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Abstract

This paper presents a game-theoretical semantics for logic
programs, a novel and radically new approach to semantics of logic
programming. Two results are obtained:

The first is a novel and simple theory of abstract dialog-
games.

In the second result, we show that a game-theoretical
semantics for logic programming can be given by interpreting logic
programs as schema for forming arguments. According to this game
semantics, a proposition can be concluded from a logic program if
it is supported by an acceptable argument constructed according to
the rules encoded as clauses in the logic program. Depending on the
structure of arguments, our game-semantics correpends either to the
Fitting's semantics or to the Well-founded semantics of logic
programming.

Our result, to the best of our knowledge, is the first ever known
result which points out the intimate relationship between logic
programming and game-theoretical semantics, two fields which seem,
until now, totally unrelated.
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“The true basis of the logic of existence
and universality lies in the human
activities of seeking and finding”

Jaakko Hintikka [H,pp33]

0. Introduction

In the last three decades, much works have been done in philosophy
and logic to study the relationship between the way humans argue in
their daily lives and the semantics of (monotonic) logic and
natural language [H,BM,L]. These works represent a radical and
couragous deviation from the traditional Tarskian semantics. The
basic idea here goes back to Kant who held, according to Hintikka
[H], "that our ways of reasoning about existence, especially about
interindividual existential inferences, must be grounded in human
activities through which we come to know the existence of
individuals". Nowadays this idea is shared by a number of
philosophen and logicians [BM,H,L]. Lorenz and Lorenzen [L,BM] are
- among the first who have given much life to this idea by showing
that classical first order logics can be viewed as dialog-game
logics where propositions are entities which can, according to the
rules of a dialog-game, either won or lost. Another forceful
proponent of this idea is Hintikka who argues convincingly in his
numerous works [H] that the semantics of logic and natural language
should be based on a game-theoretical basis. For Hintikka, the true
basis of the logic of existence and universality lies in the human
activities of seeking and finding [H].

Logic programming is widely accepted today as the most suitable
programming environtment for developing intelligent systems which
are capable of performing "human-like" reasoning. The reason for
this, we argue, lies in the fact that the semantics of logic
programming, as it will be showed in this paper, resemble very much
the way humans argue, the way humans reason through dialog. 1In
fact, we will show that

"The semantics of logic programming can be based on a sound
and intuitive game-theoretical basis"

A dialog-game is an exchange of arguments between two players in
which each of them alternately presents an argument attacking the
previous one of the opponent. The player who fails to present such
an argument in his turn loses the game. A game-theoretical
semantics for logic programming can be given by interpreting logic
programs as schema for forming arguments. A proposition can be
concluded from a logic program if it is supported by an acceptable
argument constructed according to the rules encoded as clauses in
the logic program. Let us illustrate this by an example.
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Example (Why Tweety doesn't fly)

Let P be the logic program:

fly(X) <- bird(X), jab(x)
ab(X) <- penguin(X)
penguin(Tweety)

P is viewed as the rules for constructing the following two
arguments:

Al: Tweety flies since he is a bird and birds normally fly.
A2: Tweety is a abnormal bird since it is a penguin and
penguins are abnormal birds

- A dialog-game to establish whether Tweety can fly proceeds as

follows: Playerl starts by presenting argument Al supporting the
conclusion that Tweety can fly. The argument of playerl is based on
a (default) assumption which says that birds normally fly. In the
next move, player2 presents A2 which attacks Al by attacking the
default assumption of Al. As playerl can not find any argument to
defeat this attack, he loses the game. So he has to give up his
claim. O

The purpose of this paper is to present a novel, radically new,
game-theoretical semantics for logic programming. Two results are
obtained: First, a novel and simple theory of abstract dialog-games
is given. Second, we show that a game-theoretical semantics for
logic programming can be given by interpreting logic programs as
schema for forming arguments. Depending on the structure of
arguments, which are constructed according to the rules encoded as
clauses in the logic program, our game-semantics correponds either
to the Fitting's semantics or to the Well-founded semantics of
logic programming.

Our result, to the best of our knowledge, is the first ever known
result which points out the intimate relationship between logic
programming and game-theoretical semantics, two fields which seem,
until now, totally unrelated.

The paper is organized as follows: In chapter 1, we introduce the
concept of abstract dialog-games. Then in chapter 2, a fixpoint
theory of game semantics is given. In chapter three, we show how
the Fitting's semantics of logic programming can be interpreted as
dialog game semantics. Chapter 4 shows that logic programming with
well-founded semantics can also be viewed as dialog game.




1. Abstract Dialog-Games

A dialog-game is an exchange of arguments between two players in
which each of them alternately presents an argument attacking the
previous one of the opponent. The player who fails to present such
an argument in his turn loses the game, i.e. the other player wins.

Our theory of dialog games is based on the notion of argumentation
frameworks.

Definition
An argumentation framework is a pair
AF = (AR,attacks)

where AR is a set of possible arguments, and attacks is a binary
relation on AR, i.e. attacks ¢ AR x AR. O

Remark 1 (A,B) € attacks means that A is a counterargument of B,
or in other words, A represents an attack on B. We also often say
that A attacks B (or B is attacked by A) if attacks(A,B) holds.

Remark 2 From now on, if not explicitly mentioned otherwise, we
always refer to an arbitrary but fixed argumentation framework AF
= (AR,attacks).

Remark 3 For each argument A, the set of all arguments which
attack A is denoted by at(A), i.e. at(A) = { B | (B,A) € attacks }.

Now, we can introduce our definition of games which is a simple
- generalization of Hintikka's games for first order logic [H].

Let A be an argument. A game to defend A, denoted as GG(A), between
a proponent P and an opponent O, is defined as follows:

The game starts with the opponent 0 putting forward an
argument B which attacks A. If O fails to present such an
argument, then the game stops with a win for the proponent P.
Otherwise, the game continues as a game GG(B) with
interchanged roles for the players, i.e. O as the proponent
and P as the opponent in GG(B).




- then st(G) € at(a,). O

We say that an argument A is acceptable if there exists a winning
strategy in GG(A) for the proponent, i.e. a way for the proponent
to choose his moves such that he ends up winning no matter what the

. opponent does.

A formalization of the above informal definitions of game and
acceptable arguments will be given now.

A possible game of length n to defend A is a sequence A=3,,
A,...,A such that for each n>i20, A, attacks A..

Let GAM(A) be the set of all possible games to defend A. Further,
let GAM,(A) (res. GAM,(A)) be the set of possible games of even
(resp. odd) length in GAM(A).!

Definition
A strategy for the proponent in games to defend A is a partial
mapping

st: GAM (A) -> AR

such that for each G = (3,..
defined, then st(G) € at(a,.,)-

i A2n+l) € GAMl(A), if St(G) is

A strategy for the opponent in games to defend A is a partial
mapping
st: GAM (A) -> AR

such that for each G = (3,,..., A ) € GAM (A7), if st(G) is defined,

2n

Definition

A game of length n to defend A wrt the strategies st st, for the
proponent and opponent respectively, is a sequence G = (BAy,A,...,
A ...) satisfying the following properties:

1) A = 3,

2) for each i20, if A, is not the last element in G then

st,(G,;) is defined and A,,,, = st (G,,;)

!.That means that GAM, (resp. GAM,(A)) is the set of possible
games to defend A where the next move is an opponent's (resp.
proponent's) move.



3) for each i>0, if A, , is not the last element in G then
st,(G,,_,) is defined and A, = sty(G,.,)

4) If G is finite with A as the last element then
4.1) st,(G)) is undefined if n is even, and
4.2) st,(G,) is undefined if n is odd.
where G, = (Bg, .- /B a

The set of all games to defend A wrt the strategies st,, st, for the
proponent and opponent, respectively, is denoted by GG(A,st,,st,).

A finite game of even length in GG(A,st,,st,) is a successful game

(for the proponent). A game is a lost game (for the proponent) if
it is not successful.

Definition

A strategy st, is called a winning strategy for A iff for each
strategy st, of the opponent, all games in GG(A,stP,sto) are
successful. 0O

Definition

An argument A is acceptable iff there exists a winning strategy for
A. O

The set of all acceptable arguments of AF is denoted by ACC,..

2. A Fixpoint Semantics for Abstract Dialog—-Games

First let us prove two simple lemmas.

Lemma 1

Let st, be a winning strategy for A. Further let B € at(A). Then
stp((A,B)) is defined, and st, is also a winning strategy for A'=
st,((A,B)). O

We say that an argument A is defended by a set of arguments S if
for each argument B if B attacks A then B is attacked by an
argument in S.




It follows immediately from the above lemma that if A is acceptable

then A is defended by a set of acceptable arguments. It holds even
more:

Lemma 2
An argument A is acceptable iff it is defended by ACC,..

Proof "=>" Obvious.

"<=" For each B, € at(A) = {B,,..,B,,..}, let A, denote an arbitrary
but fixed element in at(Bﬁ n ACC,.. Let st denote a winning
strategy of A,. Define a strategy st as follows: st is a partial
mapping from GAM (A) into AR s.t. for each G = A,B,,G', st(G) = A,
if G' is empty, otherwise st(G) = st (G'). We want to prove now
that st is a winning strategy for A. Assume the contrary. Then
there is a strategy st, for the opponent such that GG(A,st,st;)
contains a lost game GO = (A=C,,..,C,,,.-.). Let C, = B,. Then it
is clear that C, = A;. Therefore C,,..C, ... is a lost game for A,
wrt winning strategy st,. Contradiction. O

This motivates the definition of the following operator:

" Define F 28R 5 QAR By

AF:
F.(s) = { A | A is defended by 8§ i

Remark As we always refer to an arbitrary but fixed argumentation
framework AF, we often write F shortly for F,..

It is easy to see that if an argument A is defended by a set of
arguments S then A is also defended by any superset of S. Thus
Lemma 3

F,, is monotonic (wrt set inclusion). O

We want to show now that the set of all acceptable arguments form
the least fixpoint of F.
Theorem 1

An argument is acceptable iff it belongs to the least fixed point
o g il
AF

Proof '"<=" Obvious from the above lemma.
"=>" Assume the contrary. Let A be an acceptable argument not
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belonging to lfp(F). Let st, be a winning strategy for A. Let st,
be a strategy for the opponent defined as follows: for each G €
GAMG(A), st,(G) = A' s.t. at(A') n lpf(F) = ¢ where B is the last
elemnt of G and A' € at(B). It is not difficult to see that if
st,(G) is not defined then B € 1fp(F). Since st, is a winning
strategy for A, there exists a successful game A, ...A 1in
GG(A,st,,st,). Therefore, n=2i and sty(A.) is not defined. Thus A €
1fp(F). That means that at(a ) N 1fp(F) = ¢. Thus, A » st (A ).

n-1

Hence the game A ,..,A is not in GG(A,st,,st,). Contradiction.

This theorem is very important as it gives us practically a method
to compute all the acceptable arguments. But unfortunately, F,. is
not continuous, in general. But if the argumentation framework is

finitary then it is.

Definition An argumentation framework AF = (AR,attacks) is
finitary iff for each argument A, there are only finitely many
arguments in AR which attack A. a

Lemma 4

If AF is finitary then F,. is e-continuous.

Proof ILet S, ¢ ... <85, < .. be an increasing sequence of sets of
arguments, and let S = 5, U ... UV SO . Let A € FA(S). Since
there are only finitely many arguments which attack A, there exists
a number m s.t. A € F,(S.). Therefore, F,.(S) = F,(8) v ...uU
BialS . wavns O

Corollary In an finitary argumentation framework, an argument A is
acceptable if and only if it belongs to Fi(g) for some natural
number i. O

3. Logic Programming with Fitting's Semantics as Games

The semantics of logic programming with negation as finite failure
is Fitting's semantics [F]. In this chapter, a game-theoretical
interpretation of Fitting's semantics is given.

A logic program is a set of clauses of the form
a;, « &, -8, 0800 0018,

where a,'s are atoms.




For a logic program P, G, denotes the set of all ground instances
of clauses in P. The Herbrand base of P is denoted by HB,, or just
HB if it is clear from the context. Let HL = HB U 7.HB where for
any set of ground atoms S, 7.8 = { 1a | a € S 3}

A partial Herbrand interpretation I is a set of ground literals
satisfying the condition that there is no atom a such that both a
and the complementary of a, ja, belong to I.

The Fitting's semantics [F] of a logic program P is defined as the
least fixed point of the following operator:
. oML
Ppide r2:2%

TP(I) = a .| there is clause with head a in G, whose body is

true wrt I}

U { 7a ! the body of every clause with head a in G,
is false wrt I}

As T, is monotonic, T, has a least fixed point.

Definition [F]

The Fitting's semantics of a logic program P, denoted SEM.(P), is
defined as the least fixpoint of T,. O

We often call Fitting's semantics just F-semantics, for short.
For each logic program P, an argumentation framework AF,(P) =
(ARO,attackso) is defined as follows:

AR, = {(a,K) | there is clause with head a and body K in G}

U astial) | aemB )

(k,K) attacks (h,H) if 1k € H.
If A=(k,K) is an argument then we say that k is supported by A.
An argument of the form (qa,{7a}) represents the situation in a
dialog where an argument which 1is based on an assumption a is

challenged by the question "Why a ?". An illustration is given in
the following example.



N

Example
Let P consist of the clauses:

shoes-are-wet <- grass-is-wet
grass-is-wet <- rained-last-night
rained-last-night <-

The argument for the conclusion that shoes are wet 1is (shoes-are-
wet,{grass-is-wet}), saying that shoes are wet because grass is
wet. An opponent can challenge this argument by asking "Why is
grass wet'. This challenge is represented in our framework as the
argument (1grass-is-wet, {1grass-is-wet}). The proponent's response
to the challenge from the opponent is the argument (grass-is-
wet, {rained-last-night}) saying that grass is wet because it has
rained last night. This is an answer to the question "Why is grass
wet ?", and is interpreted as an attack on the argument (jgrass-is-
wet,{7grass-is-wet}). As it is a matter of fact that it has been
raining last night, the opponent can not do anything but concede
defeat in this game, i.e. the conclusion that shoes are wet is
established. O

A game-theoretical interpretation of Fitting's semantics 1is
established in the following theorem.

Theorem 2 (Maintheorem)

A ground literal k is true wrt Fitting's semantics, i.e. k €
SEMT(P), if and only if k is supported by an acceptable argument in
AF (P).
0

Proof First, let define T : 2" -> 2" where T, (I) = { 7a | the body
of every clause with head a in G, is false wrt o T v o T R St 57 i
with T'(I) = T,(I) U { a ! there is clause with head a in G, whose
body is true wrt I U T (I)}. It is clear that for each i there is
j such that T (g) < Ti%¢). Therefore the least fixpoint of T' and
T, coincide. We prove by induction that for each ordinal number i:
k € T'i(g) iff there is an argument (k,K): (k,K) € F'(g@).

"=>" Base step: i=0 Obvious.

Inductive step:

Case 1: i is a limit ordinal. Obvious

Case 2: i = j+1.

Case 2.1: k is positive. Hence k € T'i(g) iff there is an argument
(k,K) s.t. K ¢ T'I(g) U T,(T'!(g)). We want to show now that (k,K)

€ F'(g). Let A be an attack on (k,K). We want to show that A is
attacked by F!(¢). There are two cases:
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Case 2.1.1: A = (1b,{1b}) for some atom b. Hence b € K. Then it is
clear that b € T'i(g). Thus there is an argument (b,H) in F(@).
T?Fs)(b,H) is clearly an attack on A. That means A is attacked by
Fi(g).

case 2.1.2: A = (b,H) for some atom b. Hence 1b € K. Therefore
either 1b € T'!(g) or 1b € TO(T'j(QS)). If 1b € T'I(g) then (1b,{1b})
€ Fi(g) from the induction hypothesis. So A is an attack on
(1b,{1b}). Thus, A is attacked by Fi(g). If 1b € T, (T'!(g)) then
there is b'e H s.t. 1b'se T'i(g¢). Hence there 1is an argument
(1b',H') € FI(g) from induction hypothesis. Thus A is attacked by
Fi(g). Hence (k,K) is acceptable wrt Fi(g).

case 2.2: k is negative, i.e. k=1b for some atom b. Thus, each
argument with b as head has a false body wrt T'i(g). From induction
hypothesis, it follows that each argument with b as head is
attacked by an argument in F!(g). So (1b,{1b}) belongs to F'(g).

"¢=" Analogous to the other direction. O

4. Logic Programming with Well-Founded Semantics as Games

The semantics of logic programming with negation as (possibly
infinite) failure is captured by its well-founded model [GRS]. The
intuitive difference between well-founded semantics and Fitting's
semantics lies in the fact that well-founded semantics employs a
"eull" closed world assumption while Fitting's semantics presents
only an "approximation" of the closed world assumption. More about
these two semantics as well as other semantics of logic programming
can be read in [D,Ll1]. Following is an example to illustrate the
intuitive difference between Fitting's and well-founded semantics.

Example

Let P be the program

p <- 149
gég

While according to Fitting's semantics of P, both p and g are
undetermined, i.e. SEM, = @, the well-founded semantics of P is
{1q,p}, i.e. p is "true" and q is "false". O

The definition of well-founded model is based on the following
notion of unfounded sets: A set S of positive ground atoms 1is an
unfounded set of a logic program P wrt a partial interpretation L
iff for each clause C in G, whose head belongs to S, either the

1k




body.of . .C:is:false.wrt I or-it contains a positive literal 1 such
that I e 5.

The well-founded model [GRS] of a logic program P is defined as the
least fixed point of the following monotonic operator

Val(l) = 7.GUS(I) u { a | there is a clause in G, whose head
is a and whose body is true wrt I}

where GUS(I) is the greatest unfounded set of P wrt I and 7 .GUS(I)
={.qb " b € GUS(I) }.

Let K = {1b,,...,1b,} be a set of ground negative literals. K is
said to support a ground atom k wrt P, denoted by P,X r k, if there
is a sequence of ground atoms (e, e,...,e) with e = k such that
for each e,, either e« € G, Or e, is the head of a clause e; <«
Byyeer @080+ 018,, in G, such that the positive literals a,, ..,3,
belong to the preceding members in the sequence and the negative
literals 7a,,,,.-,18,, belong to K.

A logic program P is transformed into an argumentation framework
AT (P) = <AR1,attacksl> as follows:

AR, = { (k,K) | K is a finite set of ground negative
literals s.t. P,K » k }

Ut (qa,t7a}) | a e BB }
(k,K) attacks (ki -Ke) SIEEE s e K'

If A = (k,K) is an argument then we also say that k is supported by
A.

The relation between the intuition of negation as (possibly
infinite) failure and the acceptability of arguments can be
explained informally as follows: 72 "holds'" iff each argument
supporting a is defeated where an argument (a,K) is defeated iff it
is attacked by an acceptable argument.

The following theorem shows the equivalence between the well-
founded semantics of P and the acceptability of arguments in
AF,(P).

1
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Theorem 3 (Maintheorem)

Let P be a logic program, and WFM be the well-founded model of P.
Then for each ground literal k, k € WFM if and only if k is
supported by an acceptable argument in AF (P).

Proof Let define a new operator S 2tie> ol
S,(I) =1.6UsS(I) u{ a | P,K |- a for some K < 7.GUS(I) U I  }
where I° = I n 7.HB. It is not difficult to see that 1lfp(s,) =

1fp(V,).

We prove now by induction that for each ordinal i, k € S.)(g) iff
there is an argument (k,K) s.t. (k,K) € Fi(g).

Base step: Obvious

Inductive step: Obvious if i is a limit ordinal. Suppose now that
i = j+1

"=>" Let k € S,'(g). Then either k € 7.GUS(I) or k € { a| P,K |- a
for some K € 7.GUS(I) U I } with I = S (g) .

Case 1: k € 7.GUS(I). Let k=7ja. If there is no argument of the form
(2,K) then it is obvious that (qa,{7a}) € F'(g). Now, let (a,kK) be
-an argument. Then there is a proof tree Tr with root a whose
negative leafs are contained in K.

Property Let I = S'(g), and a € GUS(I). Then each proof tree of
a contains a leaf 7b such that b € I

Proof By induction on n.

Base step: n=1. From the definition of GUS(I), there exist no proof
tree for atoms in GUS(I). So the property holds obviously.

Induction step:

Case 1: n=m+l. We prove by induction on the depth d (the number of
edges of the longest path from the root to a leaf) of Tr.

Base step: d=1. Obvious.

Induction step:d = i+l. Let K be the set of children of a in Tr.
Thus a<-K is a clause in G,. There are two cases:

Case 1: There is a positive atom a' in K s.t. a' € GUS(I).
Therefore, the subtree Tr' with a' as its root is a proof tree for
a' whose depth is i. So from the second induction hypothesis, there
is: aYeaf {b in Tr' such that b .e:I.

Case 2: K is false wrt I, i.e. there is a literal k € K s.t. 1k €
I. If k is negative then there is nothing to proved. If k is
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positive then the lemma follows directly from the first induction
hypothesis.

Case 2: n is a limit ordinal. Similar (end of proof of property)

From the induction hypothesis and the above property, there exists
an argument (b,H) in Fi(g) s.t. 1b € K. That means that the
argument (qa,{7a}) with k=qa is defended by F!(p). Hence (ha,{12al)
€ Fi(g).

Case 2: k € { a | P,K !- a for some K ¢ 7.GUS(I) U I® }. Thus,
there is X s.t. (k,K) is an argument and K < 7.GUS(I) U I. From
the case 1 and from the induction hypothesis, it follows that (k, K)
is defended by Fi(g). so (k,K) € F'(g).

"<=" Analogous. 0

Conclusion

We have showed that logic programming can be considered as dialog
game in which a proposition is "true" if it is supported by an
acceptable argument. This points out that game theoretical
semantics provides a natural foundation for logic programming. As
logic programming is in fact a form of nonmonotonic reasoning, we
can expect that our results can be extended for nonmonotonic
reasoning.

Other major approaches to semantics of logic programming is the
stable model semantics and the preferred extension semantics
[GL,D]. Here it is interesting to ask the question as whether or
not these semantics can be also viewed as dialog games. This will
be the topic of our further work.
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The proof trees are defined as follows:

1) ‘TE a<~ Ja,,- .. ,;1a, is.a clause in G, then the tree

a

i

1] Ta

n

is a proof tree of a.

2) If a <= a,, . 850800 1180, is a clause in G, and T,,..,T are
proof trees of a,,..,a, repectively, then the tree
a ~
/ i T —
T, ...
. noAmp VA
is a proof tree of a = 0y WA

3) There are no other proof trees.
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