a
small child who cannot kill a big man and P1 is a beneficiary
from the dead of the big man.

The case could be represented by the following knowledge
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base.

1. The knowledge that one of the persons is the murderer is
represented by three strict rules:
r1 : Inno(P1), Inno(S)→ ¬Inno(P2)1

r2 : Inno(P2), Inno(S)→ ¬Inno(P1)
r3 : Inno(P1), Inno(P2)→ ¬Inno(S)

2. The legal principle that people are considered innocent
until proven otherwise could be represented by three de-
feasible rules di : ⇒ Inno(Pi) for i = 1, 2 together
with d : ⇒ Inno(S)

3. A “rule-of-thumb” for the investigation is to find out
whether the possible suspects have any motives and to fo-
cus the investigation on the one with strong motive to com-
mit the crime. Such “rule-of-thumb” can be represented
by two conditional preferences:
• π1:Have Motive(P1),¬Have Motive(P2)→d1≺d2.
• π2:¬Have Motive(P1), Have Motive(P2)→d2≺d1.
The rules state that if Pi has a motive and Pj (i 6= j) does
not have a motive then the default dj is more preferred
than di.

4. A good reason for having a motive to kill is to be a bene-
ficiary from the dead of the deceased.
• r4 : Beneficiary(P1)→ Have Motive(P1)

• r5 : Beneficiary(P2)→ Have Motive(P2)

5. Peoples are normally assumed not to have motives to kill.
d3:⇒¬Have Motive(P1) d4:⇒¬Have Motive(P2).

6. The facts that S is a small child and P1 is a beneficiary
from the dead of the big man are represented by atoms
Inno(S), Beneficiary(P1).

The considered knowledge base is represented by
Ksh=(RSsh, RDsh, RPsh, BEsh) with RSsh={r1, r2, r3,
r4, r5} containing of the strict rules, RDsh = {d1, d2, d,
d3, d4} consisting of the defeasible rules and RPsh =
{π1, π2} consisting of the preference rules while BEsh =
{Inno(S), Beneficiary(P1)} represents the set of facts.

Relevant arguments are given in figures 1. Among these,
X1 is a preference argument (formal definition a bit later)
whose conclusion is d1 ≺ d2. It is easy to see that X1 is
defeasible since d4 is defeasible.

In this paper, we develop a framework for dealing with
conditional preferences in structured argumentation. We de-
fine defeasible knowledge bases with conditional prefer-
ences (DKB) over a rule-based system. The semantics of a
DKB is defined by a preference-based argumentation frame-
work whose set of arguments consists of the arguments of
the DKB and its direct undercuts and rebuts and whose set of
attacks consists of the set of attacks created from the rebuts
and undercuts of the DKB and a preference attack relation—
a set of attacks between preference arguments and the rebuts
or undercuts among arguments. We prove that this seman-
tics is a conservative generalization of the semantics of basic
knowledge bases when restricted to knowledge bases with-
out preferences.

1‘Inno’ stands for ‘Innocent’.
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d1

C1: ¬Inno(P2)

Inno(S)
r1

A2: Inno(P2)

d2

C2: ¬Inno(P1)

Inno(S)
r2

A1: Inno(P1)

d1

As: Inno(S)

d

A2: Inno(P2)

d2

A1: Inno(P1)

d1

N1: ¬Inno(P2)

d

r1
As: Inno(S) A2: Inno(P2)

d2

N2: ¬Inno(P1)

d

r2
As: Inno(S) A2: Inno(P2)

d2

Ns: ¬Inno(S)

d1

r3
A1: Inno(P1)

r4

B2: ¬Have_Motive(P2)

d4

X1: d1 < d2

M1: Have_Motive(P1)

Beneficiary(P1)

!1

B1: ¬Have_Motive(P1)

d3

B2: ¬Have_Motive(P2)

d4

M1: Have_Motive(P1)

r4

Beneficiary(P1)

Figure 1: Sherlock Holmes Arguments

To analyze attack relations, we present the notion of a
preference attack relation assignment which maps knowl-
edge bases to preference attack relations and discuss five
regular properties, the context-independence, effective re-
buts, inconsistency-resolving, attack monotonicity, and link-
orientation properties of preference attack relations gener-
alizing properties of the same names in the unconditional
cases in Dung (2016) and Dung and Thang (2018). We say
an assignment is regular if it satisfies all regular properties
and show that the set of regular assignments forms a com-
plete lower semilattice whose least element is referred to as
the canonical preference attack relation assignment. Canon-
ical attack relation assignment could be viewed as represent-
ing the semantics of preferences in defeasible knowledge
bases as intuitively, it is uniquely identified by the regular
properties together with the principle of minimal removal of
undesired attacks.

We also define a notion of a normal preference attack re-
lation assignment that satisfies all regular properties and dis-
cuss sufficient conditions under which canonical and normal
preference attack relation assignments coincide.

Preliminary: Abstract Argumentation
An abstract argumentation framework Dung (1995) is a
pair AF=(AR,At) where AR is a set of arguments and
att ⊆ AR × AR. (A,B) ∈ At means that A attacks B.
A set of arguments S attacks (or is attacked by) an argument
A (or a set of arguments R) if some argument in S attacks
(or is attacked by) A (or some argument in R); S is conflict-
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free if it does not attack itself. A set of arguments S defends
an argument A if S attacks every argument that attacks A.
S is admissible if S is conflict-free and defends each argu-
ment in it. A preferred extension is a maximal admissible set
of arguments. A complete extension is an admissible set of
arguments containing each argument it defends. A stable ex-
tension is a conflict-free set of arguments that attacks every
argument not belonging to it.

We introduce the concept of semilattice. A partial order2

≤ on a set S is a complete lower-semilattice (Davey and
Priestley (2002)) iff each non-empty subset of S has a infi-
mum w.r.t. ≤. It follows immediately that each non-empty
complete lower semilattice S has an unique least element.

Defeasible KBs with Conditional Preferences
We assume a non-empty set L of ground atoms. We distin-
guish between
• domain atoms representing propositions about the con-

cerned domains;
• non-applicability atoms (or undercut atoms) of the form
abd representing the non-applicability of a defeasible rule
d even if its premises hold; and

• preference atoms (or p-atom for short) of the form d ≺
d′ (also d′ � d) where d, d′ are distinct defeasible rules,
representing the preference of d′ over d.

A domain atom a (resp. its negation ¬a) is called a positive
(resp. negative) domain literal. a and ¬a are said to be the
complementary of each other. ≺ is a strict partial order. We
write ¬(d ≺ d′) for d′ ≺ d and say that d ≺ d′ and d′ ≺ d
are complementary of each other. A set of literals is said to
be contradictory iff it contains an atom and its complement.

We distinguish between strict and defeasible rules as of-
ten done in the literature (e.g., Modgil and Prakken (2013,
2014); Garcia and Simari (2004)).

Definition 1. • A defeasible (resp. strict) domain rule r is
of the form b1, . . . , bn ⇒ h (resp. b1, . . . , bn → h)
where b1, . . . , bn are domain literals, and h is
◦ a domain literal, or
◦ a non-applicability atom abd (and r is also often called

an undercut rule).
• A preference rule (or p-rule for short) r is a strict rule

of the form b1, . . . , bn → d0 ≺ d1 where b1, . . . , bn are
domain literals and d0, d1 are distinct defeasible domain
rules.
• The set {b1, . . . , bn} (resp. the literal h or the preference

atom d0 ≺ d1) is referred to as the body (resp. head) of r
and denoted by bd(r) (resp. hd(r)).

When the body of a preference rule r is empty, we say
that r represents an unconditional preference.

Definition 2. • A rule-based system with conditional
preferences (or simply a rule-based system) is a quadru-
pleR = (RS,RD,RP,RT ) where
◦ RS is a set of strict domain rules, and
◦ RD is a set of defeasible domain rules, and
◦ RP is a set of p-rules, and

2A reflexive, transitive and antisymmetric relation

◦ RT is the set of all transitive preference rules that are
ground instances of the transitive rule
x ≺ y, y ≺ z → x ≺ z
where x, y, z range over RD and x, y, z are pairwise
distinct.

• A defeasible knowledge base with conditional prefer-
ences (DKB) (or a knowledge base) over R is a pair
K = (R, BE) consisting of a rule-based system R, and
a set of ground domain literals BE, the base of evidence
of K, representing unchallenged facts, observations.
• A DKB K is basic if it contains no precedence rules.

A DKB K is often written directly as a tuple
(RS,RD,RP,RT,BE). For simplicity, we sometimes omit
the set RT in the description of a rule-based system.

Arguments of a knowledge base are defined as follows.
Definition 3. Let K = (RS,RD,RP,RT,BE) be a KB.
An argument w.r.t. K is a proof tree defined as follows:

1. For each α ∈ BE, [α] is an argument with conclusion α.
2. Let r be a rule of the forms α1, . . . , αn⇒ (→)α, n ≥ 0

fromRS∪RD∪RP∪RT and A1, . . . , An be arguments
with conclusions αi, 1 ≤ i ≤ n, respectively. Then A =
[A1, . . . , An, r] is an argument.
α and r are called the conclusion and the last rule of A
and are denoted by cnl(A) and last(A), respectively. If α
is a domain (undercut) atom then A is called a domain
(undercut) argument.

3. Let A1, . . . , An be arguments with p-atoms αi as
conclusions, 1 ≤ i ≤ n, respectively. Then A =
[A1, . . . , An] is a preference argument with the conclu-
sion cnl(A) = {α1, . . . , αn}.

4. Each argument w.r.t. K is obtained by applying the above
steps finitely many times.

In the following, a preference argument [A1, . . . , An] is
identified with any argument obtained from reordering of
its components or removal of duplicates among its argu-
ments. The set of all arguments (resp. preference arguments)
w.r.t. K is denoted by ARK (resp. ARp,K). For S⊆ARK ,
cnl(S)={l | A∈S, l appears in cnl(A)}.

An argument B is a subargument of an argument A iff (i)
B = A; or (ii) A = [A1, . . . , An, r] or A = [A1, . . . , An]
and B is a subargument of some Ai. B is a proper subargu-
ment of A if B is a subargument of A and B 6= A.

A rule r is said to appear in an argument A if A =
[A1, . . . , An, r] or r appears in some proper subargument A.
The set of defeasible rules appearing in an argument A is
denoted by dr(A). A is strict if no defeasible rule appears
in it. It is defeasible otherwise. A is called basic defeasible
iff last(A) is defeasible. The set of last defeasible rules in
A, denoted by ldr(A), is {last(A)} if A is basic defeasi-
ble, otherwise it is equal ldr(A1) ∪ . . . ∪ ldr(An) where
A = [A1, . . . , An, r] or A = [A1, . . . , An].
A undercuts B (at B′) if B′ is basic defeasible subargu-

ment of B and cnl(A) = ablast(B′). A rebuts B (at B′) if
B′ is a basic defeasible subargument of B, both A, B′ are
domain arguments and the conclusions of A and B′ are con-
tradictory. A directly rebuts or undercuts B iff A rebuts or
undercuts B (at B) respectively. We often simply say A re-
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buts or undercuts B if it is not relevant to specify the exact
place at which A rebuts or undercuts B.

For a knowledge base K, let rbutK = {(A,B) |
A rebutsB} and ucutK = {(A,B) | A undercutsB}. Fur-
thermore, dbutK = { (A,B) | A directly rebuts B} and
dcutK = { (A,B) | A directly undercutsB}.
Example 2. Let us revisit Ex. 1.3 Most relevant arguments
w.r.t. Ksh are given in Figure 1: (i) all arguments except
M1 are defeasible; (ii) A1, A2, As, B1, and B2 are basic
defeasible; and (iii) X1 is a preference argument.

As we interpret the strict rules and the facts in the base
of evidences of a knowledge base as representing the un-
challenged knowledge and observation of the concerned do-
main, it is therefore natural to expect that they are consistent
as defined in the following definition.4

Definition 4. LetR be a rule-based system.

1. The closure of a set of literals X over L w.r.t. a rule-
based system R, denoted by CNR(X), is the union of
X and the set of conclusions of all strict arguments w.r.t.
the knowledge base (R, Xdom) where Xdom is the set of
domain literals in X . X is said to be closed w.r.t. R iff
X=CNR(X). We write X `R l iff l ∈ CNR(X).
X is said to be inconsistent w.r.t. R iff its closure
CNR(X) is contradictory. X is consistent w.r.t. R iff it
is not inconsistent.

2. A knowledge base K is said to be consistent iff its base of
evidence BE is consistent w.r.t.R.

3. R is said to be consistent iff the knowledge base (R, ∅) is
consistent.

4. CR denotes the set of all consistent KBs overR.

Assumption: From now on, whenever we refer to rule-based
systems, we always mean consistent ones.

Preference-based Argumentation Framework
of Defeasible KB with Conditional Preferences
The previous section defines different types of arguments
and different types of attacks (like rebuts or undercuts)
among them. However, the discussion thus far does not yet
specify the semantics of a knowledge base. This is because
it does not yet take into consideration preference arguments.
In this section, we will address this problem.

Example 3. Consider Ksh from Ex. 2. Let us consider the
arguments C1, A2, and X1 (Fig. 2).

By definition, C1 directly rebuts A2 (i.e. (C1, A2) ∈
dbutKsh

). The presence of X1 indicates that d2 is preferred
to d1. This means that the direct rebut (C1, A2) could be
removed from consideration whenever X1 is acceptable. In
other words, we can say that X1 attacks the rebuttal of A2

by C1 and represent this attack in the form (X1, (C1, A2)).

3Note that transitive rules are not mentioned explicitly in the
representation of the knowledge base.

4Note that if the evidences together with the strict rules are
not consistent then they in fact represent defeasible knowledge. As
such they should be represented by the defeasible rules, not by strict
rules and facts.

r4

B2: ¬Have_Motive(P2)

d4

X1: d1 < d2

M1: Have_Motive(P1)

Beneficiary(P1)

!1A1: Inno(P1)

d1

C1: ¬Inno(P2)

Inno(S)
r1

A2: Inno(P2)

d2

Figure 2: C1 and A2 and the preference argument X1

The above example shows that preference arguments in-
troduce a new type of attacks, i.e., attacks against direct re-
buttals among arguments. We will refer to an attack of this
new type as an attack by preference arguments. Formally, a
set of attacks by preference arguments could be represented
by a binary relation in ARp,K × dbutK . Clearly, the choice
of the set defining the attacks by preference arguments will
determine which arguments will be accepted. The next ex-
ample illustrates this problem.

Example 4. Consider again Ksh from
Ex. 1. It is not difficult to see: dbutKsh

=
{(N1, A2), (N2, A1), (C1, A2), (C2, A1), (M1, B1)}.
Furthermore, dcutKsh

= ∅ and the only preference
argument w.r.t. Ksh is X1, i.e., ARp,Ksh

= {X1}.
We consider two situations with respect to the choice of

the set of attacks by preference arguments:
• Assume that we select {(X1, (N1, A2)), (X1, (C1, A2))}
as the set of attacks by preference arguments. Then, be-
cause X1 is not attacked by any argument w.r.t. Ksh, we
can conclude that X1 is always acceptable, and hence, we
should remove the attacks (N1, A2) and (C1, A2) from con-
sideration when determining the acceptability of arguments
w.r.t.Ksh. Hence there is no attack againstA2 which shows
that P2 is innocent and P1 is not.
• Assume that we select the empty set as the set of attacks by

preference arguments. Then argument X1 plays no role in
the attack relations betweenA1, A2, N1, N2, C1, C2. There
are then two acceptable scenarios: One in which P1 is in-
nocent and the other in which P2 is innocent.

Ex. 4 shows that the key question in dealing with pref-
erence arguments is “what is the intuitively expected set of
attacks by preference arguments?” More formally, given a
knowledge baseK, which subset ofARp,K×dbutK should
be selected as the set of attacks by preference arguments.
In the rest of this paper, we will propose a solution for this
question. Observe that we only consider attacks by prefer-
ence arguments against rebuttals but not against undercuts.
This is because, in our view, undercuts are preference inde-
pendent, which is also in agreement with the view expressed
by many others (e.g., by Modgil and Prakken (2013)).

At this point, it is instructive to recall that we are deal-
ing with conditional preferences. Consequently, an attack
against a rebuttal by a preference argument does not yet
mean that the rebuttal should be eliminated from consid-
eration. Let us consider again the argument X1 in Ex. 4.
As we have argued, X1 attacks the rebuttal of A2 by C1.
But this attack is effective only if X1 itself is accepted. In
other words, whether the rebut (C1, A2) is accepted or not
depends on the acceptance of X1. This insight suggests that
rebuts also need to be defended like arguments. We formal-
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ize this insight by viewing direct rebuts like (C1, A2) as ar-
guments. A question, that arises immediately, is that how are
the “rebut-arguments” attacked? Clearly, a rebut argument
like (C1, A2) could be attacked in two ways: Attacking the
“rebutting connection” like the way X1 attacks (C1, A2) or
attacking the source C1.

As direct rebuttals are considered as arguments, it is con-
venient to also consider direct undercuts as arguments. But
in contrast to “rebut arguments,” there is only one way to
attack “undercut arguments,” namely attacking their source.

We can now introduce a novel notion of preference ar-
gumentation framework capturing the key conceptual ideas
discussed above.

Definition 5. (Preference-Based AF) Given a knowl-
edge base K, a preference-based argumentation framework
(PAF) of K is an abstract argumentation framework FK =
(ARPK , attF ) where
• ARPK = ARK ∪ dbutK ∪ dcutK , and
• attF = dattK ∪ patt where
(a) dattK ⊆ (dbutK ∪ dcutK) × ARPK such that

((A,B), X) ∈ dattK iff
• X ∈ ARK and B is a subargument of X , or
• X=(C,D)∈(dbutK∪dcutK) andB is a subargument

of C.
(b) patt ⊆ ARp,K × dbutK where patt is often referred

to as the preference attack relation (or just p-attack rela-
tion) of F .

For ease of reference, we often refer to a PAF of K by the
triple (ARPK , dattK , patt).

As FK is an abstract argumentation framework, its se-
mantics is fully defined. As such, we can define the seman-
tics of K by its PAFs. Intuitively, FK contains arguments
w.r.t. K together with the direct attacks and direct rebuts
w.r.tK and the attacks inFK are of two types: attacks agains
arguments (type (a)) and attacks against attacks (type (b)). In
this sense, PAF is similar to extended argumentation frame-
works (see, e.g., Gabbay (2009); Baroni et al. (2011); Mod-
gil (2009); Hanh et al. (2011); Young et al. (2018)) in which
attacks against attacks are allowed or metalevel arguments
are considered. The key difference between PAFs and ex-
tended argumentation frameworks is that since PAF are ab-
stract argumentation frameworks, we do not need to define
new semantics for PAFs.

The next theorem shows that the concept of PAF is a con-
servative generalization of the semantics of basic knowledge
bases, i.e., when restricted to basic knowledge bases, our
new concept of PAF delivers the same semantics captured
in the traditional view of undercuts and rebuts as attacks.

Theorem 1. Let R be a basic rule-based system and
K ∈ CR. Let F0 be the argumentation framework
(ARK , rbutK ∪ ucutK) and F = (ARPK , dattK) be an
PAF of K.5 Then, (i) if E is a complete extension of F
then E ∩ ARK is a complete extension of F0; and (ii) if
G is a complete extension of F0 then G ∪ { (X,Y ) |X ∈

5Since there is no preference argument, the preference attack
relation component is empty.

G and (X,Y ) ∈ dbutK ∪ dcutK } is a complete extension
of F .

Definition 5 precisely defines dattK but leaves the set
patt unspecified. As we have alluded to above, the choice
of patt will affect the semantics of K as it is specified by
FK = (ARPK , dattK , patt). The next example discusses
this issue in more detail.
Example 5. Reconsider Ex. 4, we can easily check: (i)
F1=(ARPKsh

, dattKsh
, patt1), where patt1={(X1, (N1,

A2)), (X1, (C1, A2))}, has a unique stable (complete, pre-
ferred) extension that delivers the conclusion that P2 is
innocent in accordance with the 1st choice in Ex. 4; (ii)
F2 = (ARPKsh

, dattKsh
, patt2) where patt2 = ∅. F2 has

two stable extensions that deliver the two scenarios in the
2nd choice in Ex. 4.
F2 in Example 5 shows that not every p-attack relation

yields the expected and intuitive semantics for a DKB. The
extreme case of patt2 = ∅ is equivalent to not considering
any preference in the DKB at all. Nevertheless, all PAFs—as
defined in Definition 5- satisfies both the closure and subar-
gument closure postulates introduced in Caminada and Am-
goud (2007); Modgil and Prakken (2013); Martinez, Garcia,
and Simari (2006); Amgoud (2014). We adapt these postu-
lates to our notation below.

Note that for any set S ⊆ ARPK , we define cnl(S) =
cnl(S ∩ARK).
• patt satisfies the consistency postulate (resp. closure pos-

tulate) iff for each complete extension E of FK , cnl(E)
is consistent (resp. closed);

• patt satisfies the subargument closure postulate iff for
each complete extension E of FK , E contains all sub-
arguments of its arguments.
Before continuing, we introduce some additional notions.
An argument A is said to be generated by a set of argu-

ments S ⊆ ARK if and only if all basic defeasible subargu-
ments of A are subarguments of arguments in S. A is said
to be generated by a set of arguments from ARPK if it is
generated by the arguments from ARK in this set. The next
theorem shows the closure and subargument closure postu-
lates are satisfied with any patt.
Theorem 2. LetR be a rule based-system,K∈CR, andF=
(ARPK , dattK , patt) a PAF ofK. If E is a complete exten-
sion of F then E contains all arguments generated by E.

Theorems 1-2 show that PAFs present a reasonable gen-
eralization of the semantics of basic DKBs and can satisfy
two of the basic postulates proposed for characterizing at-
tack relations in structured argumentation. Definition 5 indi-
cates that there are distinct preference attack relations for the
same knowledge base. Example 5 shows that it is important
to correctly identify this relation. The key question is then
given K, what should be selected as the intuitive p-attack
relation? We next addresses this question.

Regular Properties
Attack relations have been studied in Dung (2016) and Dung
and Thang (2018) for dealing with unconditional prefer-
ences. They introduced the regular properties for attack re-
lations and proved that under reasonable conditions on the
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KBs, these properties guarantee the intuitively expected be-
havior of the atack relations including the satisfaction of
the basic postulates introduced in Caminada and Amgoud
(2007); Amgoud (2014); Modgil and Prakken (2013); Mar-
tinez, Garcia, and Simari (2006).

To save space, from now until the end of this section,
we assume an arbitrary but fixed consistent rule-based sys-
tem R = (RS,RD,RP,RT ), K ∈ CR, and F =
(ARPK , dattK , patt) a PAF of K.

Even though the consistency postulate is very intuitive,
it does not give any insight into the structure of the attack
relations. We next adapt the inconsistency-resolving prop-
erty from Dung (2016) and Dung and Thang (2018) to con-
ditional preferences to shed light on the structure of attack
relations underlining the consistency postulate.

Definition 6. patt satisfies the inconsistency-resolving
property (IR) for K iff for each finite set of arguments
S ⊆ ARK , if cnl(S) is inconsistent then there is some
(A,B) ∈ dbutK ∪ dcutK s.t. both A,B are generated by
S and there is no P ∈ ARp,K s.t. (P, (A,B)) ∈ patt.

Intuitively, the IR property states that the inconsistency
between arguments is rooted in the conflict between them
w.r.t. rebutting or undercutting relations.

Theorem 3. If patt satisfies (IR) and E is a complete ex-
tension of F then cnl(E) is consistent.6

The next property focuses on a minimal interpretation of
preferences. Specifically, in situations when d0 ≺ d1 holds
and both d0 and d1 are applicable but accepting both d0, d1
is not possible, then d1 should be preferred.

Definition 7. patt satisfies the effective rebut property (ER)
iff for each P∈ARp,K and (A0, A1)∈dbutK such that each
Ai, i = 0, 1 contains exactly one defeasible rule di, it holds
that (P, (A0, A1))∈patt iff (d0≺d1)∈cnl(P ).

Preference attacks propagate from stronger to weaker re-
buts. For illustration, let consider the rebuts (N1, A2) and
(C1, A2) in Ex. 1. As C1 is based on a fact Inno(S) while
N1 is based on a defeasible conclusion about Inno(S), it
is clear that C1 is stronger an argument then N1. Hence the
rebuttal of A2 by C1 is stronger than the rebuttal of A2 by
N1. We say that N1 is a weakening of C1.

Let A,B ∈ ARK and AS be a set of domain arguments.
B is said to be a weakening of A by AS iff
• A = [α] for α ∈ BE, and (B = [α] or B ∈ AS with
cnl(B) = α), or

• A = [A1, . . . , An, r] and B = [B1, . . . , Bn, r], n ≥ 0
where each Bi is a weakening of Ai by AS, or

• A = [A1, . . . , An] and B = [B1, . . . , Bn], n ≥ 1 where
each Bi is a weakening of Ai by AS.

ByA ↓ AS we denote the set of all weakenings ofA byAS.
For simplicity, we often say that A is a strengthening of B
(by AS) if B is a weakening of A (by AS).

For illustration, consider the arguments in Example 1. For
AS={As}, we have C1 ↓ AS = {C1, N1}.

Suppose A′ is a weakening of A and A′ directly rebuts B.
HenceA also directly rebutsB. SinceA is a strengthening of

6Note that cnl(E) = cnl(E ∩ARK).

A′, a rebut from A against B should be stronger than a rebut
from A′ against B. Therefore, if a preference-argument P
attacks (A,B), it should also attack (A′, B). Similarly if A
directly rebuts B then A also represents a stronger rebuttal
against any weakening B′ of B than against B. Therefore,
if a preference argument P attacks (A,B′), it should also
attack (A,B).

Definition 8. patt satisfies the property of attack mono-
tonicity (AM) iff for all A,B, P ∈ ARK , and for each
weakening A′ of A, for each weakening B′ of B, the fol-
lowing assertions hold:
• If (P, (A,B)) ∈ patt then (P, (A′, B)) ∈ patt.
• If (P, (A,B′)) ∈ patt then (P, (A,B)) ∈ patt.

Let us look at Example 1 again for illustration. Suppose
patt satisfies both (ER) and (AM) properties. (ER) implies
that X1 attacks (C1, A2), i.e., (X1, (C1, A2)) ∈ patt. Since
N1 is a weakening of C1, (AM) dictates thatX1 also attacks
(N1, A2) (i.e. (X1, (N1, A2)) ∈ patt).

The next property extends the link-oriented property,
which focuses on identifying the culprit links within argu-
ments and directs the attacks against these culprits.

Definition 9. patt satisfies the link-oriented property (LO)
iff for all arguments A,B,B′, P ∈ ARK such that (i) B′ ∈
B ↓ BS for some BS ⊆ ARK , (ii) (P, (A,B)) ∈ patt,
and (iii) A does not rebut any argument in BS, it holds that
(P, (A,B′) ) ∈ patt.

A key property for attack relations is that the attacks de-
pend only on the structure of the arguments involved. This
property holds obviously for attack relations dattK that are
based on the rebut and undercut relations. We will introduce
shortly the context-independence (CI) property that relates
the p-attack relations among different DKBs of a rule-based
system and states that the attacks depend only on the struc-
ture of the arguments involved. But we first need to define
the notion of attack relation assignments.

Definition 10. A preference-attack relation assignment
w.r.t. a rule-based system R is a mapping Π assigning to
each knowledge base K ∈ CR a preference-attack relation
Π(K) ⊆ ARp,K × dbutK .

Definition 11. (Context-Independence (CI)) A preference-
attack relation assignment Π for a rule-based system R is
said to satisfy the property of context-independence (CI)
iff for any two knowledge bases K,K ′ ∈ CR and for any
three arguments A, B, P from ARK ∩ ARK′ , it holds that
(P, (A,B) ) ∈ Π(K) iff (P, (A,B) ) ∈ Π(K ′).

We can now present the concept of the regular preference-
attack relation assignments.

For simplicity, we refer to the properties of context-
independence, effective rebuts, inconsistency-resolving, at-
tack monotonicity and link-orientation as regular properties.

Let π be one of the regular properties except the context-
independent one. For ease of reference, we say that a pref-
erence attack relation assignment Π satisfies π if for each
knowledge base K ∈ CR, Π(K) satisfies π.

Definition 12. (Regular Preference-Attack Relation As-
signments) A preference-attack relation assignment Π for a
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Figure 3: patt and consistency postulate

rule-based system R is said to be regular iff it satisfies all
regular properties.

The set of all regular preference-attack relation assign-
ments forR is denoted by RPAAR.

Semilattice Structure of Regular Assignments of
Preference-Attack Relations
Let R = (RS,RD,RP,RT ) be a rule-based system. For
Π,Π′ ∈ RPAAR, define Π ⊆ Π′ iff ∀K ∈ CR : Π(K) ⊆
Π′(K). It is obvious that (RPAAR,⊆) is a partial order.
Definition 13. Let A be a non-empty set of assignments of
preference-attack relations. Define uA by:

∀K ∈ CR : (uA)(K) =
⋂
{Π(K) |Π ∈ A}

The following simple lemma and theorem present a deep
insight into the structure of regular attack assignments.
Lemma 1. Let A be a non-empty set of assignments of
preference-attack relations.

1. Suppose P is a regular property and every preference-
attack relation assignment Π ∈ A satisfies P. Then uA
also satisfies P.

2. If the preference-attack relations assignments in A are
regular then uA is also regular.
Because of the second item in Lemma 1, we have that

uA is the infimum of A w.r.t. (RPAAR,⊆). It follows im-
mediately
Theorem 4. (RPAAR,⊆) is a complete lower semilattice.

The following example adapted from example 8 in Dung
and Thang (2018) illustrates that the set RPAAR of regular
assignments of preference attack relations could be empty.
Example 6. Consider the DKB K with empty base of evi-
dence where all strict and defeasible rules of K appearing
in Fig. 3 and K contains an unique unconditional prefer-
ence rule π :→ d0 ≺ d1. We can check that ARK con-
sists of A and B (Fig. 3), C = [d0], and a preference
argument X = [π]. dbutK = {(A,B)}. By definition,
dattK = {((A,B), B)}. It is not difficult to see that patt =
{(X, (A,B))} is the unique preference attack relation satis-
fying the effective rebut property. Therefore the correspond-
ing PAF has an unique stable extension E = {A,B,C,X}.
However, cnl(E) is inconsistent.

Canonical preference-attack relation assignment is de-
fined next.
Definition 14. Suppose the set RPAAR of all regular at-
tack relation assignments for R is not empty. The canonical
assignment of preference-attack relations of R denoted by
CPR is defined by: CPR = uRPAAR.

In other words, we could say that the canonical attack re-
lation assignment is uniquely characterized by the regular
properties coupled with the minimal removal principle.

It turns out that even though in general regular attack re-
lation assignments do not exist, their existence is guaranteed
under fairly general and sensible conditions. We will discuss
these conditions in the next section.

Normal Preference Attack Relation Assignment
Definition 15. A preference attack relation patt w.r.t. K is
said to be normal iff for any arguments A,B,X ∈ ARK ,
(X, (A,B)) ∈ patt if and only if there exists d ∈ ldr(A)
such that (d ≺ last(B)) ∈ cnl(X).

A preference-attack relation assignment Π w.r.t. a rule-
based system R is normal iff for any knowledge base K ∈
CR, Π(K) is normal.

We denote the normal assignment of preference attack re-
lations by Πnr.

It is easy to check that patt1 in Ex. 5 is indeed normal.
Lemma 2. The normal preference-attack relation assign-
ment Πnr satisfies in general all regular properties except
the inconsistency-resolving one.

Furthermore, the following holds.
Lemma 3. If the canonical preference attack relation as-
signment CPR exists then CPR ⊆ Πnr.

In general, the canonical and normal assignments of pref-
erence attack relations are distinct (see Ex. 7 below adapted
from Dung and Thang (2018)).
Example 7. Let R = (RS,RD,RP,RT ) such that RS ∪
RP consists of the strict and defeasible rules appearing in
Fig. 4 (where a bar on an arrow indicates that the conclu-
sion of the rule is negated) andRP contains an unique pref-
erence rule π : → d2 ≺ d3.

Let ∅ be an assignment of preference attack relations as-
signing to each K ∈ CR, the empty preference attack rela-
tion.
We show that ∅ is also the canonical as-
signment of preference attack relations
ofR.
It is easy to check that ∅ satisfies the
properties of attack monotonicity, link
orientation, and context independence.
Since the set {a, b} is inconsistent, there
is no knowledge base K ∈ CR such that
{a, b} ⊆ BEK . Therefore arguments
[[a], d2] and [[b], d3] never coexist w.r.t.

b

d1d0

r0
a

c

r1

d2 d3

Figure 4: Rebut-
Redundance

the same knowledge base. Hence the effective rebut property
is always satisfied.

We show that ∅ satisfies the inconsistency-resolving prop-
erty. Let S ⊆ ARK , K ∈ CR, be finite such that cnl(S)
is inconsistent. Therefore there are two contradictory argu-
ments X, Y generated by S. SinceBEK is consistent, at least
one of them (say X) is defeasible. We show that at least one
of X, Y is basic defeasible. Suppose none of X, Y are basic
defeasible. Therefore X is defeasible but not basic defeasi-
ble. Since r0, r1 are the only strict rules in R, X must be
of one of the following two forms: X = B0 = [[d0], r0]
or X = B1 = [[d1], r1]. Let X = B0 = [[d0], r0]. Hence
cnl(Y ) = b. Because Y is not basic defeasible, and there is
no strict rule inR whose conclusion is b, Y = [b]. Therefore
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both arguments [b, r1] and [d0] are generated w.r.t. S. Simi-
larly, we can prove that if X = B1 = [[d1], r1] then argu-
ments [a, r0] and [d1] are generated w.r.t. S. Obviously [b, r1]
rebuts [d0] (at [d0]) and [a, r0] rebsut [d1] (at [d1]). Since
there is no preference attack, the inconsistency-resolving
property holds obviously. Thus ∅ is regular and hence the
canonical assignment of preference attack relations.

Let K0 = (R, ∅) and A0 = [d0], A1 = [d1], A2 =
[[d0], d2], A3 = [[d1], d3].

It is obvious that Πnr(K0) = {P, (A2, A3))} where P =

[π]. Thus it is obvious that Πnr 6= ∅.
We next discuss two rather intuitive properties of a DKB

K, which guarantee that Πnr(K) satisfies (IR).
The first property addresses the sensibility of preference

rules in a rule-based system.
Example 8. Consider a rule-based system consisting of only
two defeasible rules d : b ⇒ a d′ : b ⇒ ¬a together with
a preference rule π : a→ d ≺ d′

The preference rule π intuitively states that “if a holds
and both rules d, d′ are applicable then pick d′.” But for a
to hold, d should already be applied and so d′ can not be
applied. The preference rule is obviously counter-intuitive.

To rule out counter-intuitive rule-based systems like the
one above, we introduce below a new notion of general de-
pendency graph between literals and rules.
Definition 16. The general dependency graph ofR, denoted
by DG(R) = (VR, ER), is defined as follows:
• Each vertice in VR is either (i) a rule from RS ∪ RD ∪
RP ; or (ii) a preference atom or (iii) a domain literal
appearing in some rule in RS ∪RD ∪RP .
• (x, y) ∈ ER iff (i) y is a rule d and x = hd(d); or (ii) x is

a rule d and y is an element of bd(d).
The general dependency graph of the rule-based system

in Ex.8 is given in Fig. 5.
The next definition provides a characterization of rule-

based system which does not admit the type of counter-
intuitive dependence as shown in Ex. 8.
Definition 17. R is said to be preference-stratified (or just
p-stratified for short) if there is a ranking function rank from
the set of defeasible rules into the set of natural numbers
such that the following conditions holds:

1. Defeasible rules occurring in the head of the same pref-
erence rule have the same rank.

2. If there is a path from a vertice ν to a vertice µ inDG(R),
where ν is a preference atom containing a defeasible rule
d and µ is a defeasible rule d′, then rank(d) > rank(d′).
The rule-based system in Ex. 8 is obviously not

preference-stratified. The rule based system in Ex. 1 is p-

stratified where defeasible rules d1, d2 are given rank 1 and
the rest is given rank 0. Furthermore, rule-based systems
with unconditional preferences are p-stratified.

The second property on R is on the strict rules of R
adapted from Dung (2016) and Dung and Thang (2018).
Definition 18. R is said to satisfy the self-contradiction
property iff for each minimal inconsistent set of domain lit-
erals S⊆L, for each l∈S, it holds: S `RS ¬l.

The next theorem relates (IR) and the self-contradiction
property.
Theorem 5. If R is p-stratified and satisfies the self-
contradictory property then Πnr also satisfies (IR) and
hence is regular.

An interesting question arisen immediately is under which
conditions the canonical and normal preference attack rela-
tion assignments coincide. Such a result has been given for
the case of unconditional preferences in Dung and Thang
(2018).

As the regular properties for preference attack relation as-
signments generalize the properties with the same names for
unconditional preferences, it is expected that similar result
also holds w.r.t. the framework of preference attack relation
assignments. We show below that it is indeed the case.

Let R = (RS,RD,RP ) be a consistent unconditional
rule-based system. Since R is consistent, it is obvious that
the transitive closure of RP is a strict partial order. For sim-
plicity, we assume that RP coincides with its transitive clo-
sure and hence is a strict partial order.

We say a domain literal λ directly depends on a domain
literal β iff there is a rule r ∈ RS∪RD such that λ = hd(r)
and β ∈ bd(r).
λ depends on β iff λ = β or λ depends on α that directly

depends on β.
The set of all sentences in L on which λ depends is de-

noted by ∆(λ). For a set S ⊆ L, ∆(S) is the union of ∆(λ)
for λ ∈ S.
Theorem 6. Let R be an unconditional rule-based system
satisfying the self-contradiction property. Furthermore for
each defeasible rule d ∈ RD, if there exists d′ ≺ d in RP
then the set ∆(bd(d)) ∪ ∆(¬hd(d)) is consistent. Then the
canonical attack relation assignment CPR and the normal
attack relation assignment Πnr coincide.

Discussion and Conclusion
We study defeasible knowledge bases with conditional pref-
erences between defaults (DKB). We introduce the notion of
a preference-based argumentation frameworks (PAF), which
views direct rebut and undercut attacks among arguments as
arguments and contains a preference-attack relation between
preference arguments and direct rebuts and undercuts.

We show that PAF generalizes the semantics of basic
knowledge bases to DKBs.

We propose the notion of a preference attack relation as-
signment, which maps each knowledge base to a prefer-
ence attach relation, and discuss five regular properties, of
such an assignment: the context-independence, effective re-
buts, inconsistency-resolving, attack monotonicity, and link-
orientation properties.
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We prove that the set of all regular preference attack rela-
tion assignments forms a complete lower-semilattice under
the ⊆ relation.

We also define the notion of a normal preference at-
tack relation assignment that in general satisfies all but the
inconsistency-resolving property and specify conditions un-
der which normal preference attack relation assignments co-
incide with regular assignments.

Prakken and Sartor (1997) has studied conditional prefer-
ences of defeasible rules. As pointed out in Caminada and
Amgoud (2007), the proposed system does not satisfy the
consistency postulate. Further, conditional preferences are
not used to define attacks against attacks. Antoniou (2004)
has studied the use of conditional preferences in the context
of defeasible logics.

Delgrande, Schaub, and Tompits (2003) viewed prefer-
ences as specifying application orders of rules. In Dung
(2016), we show for unconditional preferences that this view
is more conservative than our approach in the sense that ex-
tensions following DST concept are also extensions in our
approach but not vice versa. It turns out that this result also
holds for the general case of conditional preferences.

Our approach to dealing with conditional preferences gen-
eralizes the approach in Dung and Thang (2018) where the
regular properties of preference attack relation assignments
generalize the properties with the same names for attack re-
lation assignments for unconditional preferences.
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