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Preface

Computer security is an established field of computer science of both theo-
retical and practical significance. In recent years, there has been increasing
interest in logic-based foundations for various methods in computer security,
including the formal specification, analysis and design of cryptographic proto-
cols and their applications, the formal definition of various aspects of security
such as access control mechanisms, mobile code security and denial-of-service
attacks, and the modeling of information flow and its application to confiden-
tiality policies, system composition, and covert channel analysis.

This workshop continues a tradition, initiated with the Workshops on Formal
Methods and Security Protocols — FMSP — in 1998 and 1999, then with the
Workshop on Formal Methods and Computer Security — FMCS — in 2000,
and finally with the LICS satellite Workshop on Foundations of Computer Se-
curity — FCS — in 2002 and 2003, of bringing together formal methods and
the security community. The aim of the workshop this year is to provide a fo-
rum for continued activity in this area, to bring computer security researchers
in contact with the LICS and ICALP community, and to give LICS and ICALP
attendees an opportunity to talk to experts in computer security.

FCS received 45 submissions. The Program Committee selected 13 of them
for presentation as the outcome of the reviewing process.

The contributions of many people have made the workshop a success. The
Program Committee took reviewing and selection seriously and provided much
useful feedback in the reviews. Many thanks are due to Martín Abadi, the
FCS invited speaker, for instantly agreeing to take up an FCS invited talk.
Phil Scott and Mika Hirvensalo, our connections to LICS and ICALP provided
extremely efficient help for FCS to run smoothly. This year FCS features a
Sub-Workshop on Logical Foundations of an Adaptive Security Infrastructure.
Dedicated efforts of Leo Marcus, who organized this event, were rewarded by
cutting-edge papers and talks. Most of all, we are thankful to the authors and
the attendees who made this workshop an inspiring and fruitful event.

Andrei Sabelfeld
FCS’04 Program Chair
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Typing migration control in lsdπ.

Francisco Martins� António Ravara��

Abstract

This paper presents a type system to control the migration of code between
sites in a concurrent distributed framework. The type system constitutes a de-
cidable mechanism to ensure specific security policies, which control remote
communication, process migration, and channel creation. The approach is as
follows: each network administrator specifies sites privileges, and a type system
checks that the processes running at those sites, as well as the composition of the
sites, respect these policies. At runtime, well-typed networks do not violate the
security policies declared for each site.

1 Introduction

Framework. A natural and simple framework to study distributed mobile systems
is DPI, the distributed π-calculus of Hennessy and Riely [4], which extends the π-
calculus [7, 8] by locating processes on a (flat) network of sites—named places where
computation occurs. Communication only happens within sites (to avoid “global syn-
chronisation”), but processes may migrate from one to another. However, DPI presents
no notion of location of a resource: a global entity is responsible for allocating and
managing memory.

DiTyCO, a distributed extension of the TyCO programming language [5, 12], ad-
dresses this drawback. It follows the DPI model in what respects the notions of locality
(or site) and communication, but uses a lexically scoped regime for names that rules
process migration. The main motivations of DiTyCO are: (1) a network-aware style
of programming in the sense that the time and the place associated with the creation
of new resources (sites and channels) is explicit in the syntax of the programs; and
(2) an easier implementation, based on current technology, by providing the compiler
with information to generate code for the creation, and the access to these resources.
Migration of resources is a subset of the resource access operations, and thus is clearly
bounded in the program’s source code. Clients do not interact remotely with a server.
Rather, they move to the site of the server and interact locally, eliminating the costs of

�Department of Mathematics, University of Azores, Portugal. E-Mail: fmartins@di.fc.ul.pt
��CLC and Department of Mathematics, Instituto Superior Técnico, Lisboa, Portugal. E-Mail: ar-

avara@ist.utl.pt

3



maintaining long remote sessions between clients and servers. The latest release of the
language DiTyCO is available on the TyCO project site (http://www.ncc.up.pt/tyco/).
Aim. DiTyCO lacks a security mechanism to control the usage of important resources
such as memory and cpu cycles. This work addresses such lacuna. Our main motiva-
tion is the control of code mobility by means of a simple, decidable, and low complex-
ity type system. The system checks the integrity and the consistency of user-declared
security policies, guaranteeing that well-typed networks are free of (runtime) security
violation errors. Our approach consists in a simple set-based static analysis where the
network administrators associate security policies to the sites they supervise, and by
this mean, tailor the allowed interaction in a network between sites that know each
other.

To focus on the problem, we develop our work using a lexically scoped distributed
version of the pi-calculus—the lsdπ calculus [11]—that is the theoretical basis of Di-
TyCO. This calculus seems more suitable to study code migration in a distributed
setting than other proposals, since the migration is triggered by channels themselves,
rather than using explicit migration primitives (for an overview of distributed mobile
calculi see a deliverable of an EU project [1]). We choose a monadic version of a flat
calculus because the stress of our work is purely in the control of process migration
rather than on communication, or on hierarchical issues. Indeed, DiTyCO is a good
choice since it is a simple setting that lead us to a clear understanding of the secu-
rity issues underlying code migration, and let us settle the basis for reasoning about
resource usage.

To control the migration of processes between sites, we use three security policies,
to control respectively remote communication, code migration, and channel creation.
These policies are directly related to the actions of the calculus, and therefore are
independent from each other. Remote communication refers to the ability of a thread
to send a message to a resource located at a distant site. Code migration, in turn,
means that a thread may cross site boundaries, exiting its current site and entering a
new one. This operation can be understood, from the source site point of view, as an
upload of code. Finally, channel creation represents the ability of a thread to create
a new channel in a foreign site. Mastering channel creation is important because (1)
if a thread is able to create a channel on a remote site it means, as discussed later,
that it would be able to migrate code to that destination, and (2) it may also give rise
to a denial of service attack, if the source site creates an arbitrarily large number of
channels in the destination site, consuming important resources, such as memory.

The definition of a security policy for a given site consists on the enumeration
of the sites allowed to perform the monitored actions. Thereafter, the type system
checks whether these policies are followed by each process running in the site, and by
the other sites in the network that is being checked. Notice that we assume a closed
world. This system is a tool to declare how code in other known sites may affect
the computation of a given site, and to verify the compositionality of all these sites.
The type system checks if the processes running at a given site respect its security
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simple channels a, b, c, x, y, z ∈ C sites r, s, t ∈ S
sets of sites S,R, T ⊆ S channels u ::= a | a@s values v ::= () | u

processes P,Q ::= 0 | u ! 〈v〉 | u?(x : S) P | u?∗(x : S) P | P |Q | (ν u) P

networks N,M ::= 0 | sG[P ] | N ‖M | (ν a@s) N

Γ ::= {s1 : (ϕ1, G1), . . . , sn : (ϕn, Gn)} (typings)

ϕ ::= {a1 : γ1, . . . , an : γn} (site types)

G ::= {rem : S1,mig : S2,new : S3} (site policies)

γ ::= ch(γ)@St | val (channel types)

t ::= o | i | b (site tags)

Figure 1: Syntax of lsdπ.

policies, and if all the sites one wants to compose in a network will interoperate without
violating each other policies.
Outline. Next section presents the syntax of the calculus, and of the type system.
Section 3 is devoted to the operation semantics of the calculus. The main section of
the paper is Section 4, where we introduce the type system, argue about some examples
of networks that should be rejected by the type system, formalise a notion of runtime
error suitable for our setting and purpose, and prove type safety. Section 5 concludes
the paper, presents related work, and points directions for future research.

2 The calculus

This section briefly describes the calculus as well as its types, and some examples of
networks, hinting informally the semantics of lsdπ. A thorough presentation of the
calculus is elsewhere [11].
Syntax. The lsdπ calculus extends the pi-calculus [8] distributing processes over
flat networks of named sites. Communication occurs only within a site. Resources,
located at creation time, maintain their location throughout the computation. Unique
to the calculus is the notion of lexical scoping, a well-known feature from main-stream
programming languages like, for instance, Pascal, C, Java, or ML. In lsdπ this means
that a channel may be addressed by its simple name—the channel—when it is at home,
or by its located (or global) name—the pair channel–host site—whenever the reference
is made from a foreign site.

The syntax of the calculus used in this paper is described in Figure 1. Fix a denu-
merable set of simple channels, C, ranged over by a, b, c, x, y, z, and a denumerable set
of sites, S , ranged over by r, s, t, disjoint from C. Channels, may be simple—a—or
located—a@s—, referring to a channel a from a site s. Let N = C ∪ S be the set of
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the resource identifiers. Processes are the standard π-calculus processes, apart from
the input process, u?(x : S) P , as well as the replicated input, u?∗(x : S) P , which
mention a finite set of sites S. This set plays an important role in the assurance of
security policies: it restricts the channels that may instantiate x, enumerating the sites
allowed to host them. Notice, however, that in lsdπ sites are not first class citizens,
in the sense that they are not passed around. The claim is that there is no purpose to
reveal a site location. Instead, disclosing a port at a site (a located channel) is all that
is needed to establish a link to it.

Sites constitute the basic building blocks for networks. A network sG[P ] denotes
a site s, where a process P is running, with security policies bound by G. This set
G defines the interactions allowed between s and the other sites in the surrounding
network. It is intended to be written by the site administrator, who thus declares in
this way the site security policies. The section on types presents these sets of security
policies in detail. Networks are putted together using the network parallel construct
N ‖M . We use a different symbol from parallel processes (c.f. P |Q) to stress the fact
that there is no communication between networks. The interaction between networks
occurs through explicit migration of processes among sites. The remaining constructs
allow us to restrict located channels in a network, (ν a@s) N , and 0 denotes an inactive
network.

Notice the absence of an operator to create sites, which are thus constants. This
scenario fits the present situation of DiTyCO. Allowing to create and pass around sites
significantly complicates the technical work, since one has to take into account dy-
namic changes of site policies. An extension of the work reported here to incorporate
this aspect has been developed and is presented elsewhere [6].

As an example, the following lsdπ term

rG1[a@s ! 〈b〉] ‖ sG2[a?(x : S) P ]

represents a network consisting of two sites r and s with security policies G1 and
G2, respectively (that we do not detail now). The output process running at site r is
willing to deliver a message to the channel a from site s. In s the channel a declares
which sites may remotely communicate with it and instantiate x. So, if r is in S, the
process migrates first from r to s and then communicates with a within s. Notice that
process a@s ! 〈b〉 gives a clear understanding of the sites each name belongs to: the
located channel a@s is hosted by s; the simple channel b is from r. The above network
reduces in two steps to

rG1[0] ‖ sG2[P [b@r/x]]

where r is now explicitly mentioned in the reference to channel b, since it “left home”.
Types. Our approach consists in the specification of the security policies at site level,
possibly by the site security administrator, that set up a kind of “border control” be-
tween the site and the neighbouring network. We consider three sorts of policies:
remote communication, process migration, and name creation. Each policy is related
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to an action of the calculus, and we proceed by enumerating the names of the sites
that are allowed to perform these actions. Therefore, we relate remote communica-
tion, process migration, and name creation with the ability to output, input, and create
channels, respectively.

A typing is a mapping from site names to pairs of site types and site policies.
Site types are mappings from channel, the free names of the site, to channel types. A
channel type records the type of the argument and the sites where this channel may be
used. We need this information to be able to check security policies. For instance, to
type an output process x ! 〈v〉 running at site s, we require that the sites of the channels
that may instantiate x allow s to remote communicate with them. The val type has a
unique value, (), and denotes a channel that carries no other channels.

The tags, i for input, o for output, and b for both, are part of a subtyping relation
(inspired on the proposal of Pierce and Sangiorgi [10]) on the set of sites that may
instantiate a given channel (defined in section 4). For example, this subtyping relation
says that it is safe to use a channel of type ch(γ)@{s, r}o whenever it is possible to
use a channel of type ch(γ)@{s}o.

3 Semantics

The operational semantics of the calculus is presented following Milner et al [8]. We
first define a congruence relation between processes and networks that simplifies the
reduction relation introduced thereafter.
Free names. The notions of free and of bound names, as well as the substitution rela-
tion that lies on top of them, present some subtleties, introduced by located identifiers
and by lexical scoping, which deserve some attention. Binders capture identifiers. The
conceptual ideas behind bindings are the following.

• At network level, the binding of a located channel, entails the binding of free
occurrences of not only a located channel anywhere in the network, but also the
occurrences as a simple channel at its host site.

(ν a@r)
(
s[ · a · a@r · ] ‖ r[ · a · a@r · ]

)

• At site level, the binding of a channel (simple or located) only binds the free
occurrences (simple or located, respectively) of this channel.

s
[
(ν a) (·a · a@s·)

]
s
[
(ν a@s) (·a · a@s·)

]

A paper on lsdπ presents complete definitions and explanations on free names
(function fn not shown in this paper), on bound names, and on substitution [11].

Structural congruence. The structural congruence relation is the least congruence

7



1. N ≡ M if N ≡α M

2. ((N ‖M) ‖M ′) ≡ (N ‖ (M ‖M ′)), (M ‖N) ≡ (N ‖M), (N ‖ 0) ≡ N

3. ((ν a@s) N) ‖M ≡ (ν a@s) (N ‖M) if a@s 	∈ fn(M)

(ν a@r) (ν b@s) N ≡ (ν b@s) (ν a@r) N

(ν a@r)sG[P ] ≡ sG[(ν a@r) P ] if (r 	= s ∧ s ∈ Gr(new))∨(r = s ∧ a 	∈ fn(P ))

(ν a@s) sG[P ] ≡ sG[(ν a) P ] if a@s 	∈ fn(P )

4. sG[a@s ! 〈v〉] ≡ sG[a ! 〈v〉], sG[a@s?(x : S) P ] ≡ sG[a?(x : S) P ]

5. P ≡ Q if P ≡α Q

6. ((P |Q) |R) ≡ (P | (Q |R)), (P |Q) ≡ (Q |P ), (P | 0) ≡ P

7. ((ν u) P ) |Q ≡ (ν u) (P |Q) if u 	∈ fn(Q)

(ν u) (ν u′) P ≡ (ν u′) (ν u) P

8. (ν a) 0 ≡ 0

Figure 2: Structural congruence on processes and networks.

relation closed under the rules in Figure 2 The first rules are fairly standard. Networks
are congruent up to α-renaming; the parallel composition operator for networks is
taken to be commutative and associative, with 0 being the neutral element.

Scope extrusion rules, however, deserve a more detailed analysis. In the third rule
of group 3, if we are creating a remote channel (r 	= s), then the remote site r must
grant permission to create the name. (the set Gr defines the security policies for site
r.) When we create a local name, then there must not exist a simple channel with the
same name in P . A similar concern is expressed in forth rule of the same group. The
reason for these side conditions becomes clear in the following examples. These two
networks should not be in the congruence relation

(ν a@s) sG[a ! 〈·〉 | a@s ! 〈·〉] 	≡ sG[(ν a@s) a ! 〈·〉 | a@s ! 〈·〉]

since the (left-hand side) binder, at network level, binds both the simple channel,
and the located channel, whereas the binder at process level only binds the located
channel.

Similarly,

(ν a@s) sG[a ! 〈·〉 | a@s ! 〈·〉] 	≡ sG[(ν a) a ! 〈·〉 | a@s ! 〈·〉]

the (right-hand side) binder, at site level, only binds the simple channel.

8



The last three rules rename located channels to simple channels (and vice-versa)
when the channels are mentioned from their home site.

In lsdπ calculus there is also a rule for splitting and regrouping sites: sG[P ] ‖
sG[Q] ≡ sG[P |Q]. However, in this version of the calculus, where sites are constant,
the rule is covered by the migration rules RN-MIGI, RN-MIGO, and RN-MIGR ahead (see
Figure 3).

Structural congruence on processes presents a similar set of rules when compared
to structural congruence on networks. The only remark concerns rule 8 where “garbage
collection” is only allowed locally. One could think that a more general rule also
stands, say (ν u) 0, but this is not the case, since fn((ν u) 0) 	= fn(0) when u is a
located channel. Recall that s is free in (ν a@s) 0. Similar reasoning applies also to
networks, where garbage collection would also have the malicious effect of erasing
site policy annotations.

Reduction. We use contexts for processes and networks to simplify the reduction
relation.

Definition 1 (Reduction contexts).

E ::= [·] | (E |P ) | (ν u) E

F ::= [·] | (F ‖N) | (ν a@s) F

When moving a process from a site to another one, we need to translate the free
channels of that process to take into account the location the process will end up in:
those local to the source site become remote, and those belonging to the target site
become simple as they reached home.

Definition 2 (Translation of identifiers). Let A ⊆ N , A ∩ C = {a1, . . . , an} and
A ∩ C@r = {b1@r, . . . , bm@r}. Then,

σrs(P,A) = P{a1@s/a1, . . . , an@s/an, b1/b1@r, . . . , bm/bm@r} .

Notation: Let Pσrs abbreviate the result of applying a name translation σrs to the
process P , affecting its free names: Pσrs = σrs(P, fn(P )).

Definition 3 (Reduction relation). The rules in figure 3 inductively define the reduc-
tion relation on lsdπ terms.

Rule RP-COMM is the communication rule of the calculus. It is defined only locally
and it is the standard asynchronous π-calculus communication rule. Rule RP-COMR

defines the communication for replicated inputs. Rules RN-MIGI, RN-MIGO, and RN-

MIGR allow for processes to migrate across sites. When an input or output operation is
carried out over a remote resource then, since communication only arises locally, the
process migrates to the host site of the resource. In order to keep channels lexically

9



RP-COMM a?(x : T ) P | a ! 〈v〉 → P [v/x]

RP-COMR a?∗(x : T ) P | a ! 〈v〉 → a?∗(x : T ) P |P [v/x]

RN-MIGO sG1[P ] ‖ rG2[a@s ! 〈v〉 |Q] → sG1[P | (a@s ! 〈v〉)σrs] ‖ rG2[Q], r 	= s

RN-MIGI sG1[P ] ‖ rG1[(a@s?(x : A) Q) |R]

→ sG1[P | (a@s?(x : A) Q)σrs] ‖ rG2[R], r 	= s

RN-MIGR sG1[P ] ‖ rG1[(a@s?∗(x : A) Q) |R]

→ sG1[P | (a@s?∗(x : A) Q)σrs] ‖ rG2 [R], r 	= s

RP-CONT
P → Q

E[P ] → E[Q]
RP-STR

P ≡ P ′ P ′ → Q′ Q′ ≡ Q

P → Q

RN-SITE
P → Q

sG[P ] → sG[Q]
RN-CONT

N → M
F [N ] → F [M ]

RN-STR
N ≡ N ′ N ′ → M ′ M ′ ≡ M

N → M

Figure 3: Reduction rules.

scoped, we use function σ to translate the free names of the migrating process. If we
are moving from site r to site s, then σrs transforms the references to channels from
r into located channels, since they will be mentioned from s, and makes references to
channels from s into simple channels.

Rules RP-STR, and RN-STR introduce structural congruence into the reduction re-
lation that are crucially used to bring processes and networks into the form requested
by the left-hand-side of axioms RP-COMM, RN-MIGO, RN-MIGI, and RN-MIGR. Finally,
rules RP-CONT, RN-SITE, and RN-CONT allow for reduction to happen within process
and network contexts.

The next example illustrates a download of code from a server site srv requested
by client site cl. Assume that r 	∈ fn(Q).

cl[(ν req) dl@srv ! 〈req〉 | req ! 〈〉 |P ] ‖
srv[(dl?∗(r) r?() Q) |R]

The client issues a new request to the dl (download) resource of the server by com-
municating a fresh channel req. The server upon the received request migrates process
Q to the server using the acquired channel. Finally, the client fires the downloaded
process. Reduction is as follows. Security annotations were deliberately omitted since
they play no role in reduction.

10



cl[(ν req) dl@srv ! 〈req〉 | req ! 〈〉 |P ] ‖ srv[dl?∗(r) r?() Q |R] →
(RN-STR, RN-MIGO)

(ν req@cl) cl[req ! 〈〉 |P ] ‖ srv[dl?∗(r) r?() Q |R | dl ! 〈req@cl〉] →
(RP-COMR)

(ν req@cl) cl[req ! 〈〉 |P ] ‖ srv[dl?∗(r) r?() Q | req@cl?() Q |R] →
(RN-MIGI)

(ν req@cl) cl[req ! 〈〉 |P | req?() Qσsrv,cl] ‖ srv[dl?∗(r) r?() Q |R] →
(RP-COMM, RN-STR)

cl[(ν req) Qσsrv,cl |P ] ‖ srv[dl?∗(r) r?() Q |R]

4 Type system

The type system we present in this section enforces the user-defined security policies
in lsdπ networks. We guarantee that, at runtime, well-typed networks do not violate
the specified security policies.

Examples. In the following, we present some examples of erroneous networks that
should be caught by the type system’s sieve. Consider, in all examples, that sites
denoted by r, s, and t represent distinct locations.

A remote communication error occurs whenever an output to a located channel is
performed from a site not belonging to the rem policy of the remote site. The next two
examples elucidate this situation.

Example 1. Consider the network s{rem:{t}}[P ] ‖ rG1[a@s ! 〈x〉]. The output process
running at site r is willing to send a remote message to site s; however, this action is
not allowed, since r is not mentioned in the rem policy of s. The inclusion of r in the
policies of site s fix the problem: s{rem:{t,r}}[P ] ‖ rG1 [a@s ! 〈x〉].
Example 2. To type-check the network s{rem:{r}}[a?(x : {r, t}) x ! 〈c〉] ‖ r∅[a@s ! 〈b〉]
correctly, site s must be able to remote communicate both with site r, and site t.
This is easily seen from the arguments of the input process at site s. Analysing the
input continuation, x ! 〈c〉, we conclude that the process could remote communicate
with site r (and with site t as well), which does not concede any remote communi-
cation privilege at all. If r grants rem privileges to s, the network s{rem:{r}}[a?(x :
{r, t}) x ! 〈c〉] ‖ r{rem{s}}[a@s ! 〈b〉] type-checks.

The control of code migration is performed using the policy keyword—mig—
specifying which sites are allowed to upload code.
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t ≤ t b ≤ i b ≤ o

R ⊆ S

So ≤ Ro
S ⊆ R

Si ≤ Ri

t ≤ t′

St ≤ St′

γ ≤ γ
γ1 ≤ γ2 γ2 ≤ γ3

γ1 ≤ γ3

γ1 ≤ γ2 St ≤ Rt′

ch(γ1)@St ≤ ch(γ2)@Rt′

Figure 4: Subtyping relation.

Example 3. The network s{mig:{t}}[P ] ‖ rG1[a@s?(x : S) b ! 〈x〉] is rejected because
site s denies migration of code from site r as it is intended by process a@s?(x :
S) b ! 〈x〉. Including r in the policies of site s overcomes the problem: s{mig:{t,r}}[P ]
‖ rG1 [a@s?(x : S) b ! 〈x〉]

The creation of remote channels is controlled by the policy keyword new, and
enumerating the sites authorised to create remote channels.

Example 4. The network s{new:{t}}[P ] ‖ rG1[(ν a@s) a@s ! 〈b〉] fails to type check
because site s denies creation of remote channels (as well as remote communications)
from site r. Regardless the actions of process P , that we are not taking into account
for the example, the network s{new:{t,r},rem:{r}}[P ] ‖ rG1[(ν a@s) a@s ! 〈b〉] is well
typed .

The following example shows a more trickier situation resulting from code migra-
tion.

Example 5. Consider the network sG[b@r?(x : S) a@s ! 〈x〉] ‖ r{mig:{s}}[0]. The
remote message a@s ! 〈x〉 is going to run at site r, since it is the continuation of a
process that migrates from s to r. Although r grants migration privileges to s, it does
not allow for remote communications from s, and therefore the network should be
rejected. Fix the security fault including rem : {s} into the policies for site r.

A different kind of communication error arises when a process is trying to pass on
information about a non-reliable site. Considering a mailing system as an example, we
can decide to grant a certain machine to deliver messages, but restrict the sites where
these messages come from.

Example 6. The network s{rem:{r}}[a?(x : {t}) 0] ‖ rG1[a@s ! 〈b〉] is illegal, since
the output process, a@s ! 〈b〉, at site r, is communicating information about a channel
from site r, but the input process running at site s only admits information that men-
tions channels from t (indicated by x : {t}). Network s{rem:{r}}[a?(x : {t, r}) 0]
‖ rG1 [a@s ! 〈b〉] presents no security faults.

Subtyping. The binary relation ≤ on types is defined following Pierce and Sangiorgi
[10], and is the least relation closed under the rules in figure 4. Intuitively, the sub-
typing relation allows for the inclusion of site identifiers (of where a channel can be
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SS-CHL Γ �s a@r : Γ(r)1(a) SS-CHS Γ �s a : Γ(s)1(a)

Figure 5: Typing channels.

located in) when we perform outputs, and allows for the exclusion of site identifiers
when we perform inputs. If a channel is used both for input and output its type is fixed.
For example, considering that γ1 ≤ γ2, then ch(γ1)@{s, r, t}o ≤ ch(γ2)@{s, r}o, and
ch(γ1)@{s}i ≤ ch(γ2)@{s, r, t}i.

Tags i, o, and b denote, respectively, that a channel is used for input, for output, or
for both input and output purposes. The relation is defined conventionally: covariant
for inputs, contravariant for outputs, and invariant when a channel is used for inputs
and outputs.

Typing. Figures 5, 6, and 7 present, respectively, the typing rules for channels, pro-
cesses, and networks.

We record types for sites.1 Therefore, the types of the free channels are kept
within the types of the sites where they belong to. Types for located channels are
directly fetched from their identifiers; to access types for simple channels we need
extra information identifying their host site. We keep track of this information in the
typing judgements for channels. In fact, the judgement Γ �s v : γ, means that if v
is a simple channel, its host site is s. Of course, if v is located, it already has all the
information needed for typing. Look up in figure 5 for the typing rules for channels.

Judgements for processes, Γ �s,S P , besides the identity of the current site s,
record also the set of sites where P might be hosted at runtime. This is a crucial
information for checking security policies because S give us the sites where events
(remote communication, code migration, or channel creation) take place. We proceed
by explaining the typing rules for processes that can be found in figure 6.

An output process a@r ! 〈v〉 is well-typed if (1) the type of a, located at r, is a
channel type having as arguments a supertype of the type of v, and if (2) site r allows
any site where the output process might be located at runtime to remote communicate
with it. Following is an example of an instance of the output rule

Γ �s v : ch(γ)@{s}b ch(γ)@{s}b ≤ ch(γ)@{s, r}i

{t} ⊆ {s, t} = Γ(r)2(rem) Γ(r)1(a) = ch(ch(γ)@{s, r}i)@{r}b

Γ �s,{t} a@r ! 〈v〉
On the other hand, if the output is performed over a simple channel a, we require

every site where a may be located to give permission for remote communications
from the sites where the process, a ! 〈v〉, may be at runtime. It may not be possible

1A word on notation: let Γ(s)1 and Γ(s)2 be the first and second projections of the pair Γ(s) =
(ϕ, G).
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SP-OUTL

Γ(r)1(a) = ch(γ1)@{r}b Γ �s v : γ2

γ2 ≤ γ1 S ⊆ Γ(r)2(rem)
Γ �s,S a@r ! 〈v〉

SP-OUTS

Γ(s)1(a) = ch(γ1)@Rb Γ �s v : γ2

γ2 ≤ γ1 S ⊆ Γ(r)2(rem), ∀r ∈ R

Γ �s,S a ! 〈v〉

SP-INPL

Γ(r)1(a) = ch(γ1)@{r}b Γ(s)1(x) = ch(γ2)@T b

Γ �s,{r} P ch(γ2)@T b ≤ γ1 S ⊆ Γ(r)2(mig)

Γ \ x@s �s,S a@r?(x : T ) P

SP-INPS

Γ(s)1(a) = ch(γ1)@Rb Γ(s)1(x) = ch(γ2)@T b

Γ �s,R P ch(γ2)@T b ≤ γ1 S ⊆ Γ(r)2(mig), ∀r ∈ R

Γ \ x@s �s,S a?(x : T ) P

SP-NIL Γ �r,S 0 SP-PAR
Γ �s,S P Γ �s,S Q

Γ �s,S (P |Q)

SP-RESS
Γ(s)1(a) = ch(γ)@Sb Γ �s,S P

Γ \ a@s �s,S (ν a) P

SP-RESL

Γ(r)1(a) = ch(γ)@{r}b

Γ �s,S P S \ s ⊆ Γ(r)2(new)
Γ \ a@r �s,S (ν a@r) P

Figure 6: Typing processes.

to determine the site that hosts a channel at compile time (consider a communication
over a channel received as a parameter). When typing a process x ! 〈v〉 where the
channel name x can be instantiated with either a simple channel or a located channel,
one uses the rule SP-Outs. The sites that may send channels to instantiate x must be
in the annotation of the input which introduces the parameter x.

To type an input process, Γ �s,S a@r?(x : T ) P , we type P resolving simple
channels to site s and considering P as running in r, since a@r triggers the migration
of P from s to r. Notation Γ \x@s denotes the removal of channel x, located at site s,
from the typing environment Γ. Bear in mind that simple channels remain bound to s
by lexical scoping. We check that the migration operation to r is allowed from every
site where the process may be located at runtime. The following network type-checks,

s∅[a@r?(x : {t}) x ! 〈c〉] ‖ r{mig:{s}}[a ! 〈b@t〉] ‖ t{rem:{r}}[0]

The typing rules for the inaction process, the parallel process, and the creation
of local channels are fairly standard. The creation of remote channels requires the
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SN-NIL Γ � 0 SN-PAR
Γ � N Γ � M

Γ � (N ‖M)

SN-NET

Γ �s,{s} P Γ(s)2 = G

Γ(s)1(a) = ch(γ)@{s}b, ∀a ∈ dom(Γ(s)1)
Γ � sG[P ]

SN-RESL

Γ � N S \ r ⊆ Γ(r)2(new)
S is the set of sites where a@r occurs free in N

Γ \ a@r � (ν a@r) N

Figure 7: Typing networks.

authorisation from the site where the channel is being created. The authorisation must
be issued to all the sites in S.

The typing rules for networks can be found in figure 7. Rule SN-NET types a
located process in a site, sG[P ]. Process P must be well typed under type assumptions
Γ, where simple channels are considered resources from site s, and the processes is
running in s. Moreover, we demand that the network policies defined at network level
match exactly the policies formulated in Γ—no process is allowed to forge security
policies. The remaining premises assures that visible resources of the site, addressed
only by simple channels, are indeed located at the site.

The handling of resource restrictions at network level is more delicate than at site
level, since we lack information about the site that has created the resource. Therefore,
we require that the site hosting the resource must concede creation permissions to
every site that uses the resource. Notice in the following example that since a@s is
free in site r, site s must grant remote creation privileges to r.

(ν a@s) s{new:{r},rem:{r}}[0] ‖ r∅[a@s ! 〈b〉]
where S = {r}, Γ(s) = {(∅, {new : {r}, rem : {r}})}, and Γ(r) = {(b :

ch(γ)@{r}b, ∅)}.

5 Results

On the type system. Subtyping is a preorder.

Lemma 1. The relation ≤ is a preorder.

The type and subtype system rules are syntax oriented, so an algorithm to compute
types (in polynomial time) can be found just by reading the rules backward. Notice
that there are no recursive types.

Theorem 1 (Decidability of the type system). Given Γ, and N , the problem of
verifying whether Γ � N is decidable.
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Reduction preserves the typability of processes and of networks. This result uses
a standard substitution lemma, together with subject congruence.

Lemma 2. If Γ � P , and P ≡ Q, then Γ � Q.

Proof. We proceed by induction on the type derivation, analysing the last rule applied.
We just sketch case 7. (figure 2, page 8), where the last typing rule applied is SP-RESL,
to illustrate the use of the side condition s ∈ G1(new) when a@s 	∈ fn(P ). Consider
the case where (ν a@r) sG[P ] ≡ sG[(ν a@r) P ].

By hypothesis, Γ � (ν a@r) sG[P ]. Assuming s 	= r, we need to consider two
subcases:

• a@r ∈ fn(P )

Therefore, by rule SP-RESL, s ∈ Γ(r)2(new) and so, by SP-RESL and SN-NET,
we prove that Γ � sG[(ν a@r) P ].

• a@r 	∈ fn(P )

In this case s 	∈ S, but the side condition s ∈ G1(new) ensures that r gives
permission to create a local channel from s and so we can apply SP-RESL and
SN-NET safely.

The case when s = r is not relevant because it is always possible to create a
channel in the site that hosts it. Notice that we exclude the current site when checking
the sites that must grant the new policy.

Theorem 2 (Subject reduction).

1. If Γ �s,S P , and P → Q, then Γ �s,S Q.

2. If Γ � N , and N → M , then Γ � M .

Proof. (sketch) By induction on the typing derivation of Γ �s,S P and of Γ � N . We
proceed by case analysis on the reduction relation and examine the last typing rule of
the typing derivation. The proof is straightforward.

Runtime errors. Our type system guarantee that well-typed networks do not violate
the specified security policies. In what follows we formalise the notion of runtime
error.

Definition 4 (runtime errors). Assume that r 	= s. Let E = {N |N →� νu1 . . . νuk(M ′

‖M)}, and M of the form

rG1[P ] ‖ sG2[a@r ! 〈v〉], s 	∈ G1(rem) (1)

rG1[P ] ‖ sG2[a@r?(x : T ) P ], s 	∈ G1(mig) (2)

sG[(a?(x : T ) P ) | a ! 〈b@r〉], r 	∈ T (3)

rG1[P ] ‖ sG2[(ν a@r) P ], s 	∈ G1(new) (4)
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Networks that violate a security policy are in the set E . The following result states
that well-typed networks do not belong to E .

Theorem 3 (type safety). If Γ � N , and N →� M , then M 	∈ E .

Proof. The proof is straightforward and proceeds by absurd.

6 Conclusions

Summary. We present a type system to control the migration of code in a concurrent
distributed calculus where a network has a fixed number of sites that know each other.
This setting fits DiTyCO, a distributed implementations of the language TyCO, which
presently lacks resource access control. We monitor three security policies: remote
communication, process migration, and channel creation, corresponding to the actions
of the calculus, these policies enabling us to control code migration. The security poli-
cies are defined by the site administrators, following an intuitive and easy approach.
For each site, its administrator specifies what operations other sites are allowed to per-
form. The type system checks if the processes running at those sites respect its security
policies, and then checks if all the sites in the network will interoperate without violat-
ing each other policies. Specifically, we prove subject reduction, define runtime errors,
and then prove type safety.

The current setting allow us to focus on the security policies for resources. We start
with a subset of lsdπ calculus, with a fixed number of sites, and present a non-trivial
yet simple and low-cost solution based on typing and subtyping relations. The system
checks that processes running at given sites respect their security policies, and that
sites in a network interoperate correctly. We prove subject reduction and type safety.
Further work. It is our understanding that this work settles the ground basis for
further developments along two main directions: (a) the definition of security policies
at resource level and therefore be able to refine the interaction between sites; (b) and
the ability to adjust security policies dynamically.

We have already extended this system to deal with an arbitrary number of sites in
networks with dynamic topology [6].
Related work. Other approaches to resource security in distributed mobile calculi
comprise DPI [3, 4] and Klaim [2, 9]. See [1] for a general survey on concurrent mo-
bile calculus, type systems, and security policies. DPI possesses an explicit objective
construct to code—the go primitive. The control of migration is found along three as-
pects: a keyword mig, a subtype relation, and the ability to communicate site names.
If a process “sees” the mig keyword as part of the type of a site, then it may migrate
code to that site. The subtype relation, together with the capability to communicate
site names, allows a site to tailor the information (e.g. resource names, control key-
words) that the target site would be able to use. From a programming point of view,
this approach does not seem very attractive since security annotations are spread along
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the code and it is difficult to understand what actions are really allowed to execute. It
is not clear how to implement type inference.

Klaim uses a capability type system to control operations on tuple spaces. Each
site defines the actions that other sites can perform. There is a correspondence between
the capabilities and the calculus’s actions. For the migration primitive (eval) the type
specifies also the security restrictions that the migrating process should obey. The
Klaim approach is similar to ours in the sense that security policies are declared at
site level, but differs substantially when we consider the way policies are programmed
and checked. Notice that the Klaim type system is far more complex than ours is,
although it provides roughly the same guarantees. One main distinction concerns the
place where the security policies are defined: security policies in Klaim talk about
what operations a site may perform on other sites, whereas in our framework each site
talks about what actions it allows others to perform on it. From the site administrator
point of view this looks more appropriate.

Moreover, our system is tailored to the particular aspects of lexical scoped settings.
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Model-checking Access Control Policies

Dimitar P. Guelev� Mark Ryan∗ Pierre Yves Schobbens��

Abstract

We present a model of access control which provides fine-grained data-dependent
control, can express permissions about permissions, can express delegation, and
can describe systems which avoid the root-bottleneck problem. We present a lan-
guage for describing goals of agents; these goals are typically to read or write the
values of some resources. We describe a decision procedure which determines
whether a given coalition of agents has the means (possibly indirectly) to achieve
its goal. We argue that this question is decidable in the situation of the potential
intruders acting in parallel with legitimate users and taking whatever temporary
opportunities the actions of the legitimate users present. Our technique can also
be used to synthesise finite access control systems, from an appropriately formu-
lated logical theory describing a high-level policy.

Introduction

In a world in which computers are ever-more interconnected, access control systems
are of increasing importance in order to guarantee that resources are accessible by their
intended users, and not by other possibly malicious users. Access control systems are
used to regulate access to resources such as files, database entries, printers, web pages.
They may also be used in less obvious applications, such as to determine whether
incoming mail has access to its destination mailbox (spam filtering), or incoming IP
packets to their destination computers (firewalls).

We present a model of access control which has among others the following fea-
tures:

�School of Computer Science, University of Birmingham, Edgbaston, Birmingham B15 2TT, UK
��Institut d’Informatique, Facultés Universitaires de Namur, Rue Grandgagnage 21, 5000 Namur, Bel-

gium
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• Access control may be dependent on the data subject to control. This is
useful in certain applications, such as the conference paper review system
described below, or stateful firewalls, databases, etc. In [7], this is called
conditional authorisation.

• Delegation of access control is easily expressed. This helps to avoid the root
bottleneck, whereby root or the owner of a resource is required in order to
make access control changes, and the insecurity caused by investing too
much power in a single agent.

• Permissions for coalitions to act jointly can be expressed.
A key feature of our model is that permissions are functions of state variables, and

therefore may change with the state. Because the ability to change the state is itself
controlled by permissions, one can, in particular, express permissions about permis-
sions. This allows us easily to devolve authority downwards, thus avoiding the root
bottleneck, and to express delegation.

A potential problem of sophisticated access control systems, such as those which
can be described using our model, is indirect paths. It might be that the system denies
immediate access to a resource for a certain agent, but it gives the agent indirect pos-
sibilities by allowing it to manipulate permissions. Hence, there could be a sequence
of steps which the agent can execute, in order to obtain access to the resource. We
are interested in verifying access control systems to check whether such indirect paths
exist.

Example 1 Consider a conference paper review system. It consists of a set of papers, and a set
of agents (which may be authors, programme-committee (PC) members, etc). The following
rules apply:

• The chair appoints agents (if they agree to it) to become PC members. PC members
can resign unilaterally.

• The chair assigns papers for reviewing to PC members.
• PC members may submit reviews of papers that they have been assigned.
• A PC member a may read b’s review of a paper, if the paper has not been assigned

to a, or the paper has been assigned to a, and she has already submitted her own
review.

• PC members may appoint sub-reviewers for papers which they have been assigned.
Sub-reviewers may submit reviews of those papers. The PC member can withdraw
the appointment of sub-reviewers.

• Authors should be excluded from the review process for their papers.
Each of these rules is a read access or a write access by one or more agents to a resource. We
formalise this example in the next section, and use it as a running example through the paper.
Statements 3 and 4 illustrate the dependency of write access and read access (respectively)
on the current state. Statement 5 shows how permissions about permissions are important;
here, the PC member has write permission on the data expressing the sub-reviewers’ write
permission on reviews.

Model checking such an access control system will answer questions such as: can an
author find out who reviewed her paper? Can a reviewer of a paper read someone else’s
review, before submitting his own? We answer the second question in Example 9.
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The main part of this paper presents a simple language for programming access, a
propositional language for specifying access goals, and an accessibility operator which
denotes that a given goal is achievable by means of a program in the programming
language and can be used to formulate access control policies. We propose axioms
which lead to the expressibility of this operator in propositional logic and to decision
procedures for it. These procedures allow access control policies to be checked and be-
haviour that violates them to be proposed as counterexample to imperfect implemen-
tations of policies. Furthermore, the propositional expressibility of the accessibility
operator entails that implementations of policies formulated with it can be automati-
cally synthesised. We also show that it is decidable whether the execution of a certain
program by one coalition provides another coalition with temporary opportunities that
are sufficient for the achievement of a certain goal, given that the second coalition can
interleave its actions with the actions of the first one. A Prolog implementation of
one of the possible decision procedures for our accessibility operator (together with
examples) is available on the web [8].

Structure of the paper. We first define our model of access control formally,
show how Example 1 can be encoded in it and point to some properties of our model
known to be important from the literature. Then we introduce the simple programming
language which expresses the procedures that coalitions of agents can use to access
systems and define a class of goals that can be pursued by coalitions of agents. For
every concrete system it is decidable whether a coalition can achieve a given goal of
this class by running a program. We argue that the techniques developed in detail
for the simple programming language can be straighforwardly extended to languages
based on high-level access actions. In the concluding section we explain how these
techniques lead to algorithms for model checking access control policies on existing
systems and synthesising systems which implement given policies. In Appendix A
we describe an alternative way to decide the achievability of goals by model-checking
appropriate µ-calculus formulas.

1 Access control systems

We denote the set of propositional formulas ϕ built using the variables p from some
given vocabulary P by L(P ). We adopt ⇒ and ⊥ as basic in the construction of these
formulas and regard �, ¬, ∧, ∨ and ⇔ as abbreviations. We denote the set of the
variables occurring in a formula ϕ ∈ L(P ) by Var(ϕ).

Definition 2 An access control system is a tuple S = 〈P,Σ, r, w〉, where P is a set
of propositional variables as above, Σ is a set of agents, and r and w are mappings of
type P ×Pfin (Σ) → L(P ), where Pfin(Σ) stands for the set of the finite subsets of Σ.
The mappings r and w are required to satisfy

A′ ⊂ A implies � r(p,A′) ⇒ r(p,A) and � w(p,A′) ⇒ w(p,A). (1)
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The requirement (1) reflects that a coalition A has the abilities of all of its sub-
coalitions A′.

The state of an access control system S = 〈P,Σ, r, w〉 is determined by the truth
values of the variables p ∈ P , denoted by 0 and 1. States are models for L(P ) as a
propositional logic language. We represent the states of S by the subsets of P , s ⊆ P
representing the state at which the variables which evaluate to 1 are those in s. We
denote the truth value of formula ϕ at state s by ϕ(s). Truth values of formulas are
defined in the usual way.

Given p ∈ P , A ⊂fin Σ and s ⊆ P , coalition A has the right to read or overwrite
p at state s iff r(p,A)(s) = 1 or w(p,A)(s) = 1, respectively. The definitions of r
and w are assumed to be known to all agents a ∈ Σ. Agents, however, may lack the
permission to access variables in the formulas that r and w produce, and therefore be
unable to decide what is permitted at certain states.

Example 3 Consider the Conference paper review system again. Let Papers and Agents be
fixed sets, let the function

author : Papers× Agents→ {⊥,�}
be fixed, and the constant c : Agents denote the chairperson of the programme committee. Let
P contain the variables

pcmember(a) a is a PC member
reviewer(p, a) paper p is assigned to PC member a
subreviewer(p, a, b) paper p is assigned to sub-reviewer b by PC member a
submittedReview(p, a) a review of p has been submitted by sub-reviewer a
review(p, a) the review of p from sub-reviewer a

for each a ∈ Agents and p ∈ Papers. Let pcmember(c) hold (initially) and r and w be defined
as follows:

pcmember(.) The set of PC members is known to everyone.
r( pcmember(a), A ) � �.
A PC member may be appointed by a joint action of the chair and the candidate, and
may resign unilaterally:
w( pcmember(a), A ) � {a, c} ⊆ A ∨ (a ∈ A ∧ pcmember(a)).

Here and below we use definition schemata, which become well-formed formulas overP when
the agents and coalitions occurring in them become instantiated. In particular, author(p, a)
stands for a propositional constant for each pair p ∈ Papers, a ∈ Agents.

reviewer(., .) Reviewers are known to the PC members, except the authors of the respective
paper:
r(reviewer(p, a), {x}) � pcmember(x) ∧ ¬author(p, x)
The chairperson c may assign a paper p to a PC member a who is not an author of p, if
a accepts. Both c and a may resign reviewership of p unilaterally, unless a has already
assigned p to a sub-reviewer:
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w(reviewer(p, a), A) �
(

(pcmember(a) ∧ {a, c} ⊆ A ∧ ¬author(p, a) ∧ ¬reviewer(p, a)) ∨
((a ∈ A ∨ c ∈ A) ∧ reviewer(p, a) ∧ ¬ ∨

b∈Agents
subreviewer(p, a, b))

)

subreviewer(., ., .) The review status of a paper is known to PC members who are not au-
thors of the paper, and to the respective sub-reviewers:
r(subreviewer(p, a, b), {x}) � (pcmember(x) ∧ ¬author(p, x)) ∨ x = b
A reviewer a may assign a paper p to at most one sub-reviewer b, who is not an au-
thor of p, and has not been assigned p by another reviewer. (To review p personally, a
must become his/her own sub-reviewer.) A reviewer may revoke sub-reviewership, and
a sub-reviewer may resign, unless a review has already been submitted:
w(subreviewer(p, a, b), A) �



( {a, b} ⊆ A ∧ reviewer(p, a) ∧ ¬author(p, b) ∧
¬ ∨

d∈Agents
(subreviewer(p, a, d) ∨ subreviewer(p, d, b))

)
∨

(subreviewer(p, a, b) ∧ (a ∈ A ∨ b ∈ A) ∧ ¬submittedReview(p, b))




submittedReview(., .) Whether a review on a paper has been submitted is known to PC
members, except the authors of the paper:
r(submittedReview(p, a), {x}) � pcmember(x) ∧ ¬author(p, x)
A subreviewer may submit a review once. (This makes the current value of review(p, a)
final.)
w(submittedReview(p, a), {x}) �

x = a ∧ ∨
b∈Agents

subreviewer(p, b, x) ∧ ¬submittedReview(p, x)

review(., .) PC member a can read reviews of a paper p, provided a is not its author and does
not have a review outstanding for p.
r(review(p, a), {x}) �

(
pcmember(x) ∧ ¬author(p, x) ∧ submittedReview(p, a)∧

(
∨

b∈Agents
subreviewer(p, b, x) ⇒ submittedReview(p, x) ∨ x = a)

)

A sub-reviewer may update the contents of his review until he/she makes it final by set-
ting submittedReview to 1:
w(review(p, a), {x}) �

x = a ∧ ∨
b∈Agents

subreviewer(p, b, x) ∧ ¬submittedReview(p, x)

The formulas r(., .) and w(., .) in 2-4 which are defined about singleton coalitions extend to
bigger coalitions by monotonicity.

The purpose of this example is to illustrate our model and syntax. It becomes clear in
Example 9 that the design of the system specified above is not flawless. It admits violating
some well-established practices of conference management.
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We extend r to a mapping from L(P ) × 2Σ to L(P ) by putting r(ϕ,A) �∧
p occurs in ϕ

r(p,A).

An access control system 〈P,Σ, r, w〉 is finite, if P and Σ are finite. In this paper
we study finite access control systems. We only consider systems whose resources
are sets of boolean variables; for example, the review of a paper was represented as a
boolean, which is more crude than the reviews from most conferences.

1.1 Comparison with other models

Several formal models of access control have been published. The influential early
work [9] proposed a model for access control with a matrix containing the current
rights of each agent on each resource in the modelled system. The actions allowed
include creating and destroying agents and resources and updating the matrix of the
access rights. The possibility to carry out an action is defined in terms of the rights as
described in the matrix. Given the generality of that model, it is not surprising that the
problem of whether an agent can gain access to a resource, called the safety problem,
is not decidable. This can be largely ascribed to the possibility to change the sets of
agents and resources in the model. In our model, the sets of agents and resources are
fixed.

The formulas r(p,A) and w(p,A) may be considered as the values of the cells of
an access matrix

. . . Coalition A . . .
. . . . . . . . . . . .

Resource p . . . r(p,A), w(p,A) . . .
. . . . . . . . . . . .

which for each particular state s of the modelled system corresponds to a matrix of
the form from [9] describing the rights of reading and writing at that state. Unlike [9],
entries in the matrix are updated by actions specifically for that purpose, whereas in
our model coalitions update general purpose state variables, which in turn affect the
value of the formulas r(., .) and w(., .). This allows the modelling of automatic depen-
dencies between the contents of the access control system, if viewed as a database, and
the rights of its users. The special case in which every particular right can be manip-
ulated by a dedicated action can be modelled in our system by choosing a dedicated
propositional variable qx,p,A for each triple x ∈ {r, w}, p ∈ P and A ⊆ Σ and defining
x(p,A) as qx,p,A. Then changing the right x of coalition A on p can be made indepen-
dently for each triple x, p,A. In this case, however, special care needs to be taken to
avoid infinite digressions like qx,p,A, qy,qx,p,A,B , qz,qy,qx,p,A,B ,C , . . .

An analysis of formal models is given in [7]. Desirable properties highlighted in
the literature include:
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• Conditional authorisations [7]. Protection requirements may need to de-
pend on the evaluation of conditions. As shown by the example above, this
is a central feature of our model.

• Expressibility of joint action [10, 1]. Some actions require to be executed
jointly by a coalition of agents, such as the appointment of an agent to the
programme committee in the example above, which requires the willingness
both of the chair and the candidate.

• Delegation mechanisms. In particular, permission to delegate a privilege
should be independent of the privilege [3]. Delegation mechanisms may be
classified according to permanence, transitivity and other criteria [4].

• Support for open and closed systems [7]. In open systems, accesses which
are not specified as forbidden are allowed. Thus, the default is that actions
are allowed. In closed systems, the default is the opposite: actions which
are not expressly allowed are forbidden.

• Expressibility of administrative policies [7]. Administrative policies spec-
ify who may add, delete, or modify the permissions of the access control
system. The are “one of the most important, although less understood” as-
pects of access control, and “usually receive little consideration” [7]. In our
model, they are fully integrated, as the conference paper review example
shows.

• Avoidance of root bottleneck. Called ‘separation of duty’ in [7], this prop-
erty refers to the principle that no user should be given enough privilege
to misuse the system on their own. Models should facilitate the design of
systems having this property.

• Support for fine-and coarse-grained specifications [7]. Fine-grained rules
may refer to specific individuals and specific objects, and these should be
supported. But allowing only fine-grained rules would make a model unus-
able; some coarse-grained mechanisms such as roles must also be supported.
Our model supports fine-grained rules. It relies on a higher-level language
such as the language of predicates used in the example above to express
coarse-grained rules.

Our model satisfies all these properties, except the last one. It is not meant to be a
language for users. It represents a low-level model of access control, which we can
use to give semantics to higher-level languages such as RBAC [12], OASIS [2], and
the calculus of [1].

2 Programs in systems with access control

In this section we introduce a simple language which can be used to program access
to systems as we described above. Programs α in it have the syntax

α ::= skip | p:=ϕ | if ϕ then α else α | (α;α) (2)
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and the usual meaning. It can be shown that adding a loop statement, e.g. whileϕ doα
to this language would have no effect on its ultimate expressive power. This follows
from our choice to model only finite state systems. We do not include loops in (2),
because our concern is the mere existence of programs with certain properties.

2.1 Semantics of programs

We define the semantics of programs in (2) as functions from states to states. This can
be regarded as a denotational semantics for (2), as known from the literature (see, e.g.,
[11]). The ingredient of this semantics that is specific and most important to our study
is a mapping describing executability of programs as the subject of access restrictions.
The notation below is introduced to enable the concise definition of the semantics. Let
S = 〈P,Σ, r, w〉 be a fixed access control system for the rest of this section.

Definition 4 Substitutions are functions of the type P → L(P ). We record substitu-
tions f in the form [f(p)/p : p ∈ P ]. We often write [f(p)/p : p ∈ Q] where Q ⊂ P
to denote λp.if p ∈ Q then f(p) else p. If Q = {p1, . . . , pn}, then we sometimes
denote [f(p)/p : p ∈ Q] by [f(p1)/p1, . . . , f(pn)/pn].

A substitution f is extended to a function of type L(P ) → L(P ) by the clauses
f(⊥) = ⊥ and f(ϕ ⇒ ψ) = f(ϕ) ⇒ f(ψ). We omit the parentheses in f(ϕ) for
ϕ ∈ L(P ). Given substitutions f and g, fg denotes [fg(p)/p : p ∈ P ]. ∃pϕ stands
for [⊥/p]ϕ∨ [�/p]ϕ. ∀pϕ stands for ¬∃p¬ϕ. If Var(ϕ) = {p1, . . . , pn}, then ∃ϕ and
∀ϕ stand for ∃p1 . . . ∃pnϕ and ∀p1 . . . ∀pnϕ, respectively.

Let P be the set of all programs in P . The function [[.]] : P → (P → L(P )) is defined
by the clauses:

[[skip]] = [p/p : p ∈ P ] = [ ]
[[p := ϕ]] = [ϕ/p]

[[if ϕ then α else β]] = [(ϕ ∧ [[α]](p)) ∨ (¬ϕ ∧ [[β]](p))/p : p ∈ P ]
[[(α;β)]] = [[α]][[β]]

Proposition 5 If S grants all the access α attempts, then the run of α from state s ⊆ P
takes S to state {p : ([[α]](p))(s) = 1}.

Every particular step of the execution of a program can be carried out only if the
respective coalition has the necessary access rights. E.g., for an assignment p := ϕ
to be executed, the coalition needs the right to overwrite p and read the variables
occurring in ϕ. We define this by means of the function [[., .]] : 2Σ × P → L(P ).
[[A,α]] evaluates to a formula which expresses whether the coalition A may execute
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the program α. [[., .]] is defined by the clauses:

[[A, skip]] = �
[[A, p := ϕ]] = r(ϕ,A) ∧ w(p,A)

[[A, if ϕ then α else β]] = r(ϕ,A) ∧ (ϕ⇒ [[A,α]]) ∧ (¬ϕ⇒ [[A, β]])
[[A, (α;β)]] = [[A,α]] ∧ [[α]][[A, β]]

Proposition 6 S will grant coalition A ⊆ Σ to execute program α from state s iff
[[A,α]](s) = 1.

Despite its ultimate simplicity, the language (2) can describe every deterministic
and terminating algorithm for access to a system the considered type, as long as it is
assumed that a failed access attempt can only bring general failure, and cannot be used
to, e.g., draw conclusions on the state of a system for the purpose of further action.
This restriction can be lifted. See the more general setting outlined in Subsections 4.2
and 4.3.

2.2 Programs which obtain access

Let S = 〈P,Σ, r, w〉 be a fixed access control system again, and let P be the set of
programs (2) in the vocabulary P . Given a state s ⊆ P and a p ∈ P , the truth values
r(p,A)(s) and w(p,A)(s) indicate whether A can read and write p, respectively, in
state s. However, it may be that A currently does not have some permission, but that
A can change the state in order to obtain it. In this section we define RAϕ and WAϕ,
which denote A’s ability to read/write ϕ by a possibly lengthy sequence of steps. Such
sequences can be encoded as programs of the form (2). The ultimate ability for A
to obtain the truth value of ϕ ∈ L(P ) can be understood as the ability of A to run
a program α ∈ P that works out the value of ϕ and copies it into some variable p0
such that r(p0, A) = w(p0, A) = �. It can be expressed in terms of [[α]] and [[A,α]] as
follows:

RAϕ � (∃α ∈ P)∀([[A,α]] ∧ ([[α]](p0) ⇔ ϕ)) (3)

Similarly, the ability of A to drive the system into a state where some ϕ ∈ L(P ) has a
truth value of A’s choosing, can be expressed by the formula

WAϕ � (∃α�, α⊥ ∈ P)∀([[A,α�]] ∧ [[A,α⊥]] ∧ [[α�]]ϕ ∧ [[α⊥]]¬ϕ) (4)

The universal closures ∀ in (3) and (4) express that α, α� and α⊥ are runnable and
produce the stated results from all initial states. Note that RA and WA allow for de-
structive behaviour of the programs involved. Obtaining the desired goal may involve
changing the state, possibly in a way which A cannot undo. In the next section, we
consider a more expressive goal language in which we restrict the search to programs
which are not destructive.
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The formulas (3) and (4) determine the ability of A to execute a program which
would achieve the goal of reading or writing ϕ. Quantifier prefixes like (∃α ∈ P)
make it hard to evaluate (3) and (4) directly. However, if S is finite, these formulas
have purely propositional equivalents, and therefore can be computed mechanically,
because there are only finitely many different programs in the vocabulary P modulo
semantical equivalence. Of course, the enumerating all these programs in order to
evaluate (∃α ∈ P) is very inefficient. In Section 3 we treat RA and WA as special cases
of a more general accessibility operator. In an appendix of [6] we describe a way to
evaluate this operator, and consequently, RA and WA, without resorting to quantifier
prefixes of the form (∃α ∈ P), which is more efficient.

3 A general accessibility operator

Extracting information and driving a system into a state with some desired property are
only the simplest goals of access. One goal cannot be treated without regard for others,
because achieving a goal may have destructive side effects which prevent another goal
from being achieved. That is why achieving composite goals sometimes needs to be
planned with all their subgoals in mind at the same time. In this section, we consider
a language for describing more refined kinds of access. Our language allows us to
express boolean combinations of goals. Expressible goals include preserving the truth
value of some formulas while reading or setting the truth values of others. Preservation
is understood as restoring the original value of the formula in question upon the end
of activities, and not necessarily keeping the value constant throughout the run of a
program.

The accessibility operator in this language is written in the form A(Φ, ψ) where
A is a coalition, Φ is a list of formulas in L(P ) that A wants to read, and ψ is a goal
formula with the syntax

ψ ::= ⊥ | � | p | ψ ∧ ψ | ψ ∨ ψ (5)

where p denotes an atomic goal of one of the following forms:

• ϕ′, where ϕ ∈ L(P ); this is the goal of making ϕ true.

• ϕ, where ϕ ∈ L(P ); this is the goal of “realising” that ϕ is true.

� and ⊥ stand for a trivial goal, which calls for no action, and an unachievable goal,
respectively. The goal ψ1 ∨ψ2 is regarded as achieved if either ψ1 or ψ2 are. The goal
ψ1 ∧ ψ2 is achieved if both ψ1 and ψ2 are. Atomic goals of the form ϕ may fail even
if A manages to obtain the truth value of ϕ, in case it turns out to be 0. On the other
hand a goal of the form ϕ ∨ ¬ϕ can be assumed achieved without any action.
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Example 7 The expression A(〈p〉, (q ∧ q ′) ∨ (¬q ∧ ¬q′)) denotes that A wants to read p and
preserve the truth value of q. If r(p,A) = q and r(q, A) = w(q, A) = �, then A can achieve
its goal by means of the program

if q then p0:=p else (q:=�; p0:=p; q:=⊥)

where p0 is a variable dedicated to storing the value of p. Note that the program restores the
value of q after temporarily setting it to 1 in order to gain access to p in the else clause of the
conditional statement. The goal described by the simpler expression A(〈p〉,�), which does
not require q to be restored, can be achieved by the simpler program (q:=�; p 0:=p).

The formula ψ in A(Φ, ψ) can express an arbitrary relation R(p1, . . . , pn; p1
′, . . . ,

pn
′) between the initial values p1, . . . , pn and the final values p1′, . . . , pn

′ of the vari-
ables p1, . . . , pn of the system as a requirement for A to satisfy. The main difficulty in
implementing the relation R in our setting is not in computing R, but to the planning
of the actions needed to access the variables.

Example 8 Let P = {p1, p2, p3}, A ⊆ Σ, r(p1, A) = ¬p2, w(p1, A) = p2, r(p2, A) =
w(p2, A) = �, r(p3, A) = p1 and w(p3, A) = ¬p1. From any state, can A achieve a state
in which the value of p3 is inverted? Yes; for example, this program samples the variables in
order to determine what it can do, and inverts the value of p 3. A can run it from any state.

if p2 then (
p1:=�;
if p3 then (p1:=⊥; p3:=⊥) else (p1:=⊥; p3:=�)

)
else if p1 then

if p3 then (p2:=�; p1:=⊥; p3:=⊥) else (p2:=�; p1:=⊥; p3:=�)
else (

p2:=�; p1:=�;
if p3 then (p1:=⊥; p3:=⊥) else (p1:=⊥; p3:=�)

)
The program (except for the formatting) was produced by our implementation [8].

In general, the goal A(Φ, ψ) expresses the ability of the coalition A to execute a
program which reads the values of formulas in Φ, while changing the values of formu-
las in order to make the relation represented by ψ hold. The simple goals expressed by
RAϕ and WAϕ can be expressed in this language:

RAϕ⇔ A({ϕ},�), WAϕ⇔ A(∅, ϕ′) ∧A(∅,¬ϕ′).

In the appendix of [6] we show that the possibility (for A) to achieve A(Φ, ψ) can be
decided mechanically and, if A(Φ, ψ) is achievable, a program which can be used (by
A) to achieve it can be synthesised.

To demonstrate this, we add the superscripts V, T,K to goal expressions. AV,T,K(
Φ, ψ) expresses the existence of a program αwhichA can execute to read the formulas
from Φ and enforce the relation represented by ψ, provided that the initial state s of
the system satisfies s ∩ V = T and without going through any of the states in the list
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of states K. We use the superscript triple V, T,K to express achievability of subgoals
which can arise after some action that brings partial knowledge of the state of the
system has already been taken. The list K is used to prevent considering moving
to states which have already been explored. Now the original form A(Φ, ψ) can be
viewed as the special case A∅,∅,∅(Φ, ψ), in which nothing is assumed about initial
states. Further details are given in an appendix of [6].

Sometimes goals involve enabling the achievement of further goals. A natural way
to formulate and to enable reasoning about such goals is to allow nested occurrences
of the accessibility operator A in goal formulas ψ:

ψ ::= ⊥ | � | p | A(Φ, ψ) | ψ ∧ ψ | ψ ∨ ψ (6)

Example 9 For the conference paper review system, the question of whether reviewer a of
paper p can read reviewer b’s review before submitting his own, may be written as:

{a, b, c}(∅, submitted(p, b) ∧ ¬submitted(p, a)′∧{a}(〈review(p, b)〉, submitted(p, a)′)).
This formula asks: is it possible for a, b and the chair c to reach a state s in which b has
submitted his review of p but a has not yet submitted hers, and from there a may read b’s
review and then submit hers? If this formula holds, we can synthesise a program for {a, b, c}
to enable {a} to achieve (〈review(p, b)〉, submitted(p, a)′) from such an s. Surprisingly, the
answer is “yes”. PC member a can read b’s review, then become appointed a subreviewer by c
and submit her own review.

Since we define the achievability of a goal by a coalition as its ability to plan its actions
for achieving the goal in the form of a program, one coalition can enable another
coalition to achieve a goal by taking the system to a state which allows the second
coalition to achieve the goal and, most importantly, passing the second coalition the
knowledge of this state needed to justify its plan for achieving the goal. If Φ is the
empty list 〈〉, then AV,T,K ′

(Φ, B(Φ′, ψ′)) means that A can reach a state s in which
A’s knowledge of s will be sufficient for B to achieve (Φ′, ψ′). In case Φ′ �= 〈〉, we
assume that it is possible to achieve AV,T,K ′

(Φ, B(Φ′, ψ′)) by (I) A sharing with B its
knowledge of a reached s described by appropriate V and T upon passing the control
to B and then (II) B reading the formulas from Φ for A. That is why we have

BV,T,{T}(Φ′ ∗ Φ, ψ′) ⇒ AV,T,K ′
(Φ, B(Φ′, ψ′))

where Φ′ ∗ Φ denotes the concatenation of Φ′ and Φ. Since K is irrelevant to the
description of the knowledge of coalition A on S, it does not appear on the left of ⇒
above. Appendix A of [6] covers the extended syntax (6).

4 Some generalisations

Here we outline some more general forms of the model of access control described in
the previous sections and how our results about this model extend to these forms.
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4.1 Concurrent access

Now let coalitions A and B be running programs α and β, respectively. Let the indi-
vidual steps of α and β be interleaved. Let B have priority over A in the following
sense: B can choose to execute as many steps of β as it wishes, then allow the next step
of α to be made and regain control. Let β pass control to α for one step by executing
the special command sleep. Intuitively, this means that B can monitor the behaviour
of A to the extent it can read the variables A updates and take advantage of whatever
access rights A grants B as a side effect of pursuing its own goals. Let us denote this
form of parallel composition of α and β by α‖β. We define [[α‖β]] for α and β of the
form (γ; skip) for the sake of technical convenience:

[[α‖skip]] = [[α]];
[[α‖(p := ϕ;β)]] = [ϕ/p][[(α‖β)]];
[[α‖(if ϕ then β1 else β2;β3)]] =

[(ϕ ∧ [[α‖(β1;β3)]](p)) ∨ (¬ϕ ∧ [[α‖(β2;β3)]](p))/p : p ∈ P ];
[[α‖((β1;β2);β3)]] = [[α‖(β1; (β2;β3))]];
[[skip‖(sleep;β)]] = [[β]];
[[(p := ϕ;α)‖(sleep;β)]] = [ϕ/p][[(α‖β)]];
[[(if ϕ then α1 else α2;α3)‖(sleep;β)]] =[

(ϕ ∧ [[(α1;α3)‖(sleep;β)]](p))∨
(¬ϕ ∧ [[(α2;α3)‖(sleep;β)]](p))

/p : p ∈ P

]
;

[[((α1;α2);α3)‖(sleep;β)]] = [[(α1; (α2;α3))‖(sleep;β)]].
The clause [[skip‖(sleep;β)]] = [[β]] states that sleep has no effect when the pro-
gram run by A has nothing left to do. To express this about subsequent possible occur-
rences of sleep in β, we extend [[.]] by putting [[sleep]] = [[skip]]. The executability
[[A,B,α‖β]] of α‖β by A and B can be defined like in the case of programs run by
individual coalitions. We skip the definition here.

Now let pB ∈ P satisfy w(pB , B) = � and w(pB, A) = ⊥ and assume that B is
trying to take whatever opportunities appear while A is executing α, in order to obtain
a copy of the truth value of ψ in pB by executing β. It is natural to assume that B
takes the advantage of doing as many things as it wishes between every two updates
A does. That is why the actions of A and B in the course of their executing α and
β respectively are interleaved as in α‖β. We denote the set of all programs that can
possibly have occurrences of sleep by Psleep.

Using [[.‖.]] and [[., ., .‖.]], we can describe, e.g. what it means for coalition B to be
able to read some property ϕ of the state of the system by means of running program
β in parallel with program α being run by coalition A:

RB(ϕ,A,α) � (∃β ∈ Psleep)∀([[A,B,α‖β]] ∧ ([[α‖β]](p0) ⇔ ϕ)) (7)

A fixed α implies an upper bound of the number of sleep statements that β may
need to execute in a sequence in order to let α complete its execution. This entails
that, much like in the case of a single coalition accessing the system, there are finitely

35



many β modulo equivalence with respect to their effect on the system, including their
interaction with the fixed interleaved α. This means that the quantifier prefix (∃β ∈
Psleep) in (7) can be eliminated and, therefore, RB(ϕ,A,α) can be calculated. The
more efficient approach described in [6] can be applied to this setting too.

4.2 Access control with arbitrary atomic actions

So far our model allows only simple assignments to boolean variables as the atomic
actions. This brings the level of abstraction down and makes some natural things
difficult to program. For example, consider the system S = 〈P,Σ, r, w〉 where P =
{p1, p2} and w(p1,Σ) = w(p2,Σ) = p1 ∧ p2. Then Σ can overwrite each of p1 and
p2 at state {p1, p2}, but can never change the values of both variables, because once
one of the values becomes 0, the writing permission is lost. Hence, there is no way
to permit Σ the transition from state {p1, p2} to state ∅ without also allowing Σ to
change some of the states {p1} and {p2}, or even to leave S in one of these states
and never proceed towards ∅. This means that coalitions cannot be forced to maintain
integrity constraints, like, e.g., p1(s) = p2(s) for all s ⊆ 2P , keep logs, or be saved
from painting themselves into a corner. This restriction can be removed by introducing
high-level atomic actions instead of the single variable assignments. In this section we
argue that the technique developed for assignments as the atomic transformations on
system state generalise to arbitrary atomic actions.

Let our programming language have the atomic statements a1, . . . , ak, each de-
noting some transformation on the state. Let [[ai]] and [[A, ai]] denote the substitution
which represents the transformation performed by ai in the sense of Proposition 5, and
the rights required for A to execute ai in the sense of Proposition 6, respectively. [[ai]]
and [[A, ai]] were defined in terms of r and w for the case of ai being assignments in
Section 2. Now we assume that these are given substitutions and formulas for a1, . . . ,
ak. Let us replace w by the mappings [[., ai]] : 2Σ → L(P ), i = 1, . . . , k, in systems
which control access by atomic actions a1, . . . , ak. Let us retain r, which determines
reading permissions. We obtain access control systems of the form

〈P,Σ, r, λA.[[A, a1]], . . . , λA.[[A, ak]]〉.
Since for every subsitution [[ai]] there is an αi of the form (2) such that [[ai]] = [[αi]],
we can reproduce the results from Sections 2-3 and the appendix of [6] about such
systems. This possibility shows that, despite its restrictions, the language (2) and the
techniques for it from Sections 2.2-3 have a fundamental role in the assembly of the
respective machinery for the analysis of finite access control described in terms of
high-level actions.

4.3 General knowledge states

So far we have allowed only pairs of the form V, T to represent the knowledge states of
coalitions. A knowledge state can be viewed as a nonempty set of system states. Pairs
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V, T can represent only some such sets. In general, any set of system states described
by a satisfiable formula from L(P ) can be viewed as a knowledge state. This leads to
a natural generalisation of AV,T,K(. . .) to the form Aχ,K ′

(. . .) where K′ is a sequence
of formulas χ1, . . . , χk from L(P ) such that � χi+1 ⇒ χi and �� χi ⇒ χi+1, i < k,
and χk is χ.

General knowledge states can be used to deal with the assumption that a failed
access attempt ony causes the attempting coalition A to learn that the (generally arbi-
trary) formula x(p,A) does not hold, where x ∈ {r, w} denotes the attempted action
and p is the accessed variable.

Conclusions

We conclude by listing some problems whose solutions can be derived from the tech-
niques developed in this paper.

Model checking (Synthesis of attacks). Given a concrete access control system
of the form 〈P,Σ, r, w〉 a recursive equation for A(Φ, ψ) from the appendix of [6]
provides an algorithm to calculate the ability of a coalition A to achieve a general goal
combining reading and writing variables, and, if there is such ability, to synthesise a
program forA to achieve the goal. Hence it can be checked whether the system permits
various forms of legitimate access, leak of data or attacks which can be written as goals
of the form (Φ, ψ). In Subsection 4.1 we show that the same problem is decidable in
the situation of the potential intruders acting in parallel with legitimate users and taking
whatever temporary opportunities the actions of legitimate users present.

Synthesis of access control systems. Given a set of propositional variables P , a
set of agents Σ and an access control policy formulated as a logical theory about A(., .)
for A ⊆ Σ on systems which have their state described in terms of the variables from
P , it can be decided whether an access control system of the form 〈P,Σ, r, w〉 which
implements this policy exists and, if so, definitions for its remaining components r
and w can be proposed. This can be done by developing the equation from [6] into full
propositional definitions of the instances of A(., .) involved in the formulation of the
policy and establishing the satisfiability of the policy with respect to the applications
of r and w at the respective states of the system treated as propositional variables. If
the policy turns out to define a satisfiable restriction on r and w, any particular pair of
mappings r and w which satisfies this restriction can be chosen to complete the access
control system in a way which implements the given policy.

In Section 4 we argued that the results from Sections 2-3 can be reproduced for sys-
tems of a general form where access is based on an arbitrary set of high-level actions.
A representation of the respective access operator A(., .) like that in the appendix of
[6] for the basic case can be assembled from the components used in this basic case.
We proposed a way to reason about goals which involve enabling some further goals to
be achieved. We also showed how to generalise the form of knowledge states of coali-

37



tions used in Sections 2-3 and thus allow to describe that coalitions know arbitrary
constraints on the states of systems and that coalitions can learn from failures.

The algorithms which follow from the appendix of [6] are not optimal. Results
on the complexity of the problems on the class of all access control systems of the
considered form might be practically unrepresentative, because instances of extreme
complexity usually have little in common with typical real cases. That is why it would
be interesting to describe subclasses which exhibit the kinds of regularity typical for
real access control systems first.
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A Model-checking AV,T,{T }(., .) in the propositional µ-calculus

Alternatively, AV,T,{T}(〈ϕ1, . . . , ϕl〉, ψ) can be calculated by model-checking a for-
mula in the propositional µ-calculus (see e.g. [5]). Assume there are no subgoals of the
form B(Φ′, ψ′) in ψ for the sake of simplicity. Consider a system, whose state space is
the set of quadruples V0, T0, V, T such that T0 ⊆ V0 ⊆ V ⊆ P and T ⊆ V , where P
is the vocabulary of a fixed access control system as above. A quadruple V0, T0, V, T
represents a state of knowledge of A which consists of the fact V0 ∩ s0 = T0 about
the initial state s0 of S and the fact V ∩ s = T about the current state s of S. The
meaning of V, T is as in Section 3. Hence the quadruple V0, T0, V, T represents A’s
knowledge of both the initial and the current state. (The addition V0, T0 is not needed
in these axioms, because they prescribe to simplify ϕ in subgoals of the form ϕ and
in formulas to read from Φ immediately each time the value of a variable becomes
known.)

Consider the µ-calculus language with the modalities 〈sample p〉, 〈p:=⊥〉 and
〈p:=�〉 for each p ∈ P . Let the corresponding accessibility relations Rsample p,Rp:=⊥
and Rp:=� be defined by the clauses

Rsample p(V0, T0, V, T ;V ′
0 , T

′
0, V

′, T ′) ↔
 r(p,A) ∧ p �∈ V ∧ V ′

0 = V0 ∪ {p} ∧ V ′ = V ∪ {p}∧(
T ′

0 = T0 \ {p} ∧ T ′ = T \ {p}∨
T ′

0 = T0 ∪ {p} ∧ T ′ = T ∪ {p}
) 



Rp:=⊥(V0, T0, V, T ;V ′
0 , T

′
0, V

′, T ′) ↔
w(p,A) ∧ V ′

0 = V0 ∧ T ′
0 = T0 ∧ V ′ = V ∪ {p} ∧ T ′ = T \ {p}

Rp:=�(V0, T0, V, T ;V ′
0 , T

′
0, V

′, T ′) ↔
w(p,A) ∧ V ′

0 = V0 ∧ T ′
0 = T0 ∧ V ′ = V ∪ {p} ∧ T ′ = T ∪ {p}

Each of these relations represents an action on behalf of A in which A increases its
knowledge and/or changes the current state. The knowledge of A is sufficient to es-
tablish that its goal is already achieved iff the formula

∀[σV0,T0ϕ/ϕ, σV,Tϕ/ϕ
′ : ϕ ∈ L(P )]ψ ∧

l∧
i=1

(∀σV0,T0ϕi ∨ ∀σV0,T0¬ϕi)

is valid. Let the set of states from which A can reach a satisfactory state be X. Then
the implications

〈p:=⊥〉X ⇒ X, 〈p:=�〉X ⇒ X, [sample p]X ⇒ X, p ∈ P (8)

The [·] in the last formula means that A should be prepared for any outcome of the
sampling. The least solution of the system of inclusions (8) is the set of the knowledge
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states in which A can make a plan to reach a satisfactory state without fail. Hence
AV,T,{T}(〈ϕ1, . . . , ϕl〉, ψ) is equivalent to the satisfaction of

µX.



(
∀[σV0,T0ϕ/ϕ, σV,Tϕ/ϕ

′ : ϕ ∈ L(P )]ψ ∧
l∧

i=1
(∀σV0,T0ϕi ∨ ∀σV0,T0¬ϕi)

)
∨∨

p∈P
([sample p]X ∨ 〈p:=⊥〉X ∨ 〈p:=�〉X)




at state ∅, ∅, V, T .
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Abstract

Role hierarchy was first introduced in the Role Based Access Control (RBAC) model.
Inheritance of permissions is associated with this hierarchy. This is useful to design se-
curity policies in a modular way. In this paper, we extend this approach in the context
of the Organization Based Access Control (Or-BAC) model. We first define hierarchies
of roles, views and activities and formally model inheritance mechanism associated
with each hierarchy. We then define hierarchy of organizations. We show that this pro-
vides efficient means to derive policies of security components from corporate security
policies specification. We illustrate our approach in the context of network security
policy, in particular to configure firewalls.

1 Introduction

The inheritance mechanism was suggested in object oriented programming as an
efficient way to design an application in a modular way. A similar mechanism is used
in RBAC [14] when a hierarchy of roles is defined and associated with inheritance
of permissions. The role hierarchy is a useful mean to structuring the security policy
specification.

However, the concept of role hierarchy is not free of ambiguity [11, 12, 5]. Some
of these ambiguities are directly related to the concept of role itself. If we consider
the examples suggested in [14], there are actually several different interpretations of
roles. Basically, a role allows a subject who is assigned to this role to perform some
particular activities. This is the case of roles such as physician, nurse or medical
secretary. However, in some examples, a role is related to a given organization [13].
For instance, we may consider roles such as nurse in a cardiological department or
nurse in a reanimation team. This is interesting because permissions assigned to a
given role may change from one organization to another. For example, a nurse may
have different permissions if she performs her activities in a cardiological department
or in a reanimation team. A role may also correspond to the activity of leading a given
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organization. Examples of such roles may be director of an hospital or head of a
cardiological department.

As we shall see in the following, these different interpretations of the role concept do
not behave similarly with respect to permission inheritance. This is why it is important
to have a model that provides means to make explicit such differences.

We shall analyze this problem in the context of the Or-BAC model [10]. This model
is centered on the concept of organization. In Or-BAC, an organization corresponds
to any entity that is in charge of managing a set of security rules (permissions or
prohibitions). For instance, a given hospital is an organization. A concrete security
component, such as a firewall, may be also viewed as an organization since it manages
a set of security rules.

Role definition in Or-BAC is always related to a given organization. This is useful
to avoid some ambiguities when defining role hierarchies and associating them with
permission inheritance.

The Or-BAC model considers two other concepts, namely activity and view. A secu-
rity policy assigned to a given organization is defined as permissions (or prohibitions)
for roles to perform activities on views. In the following, we shall suggest defining
hierarchies of activities and views and model inheritance mechanism associated with
these hierarchies.

Finally, in Or-BAC, we can also define hierarchy of organizations. This possibility
provides a very efficient mean to structuring the security policy specification, starting
with high level organization such as an hospital and finishing with concrete security
components such as a firewall.

In this paper, we aim to analyze and formally model inheritance of permissions
and prohibitions through these different hierarchies. The remainder of this paper is
organized as follows. Section 2 recalls main concepts of Or-BAC. Section 3 presents
the various hierarchies respectively associated with roles, activities and views. Sec-
tion 4 studies organization hierarchies. In section 5, we summarize how to specify a
security policy in Or-BAC when hierarchies are used. Section 6 shows how our ap-
proach applies to network security policy specification. Finally, section 7 concludes
and suggests several issues to this work.

2 Or-BAC

2.1 Basic concepts of Or-BAC

Or-BAC [10] is an access control model based on the organization concept. In
Or-BAC, different organizations can specify their own access control policy using
eight basic sets of entities: Org(anization), Role, Activity, V iew, Subject, Action,
Object and Context. Basic predicates used in Or-BAC to model relationships be-
tween these eight entities are summarized in figure 1.

As mentioned in the introduction, an organization is any entity that manages a set
of security rules. A subject is an active entity that may be assigned to a role. We
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shall assume that Org ⊆ Subject so that a role may be assigned to an organization.
For instance, roles “casualty department” or “rescue team” may be assigned to some
organizations.

By means of the entity Role, we are able to structure the subjects and to update
easily security policies when new subjects are added to the system. Since we have also
to structure the objects and to add new objects to the system, a similar entity regarding
objects is needed: the entity V iew. Roughly speaking, as in relational databases, a
view corresponds to a set of objects that satisfy a common property. Another entity is
used to abstract actions: the entity Activity. Seeing that roles associate subjects that
fulfil the same functions and views correspond to sets of objects that satisfy a common
property, activities will join actions that share the same principles.

Subjects, objects and actions may have attributes. This is modelled by a set of
binary predicates having the form att(ent, val) where ent is a subject, an object or an
action and val is the value of attribute att. For instance, if med 27 is a medical record,
then name(med 27, John) means that med 27 is John’s medical record.

We assume that Subject ⊆ Object so that we can define views of subjects that
we call groups. In Or-BAC, there is a clear difference between a role and a group.
Permissions are assigned to roles whereas a group is simply a set of subjects that have
some common properties. However, it is sometimes useful to assign the same role to
every subject belonging to a given group. For this purpose, we can use the predicate
G Empower(org, group, role) and specify the following rule:

• GE: ∀org,∀group,∀role,∀subject,
Use(org, subject, group) ∧G Empower(org, group, role)
→ Empower(org, subject, role)

Since the Or-BAC model allows the administrator to specify that some permission
or prohibition only applies in specific contexts, we also introduce the entity Context.
Contexts are defined by logical rules whose conclusion is the predicate Define (see
figure 1 that gives the example of the working hours context). We say that a context c
in organization org is defined by condition cond when there is a rule having the form:
Define(org, s, α, o, c) ← cond. Specifying contexts in Or-BAC is further analyzed
in [7].
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Predicate name Domain Description
Relevant role Org ×

Role
If org is an organization and r a role, then Relevant role(org,r)
means that playing role r is defined in organization org.

Ex: Relevant role(H, physician)
Relevant activity Org ×

Activity
If org is an organization and a is an activity, then Rele-
vant activity(org,a) means that performing activity a is de-
fined in organization org.

Ex: Relevant activity(H, consult)
Relevant view Org ×

V iew
If org is an organization and v is a view, then Rele-
vant view(org,v) means that using view v is defined in orga-
nization org.

Ex: Relevant view(H, medical record)
Empower Org ×

Subject×
Role

If org is an organization, s a subject and r a role, then
Empower(org, s, r) means that org empowers subject s in
role r.

Ex: Empower(H, John, physician)
Consider Org ×

Action×
Activity

If org is an organization, α is an action and a is an activity,
then Consider(org, α, a) means that org considers that ac-
tion α falls within the activity a.

Ex: Consider(H, ”SELECT ”, consult)
Use Org ×

Object×
V iew

If org is an organization, o is an object and v is a view, then
Use(org, o, v) means that org uses object o in view v.

Ex: Use(H, med 27, medical record)
Define Org ×

Subject×
Action×
Object×
Context

If org is an organization, s a subject, α an action, o an ob-
ject and c a context, then Define(org, s, α, o, c) means that
within organization org, context c holds between subject s,
action α and object o.

Ex: ∀s, ∀α, ∀o, Define(H, s, α, o, working hours)
← (08 : 00 ≤ time(GLOBAL CLOCK)∧

time(GLOBAL CLOCK) ≤ 19 : 00)

Figure 1. Basic predicates of Or-BAC

2.2 Permission and prohibition

Permissions and prohibitions in Or-BAC are defined with predicates defined in fig-
ure 2. The access control policy is specified at two different levels: an abstract level
that specifies permissions and prohibitions between role, activity and view, and a con-
crete level where permissions and prohibitions between subject, action and object are
derived. These two levels are related as follows. In a given organization org, a subject
s is permitted to perform an action α on an object o if (1) s is empowered to play a
given role r in org and (2) α implements a given activity a in org and (3) o is used in
a given view v by org. If these three conditions are satisfied and if (4) the organization
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Predicate
name

Domain Description

Permission Org ×
Role ×
Activity×
V iew ×
Context

If org is an organization, r a role, a an activity , v a view
and c a context, then Permission(org, r, a, v, c) means that
organization org grants to role r the permission to perform
activity a on view v in context c.

Ex: Permission(H, physician,
consult, medical record, working hours)

Prohibition Org ×
Role ×
Activity×
V iew ×
Context

If org is an organization, r a role, a an activity , v a view
and c a context, then Prohibition(org, r, a, v, c) means that
organization org prohibits role r from performing activity a
on view v in context c.

Ex: Prohibition(H, nurse,
consult, medical record, night)

Is permitted Subject×
Action×
Object

If s is a subject, α an action, o an object, then
Is permitted(s, α, o) means that s is concretely permitted to
perform action α on object o.

Ex: Is permitted(John, ”SELECT ”, med 27)
Is prohibited Subject×

Action×
Object

If s is a subject, α an action, o an object, then
Is prohibited(s, α, o) means that s is concretely prohibited
to perform action α on object o.

Ex: Is prohibited(Mary, ”DELETE”, med 27)

Figure 2. Permissions and prohibitions specification in Or-BAC

org grants to role r the permission to perform the activity a on the view v, then the
request by the subject s to perform the action α on the object o is accepted. Deriving
concrete permissions from abstract permissions is modelled by the following rule:

• RG1: ∀org,∀r,∀a,∀v,∀s,∀α,∀o,
Permission(org, r, a, v, c)∧
Empower(org, s, r)∧
Consider(org, α, a)∧
Use(org, o, v)∧
Define(org, s, o, α, c)
→ Is−permitted(s, α, o)

Another similar rule (called RG2) is used to derive concrete prohibitions from abstract
prohibitions.

2.3 Constraints

Constraints that apply to an access control policy was first suggested in the RBAC
model (more precisely, in the RBAC2 sub-model [8]) and further analyzed in [1]. To
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specify constraints in the Or-BAC model, we introduce a predicate error(). A con-
straint is then modelled as a rule whose conclusion is error() (as suggested in [3, 9]).

For instance, we may specify that, in hospital H , a subject cannot be empowered in
both roles anesthetist and surgeon:

• C1: ∀s,
Empower(H, s, anesthetist) ∧ Empower(H, s, surgeon)
→ error()

In the following, we shall consider the following constraint that apply to any orga-
nization:

• C2: ∀org,∀s,∀r,
Empower(org, s, r) ∧ ¬Relevant role(org, r)
→ error()

Rule C2 says that an organization org should not empower a subject s in role r if
role r is not relevant in organization org.

There are other rules similar to C2 but for activities (called C3), views (called C4),
permissions (called C5) and prohibitions (called C6).

3 Hierarchy within an organization
In Or-BAC, it is possible to consider hierarchies of roles (as suggested in [8]) but

also of views and activities. Every hierarchy respectively defines a partial order rela-
tion over the set of roles, views and activities. We present general inheritance rules of
permissions and prohibitions associated with these different hierarchies.

3.1 Role hierarchy

Let us first address the case of inheritance between roles. In every organization, it is
possible to associate a set of roles with a hierarchy. For this purpose, we introduce the
predicate sub role(org, r1, r2): in organization org, role r1 is a sub-role of r2. Notice
that the role hierarchy depends on the organization. This means that the hierarchy
may vary from one organization to another. Let us now model inheritance principles
associated with this hierarchy.

Permission inheritance through the role hierarchy is modelled by the following rule:

• RH1: ∀org,∀r1,∀r2,∀a,∀v,∀c,
sub role(org, r1, r2) ∧ Permission(org, r2, a, v, c)
→ Permission(org, r1, a, v, c)

This rule says that if role r1 is a sub-role of role r2 in organization org, then every
permission assigned to role r2 in organization org is also assigned to role r1.

Regarding prohibition inheritance, things are more complex. It is necessary to rec-
ognize that the relationships between roles in the hierarchy may be semantically dif-
ferent. We actually identify two different relationships:
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• Relationship of specialization/generalization. For instance, role surgeon is a
specialization of role physician. To model this first relationship we shall use the
following predicate:

specialized role(org, r1, r2): in organization org, role r1 is a specialized role
of role r2.

• Relationship of organizational hierarchy. For instance, role department direc-
tor may be defined as hierarchically higher than role team head. This second
relationship is modelled by the following predicate:

senior role(org, r1, r2): in organization org, role r1 is a senior role of role r2.

We consider that relationship specialized role is included in sub role:

• RH2: ∀org,∀r1,∀r2,
specialized role(org, r1, r2)→ sub role(org, r1, r2)

The consequence is that rule RH1 applies to the specialization role hierarchy and
thus permissions are inherited through this hierarchy. We also consider that prohibi-
tions are inherited through the specialization role hierarchy:

• RH3: ∀org,∀r1,∀r2,∀a,∀v,∀c,
specialized role(org, r1, r2) ∧ Prohibition(org, r2, a, v, c)
→ Prohibition(org, r1, a, v, c)

For instance, every prohibition of the role physician is inherited by the role surgeon.
This is compatible with the intuition that a surgeon is a special case of physician.

By contrast, the relationship senior role is generally not included in sub role. This
means that we may have:

• ∃org,∃r1,∃r2,
senior role(org, r1, r2) ∧ ¬sub role(org, r1, r2)

For instance, we can consider that role hospital director is hierarchically higher than
physician. However, in some hospitals, role hospital director is a purely administrative
role that is not assigned to a physician. In this case, there is no reason to conclude that
hospital director is a sub role of physician.

Now let us assume that role r1 is a senior role of r2 and that r1 is also a sub-role
of r2. In this case, the idea is to consider that r1 is “more powerful” than r2. This is
compatible with rule RH1 above that specifies that r1 inherits the permissions assigned
to r2. However, if we assume that r1 inherits the prohibitions assigned to r2, this will
not make r1 more powerful than r2. This is why it would be better to consider that, in
case of organizational hierarchy, prohibitions are inherited “upward”. This is modelled
by the following rule:
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• RH4: ∀org,∀r1,∀r2,∀a,∀v,∀c,
sub role(org, r1, r2)∧senior role(org, r1, r2)∧Prohibition(org, r1, a, v, c)∧

→ Prohibition(org, r2, a, v, c)

For instance, if we consider that department director is a senior role and also a sub
role of head team, then department director inherits the permissions assigned to team
head (from rule RH1) and team head inherits the prohibitions assigned to department
director (from rule RH4).

To summarize, we have defined three different role hierarchies: sub role,
specialized role (included in sub role) and senior role (generally not included
in sub role). If we are only interesting in the problem of inheritance of permis-
sions and prohibitions, we can actually consider only two hierarchies: sub role and
specialized role. Regarding the specialized role hierarchy, rules RH1, RH2 and
RH3 apply. Regarding the remainder of the sub role hierarchy, rules RH1 and RH4

apply.
Notice also that every inheritance rule presented in this section may have excep-

tions. For instance, one may specify that, in hospital H , physicians are prohibited to
consult the medical records of people who are not their patients. Thus, applying rule
RH3, a surgeon will inherit this prohibition. However, one can explicitly specify (as an
exception) that, in hospital H , a surgeon is permitted to consult every medical records,
even if they do not concern the surgeon’s patient. How to manage exception is further
discussed in section 5.2.

3.2 Activity hierarchy

We now suggest defining inheritance between activities. For this purpose, in every
organization, the set of activities is associated with a hierarchy. This is modelled by the
predicate sub activity(org, a1, a2): in organization org, activity a1 is a sub-activity
of a2. The interpretation of this hierarchy is that, in organization org, activity a1 is a
specialization of activity a2. For instance, in hospital H , the activity of managing (for
example medical records) may be specialized into the activities of creating, consulting
and updating. Thus we have: sub activity(H,creating,managing) and similarly for
consulting and updating.

This hierarchy is associated with permission inheritance. This is modelled by the
following rule:

• AH1: ∀org,∀r,∀a1,∀a2,∀v,∀c,
Permission(org, r, a2, v, c) ∧ sub activity(org, a1, a2)
→ Permission(org, r, a1, v, c)

For instance, let us assume that, in hospital H , physicians are permitted to manage
medical records of their patients. Applying rule AH1 we can derive that physicians are
also permitted to create, consult and update medical records of their patients.

We consider that a similar rule (called AH2) applies to inheritance of prohibitions.
For instance, let us assume that, in hospital H , nurses are prohibited to manage medical
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records. Applying rule AH2 we can derive that nurses are also prohibited to create,
consult and update medical records.

3.3 View hierarchy

Using a similar approach, the set of views is associated with a hierarchy that de-
pends on the organization. This is modelled by the predicate sub view(org, v1, v2):
in organization org, view v1 is a sub-view of v2. Our interpretation is that, in org, view
v1 is a specialization of view v2. This is actually close to class inheritance hierarchy
used in object-oriented hierarchy (Isa hierarchy).

In the context of Or-BAC, view hierarchies are associated with the permission in-
heritance that is modelled by the following rules:

• VH1: ∀org,∀r,∀a,∀v1,∀v2,∀c,
Permission(org, r, a, v2, c) ∧ sub view(org, v1, v2)
→ Permission(org, r, a, v1, c)

A similar rule (called VH2) applies to inheritance of prohibitions. For instance, in
a hospital, we may consider that the view surgeon record is a sub-view of the view
medical record. In this case, a role who is permitted or prohibited to perform a given
activity on the view medical record will be permitted or prohibited to perform the
same activity on the view surgeon record.

We can also define the concept of derived view as a special case of view special-
ization. Hence, we can define that a view v1 is derived from view v2 if there is a rule
having the following form:

• ∀org,∀obj,∀v1,∀v2,
(Use(org, obj, v2) ∧ Condition)→ Use(org, obj, v1)

where Condition is a logical condition used to specialize view v2 into view v1.

4 Organization hierarchy

Previous section showed how to define hierarchies between roles, activities
and views within a given organization. In this section, we study how to de-
fine hierarchies of organizations. For this purpose, we introduce the predicate
sub organization(org1, org2): organization org1 is a sub-organization of organiza-
tion org2. We assume that this predicate defines a partial order relation on the set of
organizations. For instance, if H is an hospital and dept8 is the casualty department
of this hospital, then we have: sub organization(dept8,H).

We may actually require that every sub-organization org1 of a given organization
org2 is assigned to a role. This requirement is modelled by the following constraint:

• C7: ∀org1,∀org2,∀r,
sub organization(org1, org2) ∧ ¬Empower(org2, org1, r)
→ error()

49



For instance, in the above example, constraint C7 is satisfied if we have:
Empower(H, dept8, casualty dept).

Notice that some roles may be defined in a given organization but not in
some of its sub-organizations. For instance if dept7 is the management de-
partment of the hospital H , then the role nurse may be not defined in dept7
(we have ¬Relevant role(dept7, nurse)) whereas it is defined in H (we have
Relevant role(H,nurse)).

Conversely, if org1 is a sub-organization of org2, then some roles may be defined
in org1 whereas they are not defined in org2.

Similar comments apply to views and activities: if org1 is a sub-organization of
org2, then the views (resp. activities) defined in org1 may be different from the views
(resp. activities) defined in org2.

4.1 Hierarchy inheritance

Let us assume that org1 is a sub-organization of org2. For those roles of org2 that
are relevant in org1, we consider that the role hierarchy defined in org2 also applies in
org1. This is modelled by the following rule:

• HH1: ∀org1,∀org2,∀r1,∀r2,
sub organization(org2, org1) ∧ sub role(org1, r1, r2)∧
relevant role(org2, r1) ∧ relevant role(org2, r2)
→ sub role(org2, r1, r2)

Similar principles apply to inheritance of specialized role hierarchy and also of
activity and view hierarchies through the organization hierarchy. Thus, we obtain
three other rules (respectively called HH2, HH3 and HH4) by replacing the sub role
predicate in rule HH1 by the specialized role predicate (resp. the sub activity and
sub view predicates).

4.2 Permission and prohibition inheritance

We accept similar principles for inheritance of permissions and prohibitions through
the organization hierarchy provided that the role, activity and view in the scope of the
permission or prohibition are relevant in the sub-organization. This is modelled by the
following rule:

• OH1: ∀org1,∀org2,∀r,∀a,∀v,∀c,
sub organization(org2, org1) ∧ Permission(org1, r, a, v, c)∧
relevant role(org2, r)∧relevant activity(org2, a)∧relevant view(org2, v)

→ Permission(org2, r, a, v, c)

A similar rule applies to inheritance of prohibition (rule called OH2).
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5 Specifying a security policy in Or-BAC

5.1 Policy theory

To summarize, a security policy that includes inheritance hierarchies is modelled as
a logical theory corresponding to the following definition.
Definition 1: In the Or-BAC model, a security policy pol is modelled as a logical
theory Tpol defined as follows:

• Sets of facts using predicates Relevant role, Relevant activity and
Relevant view

• Sets of facts using predicates Empower, Use, Consider, Permission and
Prohibition

• Rule GE and facts using predicate G Empower

• A set of rules for derived view definition (section 3.3)

• A set of facts using attribute binary predicates for describing attribute values of
subjects, actions and objects

• A set of context definition rules, i.e. rules whose conclusion is the predicate
Define(org, s, α, o, c)

• Sets of facts (inheritance hierarchies) using predicates sub role,
specialized role, sub activity and sub view

• Rules RG1 and RG2 for deriving concrete permissions and prohibitions (section
2.1)

• Rules RH1 to RH4 (role inheritance rules), AH1 and AH2 (activity inheritance
rules) and VH1 and VH2 (view inheritance rules)

• Rules HH1 to HH4 (hierarchy inheritance rules)

• Rules OH1 and OH2 (organization inheritance rules)

• A set of constraints, i.e. rules whose conclusion is the predicate error().

Definition 2: The security pol violates a constraint if it is possible to derive error()
from Tpol: Tpol � error()
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5.2 Conflicts

Since the Or-BAC model provides means to specify both permissions and prohibi-
tions, it is possible that some conflicts arise. This occurs when a given user is both
permitted and prohibited to perform a given action on a given object. To model such
a situation, we introduce a predicate called conflict(). The following rule specifies a
situation of conflict:

• RC: ∀s,∀α,∀o,
Is permitted(s, α, o) ∧ Is prohibited(s, α, o)
→ conflict()

Definition 3: There is a conflict in the security pol if it is possible to derive conflict()
from Tpol: Tpol � conflict()

Notice that exceptions in the inheritance rules may lead to conflicts. For instance,
in the example presented in section 3.1, a surgeon may be both prohibited to consult
a given medical record of someone who is not his or her patient (prohibition inher-
ited from role physician) and permitted to do so (explicit permission assigned to role
surgeon).

In [6], we suggest managing such a conflict by assigning priority to permissions and
prohibitions. In our previous example, prohibition inherited from physician should
have lower priority than explicit permission assigned to surgeon and thus this surgeon
should be finally permitted to consult the medical record. However, this is not the
purpose of this paper to further discuss how to manage conflicts in the Or-BAC model
(see [6] for a detailed presentation).

6 Application

In this section, we model a local area network, its security architecture and its con-
nectivity to the Internet. We choose to reuse the example used in Firmato [2] so as to
bring out how Or-BAC provides a natural statement of various entities and concepts
used in the security architecture. Furthermore, we show that hierarchy notions of ex-
tended Or-Bac applied to the central entities, say organization, role, activity and view,
avoid the use of artifices like ”open” and ”closed” groups suggested in [2].

6.1 Organization hierarchy

We want to model the access control policy of a corporate network used in an or-
ganization H . H has a two-firewall network configuration, as shown in Figure 3. As
presented in [2], the external firewall guards the corporation’s Internet connection. Be-
hind it is the DMZ, which contains the corporation’s externally visible servers. In our
case these servers provide http/https (web), ftp, smtp (e-mail), and dns services. The
corporation actually only uses two hosts to provide these services, one for dns and the
other (called Multi server) for all the other services. Behind the DMZ is the inter-
nal firewall which guards the corporation’s intranet. This firewall actually has three
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Admin_Gtw

111.222.3.1

111.222.1.254

Multi Server

111.222.1.*

111.222.1.1

111.222.100.1

111.222.3.*

Public Net

Dns_server

Private Net

111.222.2.1

111.222.2.*

Admin-Serv

Figure 3. Application example

interfaces: one for the DMZ, one for the private network zone, and a separate inter-
face connecting to the firewall administration host. Within the private network zone,
there is one distinguished host, Admin serv, which provides the administration for the
servers in the DMZ.

In Or-BAC, we introduce several organizations to model this configuration. First,
there is an organization H and to simplify, we shall actually identify H with its cor-
porate network. H has two sub-organizations denoted H fw1 and H fw2 that re-
spectively correspond to the internal and external firewalls. We may actually introduce
other organizations, such as H private net if one would like to specify the policy to
be enforced within H private network. For instance, if H is an hospital, we might
introduce roles such as physician, nurse, etc., to model this part of the policy. How-
ever, for the sake of simplicity, we shall not further refine this part. Notice that we
could also use an organization called internet if we had to specify an explicit policy
to be enforced by the Internet.

6.2 Subject

In this example, subjects correspond to hosts identified by their IP address. So if
h is an host, then predicate address(h, a) means that the IP address of h is a. Roles
are assigned to hosts as suggested in section 6.3 below. For this purpose, predicate
Empower enables us to assign a role to a given host. However, it would easier to
cluster hosts into groups (also called zone in Firmato) and use G Empower to assign
the same role to every host belonging to the same group. For instance, we can define
the group Private net as follows:

• ∀h,Use(H,h, Private net)← (Use(H,h,Host) ∧ address(h, a)
∧a ∈ 111.222.2. ∗ ∧¬Use(H,h, F irewall interface))

6.3 Role

Hosts may be assigned to roles presented in figure 4. All these roles are relevant to
H . Figure 4 specifies those roles that are respectively relevant to organizations H fw1
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Relevant Relevant
Role name Hosts assigned to role sub role to to

H fw1 H fw2

Public host Hosts in view Pub-
lic Net

- X

Private host Hosts in view Pri-
vate Net

- X

Firewall Firewall interfaces External firewall X
Internal firewall

External firewall External firewall inter-
faces

- X X

Internal firewall Internal firewall inter-
faces

- X

DNS server DNS server - X X
Ftp server Ftp server Multi server X X
Mail server Mail server Multi server X X
Web server Web server Multi server X X
Multi server Multi-server - X X
Adm fw host Hosts in view Ad-

min gtw
- X X

Adm serv host Hosts in view Ad-
min serv

- X

Figure 4. Role description

and H fw2. Notice that role Firewall is relevant to H fw2 (for administration pur-
pose) but not to H fw1. For each role, figure 4 also presents the sub-roles of this role.
In this example, the sub-role hierarchy actually corresponds to a specialization role
hierarchy.

6.4 Activity

Activities correspond to various services available in corporate network H . We de-
fine a first activity all tcp with different tcp activities (such as smtp, ssh and https) as
sub-activities. Similarly, we define an activity all icmp with different icmp activities
(such as ping) as sub-activities. We also define two other activities. admin to gtwy
has to sub-activities: ssh and ping. gtwy to admin has also two sub-activities: ssh
and https. All these activities are relevant in organizations H , H fw1 and H fw2.

The main difference here with the approach suggested in [2] is that we use hierar-
chies of activities whereas Firmato defines elementary services and groups of services.
In our approach, permissions and prohibitions all apply to a unique entity, the activity.

54



6.5 View

Views are used to structure objects on which network services apply. Thus, we de-
fine a view called target having two attributes: content that corresponds to messages
transmitted when using the service and dest that corresponds to the destination host of
the service. The destination host is identified by its role.

Actually, the content attribute is not used in the example because we shall only
consider filtering rules on the destination host. However, it would be useful to filter
messages depending on their content.

We can then define sub-views derived from view target according to the role as-
signed to the destination host. For instance, we can define sub-view to dns as follows:

• ∀o, Use(H, o, to dns)← (Use(H, o, target) ∧ dest(o, dns))

This would lead to define as many views as there are roles. This would be quite
fastidious. Instead, we suggest defining a function to target from roles into views.
Views created by function to target are defined as follows:

• ∀o,∀r, Use(H, o, to target(r))← (Use(H, o, target) ∧ dest(o, r))

We consider that a view to target(r) is relevant in one of the organization of our
example if r is a role relevant in this organization. We also consider that if role r1 is a
sub-role of role r2, then view to target(r1) is a sub-view of view to target(r2).

6.6 Security policy

We can now specify different permissions that apply to organization H . These
permissions correspond to the security policy presented in [2]. Figure 5 lists how these
permissions are modelled in Or-BAC. For the sake of simplicity, we do not specify
prohibitions and all permissions are supposed to apply in every context (corresponding
to default context that is always evaluated to true).

Compared to Firmato, one significant advantage of our approach is that it enables
us to automatically derive permissions that respectively apply to H fw1 and H fw2

(using rule OH1 for deriving permissions in sub-organizations of H). The results we
obtain for H fw1 is presented in figure 6. To illustrate this derivation process let us
consider the following permission:

• Permission(H,adm fw host,
admin to gtwy, to target(firewall), default)

Since role adm fw host, activity admin to gtwy and view to target(firewall) are
relevant in H fw2, we can apply rule OH1 to derive:

• Permission(H fw2, adm fw host,
admin to gtwy, to target(firewall), default)
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However, since view to target(firewall) is not relevant in H fw1, we cannot derive
a similar permission for H fw1. But, view to target(external firewall) is a sub-
view of to target(firewall). Since to target(external firewall) is a relevant view
in H fw1, we can apply rules VH1 and OH1 to derive:

• Permission(H fw1, adm fw host,
admin to gtwy, to target(external firewall), default)

Notice that one permission, namely:

• Permission(H, private host, all tcp, to target(public host), default)

is not inherited by H fw1 nor H fw2. This is because role private host is only
relevant to H fw2 whereas view target(public host) is only relevant to H fw1. So,
no firewall alone can manage this permission. In this case, our proposal is to use this
permission to configure both firewalls.

Our approach is actually based on fewer concepts than Firmato. In particular, we
do not need to use the notion of “closed” groups. A closed group does not inherit from
higher groups in the hierarchy. The example suggested in Firmato is the firewall group
that should not inherit from private host. We guess that the notion of closed group is
complex to manage and actually useless. In our approach, we have simply to specify
that private-net does not include firewall-interface (see the definition suggested for
private-net in section 6.2). Our approach can also be used to handle more complex
applications that include prohibitions, requirements on message contents or contextual
rules.

Permission(H, adm fw host, admin to gtwy, to target(firewall), default)
Permission(H, firewall, gtwy to admin, to target(adm fw host), default)
Permission(H, private host, all tcp, to target(public host), default)
Permission(H, adm server host, all tcp, to target(dns server), default)
Permission(H, adm server host, all tcp, to target(multi server), default)
Permission(H, public host, smtp, to target(mail server), default)
Permission(H, public host, dns, to target(dns server), default)
Permission(H, public host, ftp, to target(ftp server), default)
Permission(H, public host, https, to target(web server), default)
Permission(H, private host, smtp, to target(mail server), default)
Permission(H, private host, dns, to target(dns server), default)
Permission(H, private host, ftp, to target(ftp server), default)
Permission(H, private host, https, to target(web server), default)
Permission(H, dns server, dns, to target(public host), default)
Permission(H, ftp server, ftp, to target(public host), default)
Permission(H, dns server, dns, to target(private host), default)
Permission(H, ftp server, ftp, to target(private host), default)

Figure 5. Permissions in organization H
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Permission(H fw1, adm fw host, admin to gtwy,
to target(external firewall), default)

Permission(H fw1, external firewall, gtwy to admin,
to target(adm fw host), default)

Permission(H fw1, public host, smtp, to target(mail server), default)
Permission(H fw1, public host, dns, to target(dns server), default)
Permission(H fw1, public host, ftp, to target(ftp server), default)
Permission(H fw1, public host, https, to target(web server), default)
Permission(H fw1, dns server, dns, to target(public host), default)
Permission(H fw1, f tp server, ftp, to target(public host), default)

Figure 6. Permissions in organization H fw1

7 Conclusion

In this paper we show how to model inheritance hierarchies in the Or-BAC model.
Previous works related to inheritance hierarchies only considered role hierarchies (as
suggested in the RBAC model). By contrast, we define role, activity, view and or-
ganization hierarchies and analyze inheritance of both permissions and prohibitions
through these hierarchies.

Regarding the role hierarchy, we show that it is useful to distinguish between
two different hierarchies: the specialization/generalization role hierarchy and the se-
nior/junior role hierarchy. Permissions are inherited “downward” in both hierarchies
(the more specialized role inherits from the less specialized role and the senior role
inherits from the junior role). However, we suggest that prohibitions are inherited
downward in the specialization/generalization hierarchy (as for permissions) whereas
they are inherited upward in the senior/junior role hierarchy (the junior inherits from
the senior role). Previous proposals did not make such a distinction. For instance, [3]
always considers that prohibitions are inherited upward through the role hierarchy. We
guess that our proposal eliminate some ambiguities of previous approaches.

Regarding the activity hierarchy, we only consider specialization hierarchy. We
may actually define other activity “decomposition” such as decomposing an activity a
into b; c denoting activity b followed by activity c. It is clear that if a given role r is
permitted to perform activity a, then r should have also permission to perform activity
b. However, defining permission associated with c is more complex; role r will be
permitted to perform activity c only after having performed activity a. In Or-BAC, we
guess that we can represent such a constraint using the notion of context. Modelling
such activity decomposition in Or-BAC is an interesting problem that have several
applications, in particular to specify security policies for workflow systems [4]. This
represents further work that remains to be done.

We also only consider simple view hierarchy corresponding to specializa-
tion/generalization. We plan to analyze other relationships between views, in particular
the aggregation relationship (also called Part of relationship). It would be interesting
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to have a general model that defines how permissions and prohibitions propagate from
a given view to its different sub-parts. There are several applications to such a model,
for instance UML modelling or XML security. However, some difficulties arise, in
particular some activities that are relevant to a given view may not apply to some of its
sub-parts. This is another problem that requires more investigation.

Finally, we define organization hierarchy and model inheritance of permissions and
prohibitions in this hierarchy. We show how this hierarchy is useful to derive, from cor-
porate security policies specification, policies of particular security components such
as a firewall. We have implemented a translation module to concretely generate rules
to automatically configure the NetFilter firewall. We also plan to apply a similar ap-
proach to generate policies of other components such as operating systems or database
management systems and to use Or-BAC to model interoperability requirements be-
tween these various policies.
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[7] F. Cuppens and A. Miège. Modelling contexts in the Or-BAC model. In 19th
Annual Computer Security Applications Conference, Las Vegas, December 2003.

58



[8] D. F. Ferraiolo, R. Sandhu, S. Gavrila, D.R. Kuhn, and R. Chandramouli. Pro-
posed NIST Standard for Role-Based Access Control. ACM Transactions on
Information and System Security, 4(3):222–274, August 2001.

[9] S. Jajodia, S. Samarati, and V. S. Subrahmanian. A logical Language for Ex-
pressing Authorizations. In IEEE Symposium on Security and Privacy, Oakland,
CA, May 1997.

[10] A. Abou El Kalam, R. El Baida, P. Balbiani, S. Benferhat, F. Cuppens,
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An Algebraic Approach to the Analysis
of Constrained Workflow Systems

Jason Crampton
Information Security Group, Royal Holloway, University of London

Abstract

The enforcement of authorization constraints such as separation of duty in
workflow systems is an important area of current research in computer security.
We briefly summarize our model for constrained workflow systems and develop
a systematic algebraic method for combining constraints and authorization infor-
mation. We then show how the closure of a set of constraints and the use of linear
extensions can be used to develop an algorithm for computing authorized users
in a constrained workflow system. We show how this algorithm can be used as
the basis for a reference monitor. We discuss the computational complexity of
implementing such a reference monitor and briefly compare our methods with
the best existing approach.

Keywords Workflow specification, entailment constraints, linear extensions, satisfi-
ability

1 Introduction

A workflow is a representation of an organizational or business process and is typically
specified as a set of tasks and a set of dependencies between the tasks. Dependencies
may include authorization constraints such as separation of duty requirements, where
two different users must execute two different tasks. There exist several schemes and
models in the literature for specifying separation of duty constraints [1, 2, 3, 5, 10, 12]
and cardinality constraints [2] in computerized workflow systems.

These schemes are often based on a particular computational model: examples
include logic programs [2, 12], active databases [5] and petri nets [1]. We introduced
a simple specification scheme for authorization constraints that is independent of an
underlying computational model and showed that it could be used to articulate inter
alia separation of duty constraints and cardinality constraints [6]. In this paper, we
exploit the simplicity and uniformity of our scheme to analyze the satisfiability of
constrained workflow systems. We also show how this analysis can be used as the basis
for a reference monitor for constrained workflow management systems and compare
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the computational complexity of our approach with that of Bertino et al [2], the most
sophisticated existing approach in this area.

In the next section we review our work on modelling workflows and authoriza-
tion constraints in workflows. Most importantly, we introduce entailment constraints,
linear extensions of a workflow specification and methods for combining entailment
constraints and authorization information. In Section 3 we introduce the concepts of
satisfiability in a workflow and the closure of a set of entailment constraints. This
leads naturally to the development of an algorithm for determining the set of users that
are authorized to perform a task and who satisfy the entailment constraints that apply
to that task. In Section 4 we briefly describe a reference monitor for workflow sys-
tems, using this algorithm as the basis for deciding whether an access request should
be granted. Finally we discuss future work.

2 A model for constrained workflows

A workflow specification is a partially ordered set of tasks T; if t < t′ then t must
be performed before t′ in any instance of the workflow. Let U be a set of users. A
workflow authorization schema is a pair (T, A), where A ⊆ T × U and (t, u) ∈ A
means that u is authorized to perform (or execute) t. (Generally, A will not encode
task-user pairs directly; often such authorizations will be inferred from the assignment
of tasks and users to common roles.)

Let Rel(U) denote the set of all binary relations on U . (In other words, Rel(U) is
the powerset of U × U .) Define

0′ = {(u, v) : u, v ∈ U, u �= v} 1′ = {(u, u) : u ∈ U}
0 = ∅ 1 = 1′ ∪ 0′ = U × U

An entailment constraint has the form (D, (t, t′), ρ), where D ⊆ U , ρ ∈ Rel(U)
and t �� t′. A constrained workflow authorization schema is a triple (T, A,C), where
C is a set of entailment constraints.

Informally, if users u and u′ perform t and t′, respectively, and u ∈ D, then
constraint (D, (t, t′), ρ) is satisfied iff (u, u′) ∈ ρ. (In other words, the constraint
is not applied if u �∈ D. We refer to D as the domain of the constraint.) Hence a
separation of duty constraint can be expressed as (U, (t, t′), 0′) and a binding of duty
constraint can be expressed as (U, (t, t′), 1′).

In fact, any binary relation between users can be used (including those that can
be derived from contextual information). Hence it is possible to articulate constraints
of the form “tasks t and t′ must be performed by two different users in the same
department”. If we assume the existence of group-based or role-based authorization
structures, then it is possible to induce an ordering (binary relation) on the set of users
determined by the relative seniority of the roles to which each user is assigned. The
relation � ∈ Rel(U) will be used to denote an ordering on the set of users, which may
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be derived, depending on context, from role information, organizational information or
the user groups to which users belong. We anticipate that this sort of relation will prove
particularly important, because it is natural to implement access control in workflow
systems using role-based techniques.

We have previously shown that cardinality constraints can be expressed as en-
tailment constraints and that role-based authorization constraints should either be ex-
pressed as constraints on the authorization information or as entailment constraints
based on the relative seniority of users (encoded by the � relation) [6]. In that paper
we also provide an example of a constrained workflow authorization schema; lack of
space prevents us reproducing the example here.

2.1 Linear extensions and execution schedules

Let 〈X,�〉 be a partially ordered set. A linear extension of X is a total ordering of the
elements of X that respects the ordering of the elements in X. In other words, 〈X,�〉
is a linear extension of 〈X,�〉 if for all x1, x2 ∈ X, either x1 � x2 or x2 � x1, and if
x1 � x2 then x1 � x2. We denote the set of linear extensions of X by L(X).

Linear extensions are important in the context of workflows because they “lin-
earize” a partially ordered set of tasks.1 In other words, a linear extension of T rep-
resents a possible sequence of execution of the tasks in a workflow. Figure 2 shows a
simple example of a workflow specification and its three linear extensions.
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t1
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t2
�

t3
�

t6

�

t4
�

t5

� � ��
�

�
�

�
��

�
�

�
�

�
�
��

(a)

t1 ≺ t2 ≺ t3 ≺ t4 ≺ t5 ≺ t6

t1 ≺ t2 ≺ t4 ≺ t3 ≺ t5 ≺ t6

t1 ≺ t2 ≺ t4 ≺ t5 ≺ t3 ≺ t6

(b)

Figure 2: A simple workflow specification and its linear extensions

Definition 1 Let (T, A,C) be a constrained workflow authorization schema. An exe-
cution schedule for (T, A,C) is a pair (L,α), where L ∈ L(T) and α : L → U as-
signs tasks to users, such that for all t ∈ T, (t, α(t)) ∈ A, and for all (D, (t, t′), ρ) ∈
C , α(t) ∈ D implies (α(t), α(t′)) ∈ ρ.

1We note that in certain circumstances, it will be possible for certain tasks in a workflow to execute
in parallel. Specifically, if t and t′ are tasks with t ‖ t′ and neither t nor t′ appears in any constraint, then
they may be executed in parallel. Such situations are outside the scope of this paper.
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In other words, an execution schedule respects the relative ordering of tasks in the
workflow specification (since it is a linear extension of T), every task is performed
by an appropriately authorized user and every entailment constraint is satisfied. A
constrained workflow authorization schema is satisfiable if there exists an execution
schedule for the schema (and unsatisfiable otherwise).

In general, the set of linear extensions in T can be generated in time O(|L(T)|) [11]
and computing |L(T)| is #P-complete [4]. However, if the width of the poset is small
(as will be the case for a typical workflow specification), then the set of linear ex-
tensions can be computed quickly using dynamic programming techniques. We now
discuss this is in more detail.

Proposition 2 Suppose 〈X,�〉 is a poset and x1 ≺ x2 ≺ · · · ≺ xn is a linear exten-
sion of X. Then {x1, . . . , xk} is an order ideal in X, 1 � k � n.

Proof Suppose {x1, . . . , xk} is not an order ideal. Then there exists y ∈ X such
that y � xj for some j, 1 � j � k, and y �∈ {x1, . . . , xk}. Therefore y � xj

and xj ≺ y; hence {x1, . . . , xk} is not a linear extension and the result follows by
contradiction. �

Hence each linear extension is a directed path of maximal length in the graph of
I(T), the lattice of order ideals of T.

Lemma 3 Let 〈X,�〉 be a poset and let I(X) denote the set of order ideals in X.
Then

|I(X)| �
(⌈ |X|

w

⌉
+ 1

)w

,

where w is the width of X.

Proof By Dilworth’s theorem [8], we can partition the poset 〈X,�〉 into w disjoint
chains C1, . . . , Cw. Consider the poset 〈X,�〉, where x � y iff x, y ∈ Ci for some
i and x � y (in X). Then any order ideal in 〈X,�〉 is an order ideal in 〈X,�〉. To
see this, note that there is an isomorphism between the set of order ideals and the set
of antichains, where an order ideal is mapped to the antichain comprising the maximal
elements in the order ideal [7]. It is clear that any antichain in 〈X,�〉 must also be
an antichain in 〈X,�〉 by construction. In other words, the number of antichains in
〈X,�〉 (and hence the number of order ideals) is bounded by the number of antichains
in 〈X,�〉.

The number of antichains in 〈X,�〉 is equal to
∏w

i=1(|Ci| + 1) (because we can
choose at most one element from each chain in 〈X,�〉). It is easy to show using
elementary calculus that the product xy, subject to x + y = k, is maximized when
x = y = k/2. Generalizing this result, we obtain

w∏
i=1

(|Ci| + 1) �
w∏

i=1

(⌈ |X|
w

⌉
+ 1

)
.
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The result follows. �

Hence the number of order ideals in T is bounded by
(⌈ |T|

w

⌉
+ 1

)w
, where w is

the width of T, and the directed paths can be computed using a breadth-first search
whose complexity is linear in the number of nodes of the graph. In other words, if w is
small, the number of order ideals can be computed in time polynomial in the number
of tasks in the workflow specification.

Figure 3 shows the lattice of order ideals and the lattice of antichains for the work-
flow specification depicted in Figure 2. (We have adopted the usual convention in
Hasse diagrams that x � y implies y is above x in the diagram.) In our example
w = 2 and the number of order ideals is 9.

�∅

�{t1}

�{t1, t2}�
�

�
�

�

�
�

�
�

�
�{t1, t2, t4} �

�
�

�
�

�{t1, t2, t3}�
�

�
�

�
�{t1, t2, t3, t4}�{t1, t2, t4, t5} �

�
�

�
�

�{t1, t2, t3, t4, t5}

�{t1, t2, t3, t4, t5, t6}

(a) Order ideals

�∅

�{t1}

�{t2}�
�

�
�

�

�
�

�
�

�
�{t4} �

�
�

�
�

�{t3}�
�

�
�

�
�{t3, t4}�{t5} �

�
�

�
�

�{t3, t5}

�{t6}

(b) Antichains

Figure 3: Lattices derived from the workflow specification in Figure 2

2.2 The algebra of entailment constraints

In this section we state without proof a number of simple results concerning entailment
constraints. The reader is referred to our earlier work for further details [6]. We
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conclude the section with a new result that enables us to omit authorization information
from a workflow schema, thereby facilitating the analysis of workflow systems.

Proposition 4 (Merging domains) Let (T, A, {(D1, (t, t′), ρ), (D2, (t, t′), ρ)} be a
constrained workflow authorization schema. Then (L,α) is a workflow execution
schedule for (T, A, {(D1, (t, t′), ρ), (D2, (t, t′), ρ)} iff (L,α) is a workflow execution
schedule for (T, A, {D1 ∪ D2, (t, t′), ρ}).
Proposition 5 (Expanding the domain) Let (T, A, {(D, (t, t′), ρ)}) be a con-
strained workflow authorization schema and define σ = (U \ D) × U . Then (L,α)
is a workflow execution schedule for (T, A, {(D, (t, t′), ρ)}) iff (L,α) is a workflow
execution schedule for (T, A, {(U, (t, t′), ρ ∪ σ)}).
Proposition 6 (Merging constraints) Let W = (T, A, {((t, t′), ρ1), ((t, t′), ρ2)}) be
a constrained workflow authorization schema. Then (L,α) is an execution schedule
for W iff (L,α) is an execution schedule for (T, A, {((t, t′), ρ1 ∩ ρ2)}).

In other words, we can assume that the domain of every constraint is U (by Propo-
sition 5), and that for each pair of tasks (t, t′) there is a single constraint (by Proposi-
tion 6).

Proposition 7 (Composing constraints) Let W =(T, A, {((t, t′), ρ1), ((t′, t′′), ρ2)})
be a constrained workflow authorization schema. Then (L,α) is an execution schedule
for W iff (L,α) is an execution schedule for (T, A, {((t, t′), ρ1), ((t′, t′′), ρ2), ((t, t′′),
ρ1ρ2)}), where

ρ1ρ2 = {(u,w) : ∃v ∈ U, (u, v) ∈ ρ1, (v,w) ∈ ρ2}.
It is important to note that if (L,α) is an execution schedule for (T, A,

{((t, t′′), ρ1ρ2)}), then it is not necessarily an execution schedule for (T, A,
{((t, t′), ρ1), ((t′, t′′), ρ2)}). (Although we have (α(t), α(t′′)) ∈ ρ1ρ2, we can not
necessarily infer that there exists an authorized user for t′.) In other words, we cannot
delete the constraints from which a compound constraint is derived. Unfortunately,
the composition of relations is neither commutative nor associative. However, for
each linear extension of the workflow there is a unique order in which the relations are
composed.

At the moment we only consider entailment constraints to be specifications of
security policy requirements such as separation of duty. However, we can view the
authorization information as a set of entailment constraints on the execution of tasks.
In particular, let T = {t1, . . . , tn} and for all ti �� tj , define aij = U(ti) × U(tj),
where U(t) = {u ∈ U : (t, u) ∈ A}. Then the entailment constraint ((ti, tj), aij),
is only satisfied if two appropriately authorized users perform tasks ti and tj . If there
exists an entailment constraint of the form ((ti, tj), ρij) then we form the new con-
straint ((ti, tj), ρij ∩ aij). More formally, we have the following result. The proof
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of this result follows immediately from the definition of an execution schedule and is
omitted.

Proposition 8 (Incorporating authorization information) Let W = (T, A, {((t, t′),
ρ)}) be a constrained workflow authorization schema. Then (L,α) is an execution
schedule for W iff (L,α) is an execution schedule for (T,T × U, {((t, t′), ρ ∩ a)}),
where a = {(u, u′) : (t, u), (t′, u′) ∈ A}.

In other words, we can express all the information required to make an authoriza-
tion decision in terms of entailment constraints. Hence it is sufficient from a theoreti-
cal point of view to consider workflow schemata of the form (T, C), although, from a
practical perspective, it is clearly more natural to include authorization information.

3 Satisfiability in workflow systems

There are three questions that are of interest:

• Is a constrained workflow authorization schema satisfiable? Given a constrained
workflow authorization schema (T, A,C), is it possible for some instance of the
workflow to complete. In other words, is there an assignment of tasks to users
α : T → U and a linear extension L ∈ L(T) such that (L,α) is an execution
schedule.

• Is an instance of a workflow schema satisfiable? We write t to denote an instance
of the task t ∈ T. In other words, given a constrained workflow authorization
schema (T, A,C) and an order ideal I ⊆ T, where ti ∈ I has been executed by
ui, is it possible to extend the ideal to a linear extension of T and to find an as-
signment of the remaining tasks to users such that the resulting linear extension
and the assignment of tasks to users forms an execution schedule for (T, A,C).

• Given a satisfiable workflow authorization schema, is it possible to design a
reference monitor so that every instance of that schema is satisfiable? In other
words, is it possible to design a decision process that only permits a request
from a user to execute a task if the remaining tasks can be completed. Clearly,
an answer to the previous question will provide a blueprint for the design of such
a reference monitor.

3.1 The closure of a set of constraints

Let W = (T, C) be a constrained workflow authorization schema. We assume that
cij = ((ti, tj), ρij) is defined whenever ti �� tj (setting ρij = 1 where necessary) and
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define

C2 = C ∪ {((t, t′′), ρ1ρ2) : ((t, t′), ρ1), ((t′, t′′), ρ2) ∈ C},
Ck = Ck−1 ∪ {((t, t′′), ρ1ρ2) : ((t, t′), ρ1) ∈ Ck−1, ((t′, t′′), ρ2) ∈ C}.

Let |T| = n. Then Cn−1 denotes the set of all possible constraints that can be
derived from the original set of constraints C using composition. Let ckij ∈ Ck denote
the constraint ((ti, tj), ρk

ij).
2 Define the closure of C , denoted C∗, to be the set of

constraints c∗ij = ((ti, tj), ρ∗ij), where ti �� tj and ρ∗ij =
⋂n−1

k=1 ρk
ij , 1 � i, j � n. If a

pair of users satisfy a constraint ((t, t′), ρ) ∈ C∗, then for every linear extension of T,
there exists a sequence of users that can execute the sequence of tasks between t and
t′.

Informally, we can regard C as a labelled directed graph in which the set of nodes
is T and an edge (ti, tj) labelled ρij exists if ti �� tj . The constraints in Ck are the
paths of length k in this graph. In fact, we can realize C as a matrix (in which the ijth
entry is ρij) and “multiply” the matrix by itself n − 1 times to derive C2, . . . , Cn−1.

Theorem 9 Let (T, C) be a constrained workflow authorization schema and let t ∈ T
be a minimal element and t′ ∈ T be a maximal element. Then ((t, t′), ρ) ∈ C∗ for
some ρ ⊆ 1 and (T, C) is satisfiable if ρ �= ∅.

Proof sketch There exists a “path” of length n − 1 between t and t′ and hence there
exists a constraint of the form ((t, t′), ρ). A simple induction (using Propositions 6
and 7 for the base case) shows that every constraint on that path is satisfied. Hence
if ρ is non-empty, then there exists a pair of users that can perform the first task and
last task and a sequence of users that satisfies all the constraints in between. In other
words, there exists an execution schedule for (T, C). �

Unfortunately, it is rather difficult to compute the closure of C in this way directly
because the graph of C is not acyclic.3 More specifically, we need to be able to distin-
guish between constraints that arise because of paths (in which each node is visited at
most once) and those that arise because of walks (in which a node may be visited more
than once). One possible way of doing this is to compute the length of the longest path
between each pair of tasks and omit any constraints that arise due to a walk between
a given pair of tasks which exceed this length. The computation of the longest path
between a pair of nodes in a directed graph is NP-complete [9, Problem ND29].

Alternatively, given a workflow schema W = (T, C), we can enumerate all pos-
sible linear extensions, thereby creating a family of workflow schemata W in which

2There may be more than one constraint that can be derived for tasks ti and tj . In this case we simply
take the intersection of the relations for each of these constraints to derive a single constraint.

3For example, if we define the constraints ((t3, t4), 0
′) and (t4, t3), 0

′) for the workflow in Figure 2,
meaning that the same user cannot perform both t3 and t4, then we have a cycle of length 2 in the graph.

68



each specification is a totally ordered set of tasks. For each such schema we com-
pute the closure of the set of constraints. Finally, we can create a single workflow
schema W∗ = (T, C∗), where for all ((ti, tj), ρij ∈ C∗, ρij is obtained by taking the
intersection of the relations in every constraint of the form ((ti, tj), ρ) in W .

3.2 An algorithm for computing execution schedules

Figure 4 illustrates an algorithm (written in pseudo-code) that computes V (t, t′) for
each pair (t, t′), where V (t, t′) is the set of users that can execute t and t′ (in that order)
given the authorization information and the entailment constraints in the schema that
apply to t and t′. The basic strategy is to initialize each V (t) to the set of users that
are authorized to perform T (line 02) and then, for each linear extension, to apply
all the possible constraints (including those derived from authorization information)
(lines 07–08). Essentially, the algorithm is applying Proposition 8 and computing a
new relation for each entailment constraint. If one of these relations is empty, then
the algorithm terminates prematurely (line 08), since there does not exists a pair of
authorized users that comply with the entailment constraints. Finally, for each task t
we (re-)compute the set of users that can perform t (lines 10–11).

01 for i = 1 to |T|
02 let V(i) = set of users authorized to perform task i
03 for each linear extension
04 for i = 1 to |T|
05 for j = 1 to |T|
06 if ((i, j), R) ∈ C
07 let V(i,j) = (V(i) × V(j)) ∩ R
08 if V(i,j) is empty then exit
09 else
10 let V(i) = set of users in first position of V(i,j)
11 let V(j) = set of users in second position of V(i,j)

Figure 4: An algorithm for determining whether an execution schedule exists

The overall time complexity of the algorithm is O(|T |w|T |2|U |4) =
O(|T |w+2|U |4), since the number of linear extensions is O(|T |w) (see Section 2.1),
the number of constraints is O(|T |2) and the comparison in line 07 is O(|U |4) in
the worst case. Note that the computational complexity of the comparison in line 07
dominates the complexity of the computations required in lines 10 and 11, which are
O(|U |2). Note also that if R is 0′ or 1′, then the computation in line 07 is a sim-
ple comparison of V (i) and V (j) and hence has time complexity O(|U |2). In other
words, if we restrict our attention to cardinality, separation of duty and binding of
duty constraints, then the overall complexity reduces to O(|T|w+2|U |2). (Recall that
cardinality constraints can be modelled using separation of duty constraints [6].)
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4 A reference monitor for constrained workflows

A workflow system is a pair S = (W,M), where W is a set of workflow schemata
and M is a reference monitor. A reference monitor is an abstract machine for deciding
whether an access request from a user will be granted. A workflow instance is created
(instantiated) when the first task in some linear extension of T is executed.

Let W = (T, A,C) be a constrained workflow authorization schema. Then we
denote an instance of this schema by W and an instance of task t by t. A workflow
instance completes if every task in the workflow specification is performed by some
user.

We will say that a workflow system is complete if every instance of every schema
is guaranteed to complete. A workflow instance, in general, will not complete because
the execution of certain tasks by certain users and the existence of entailment con-
straints in the schema may restrict the users that can perform subsequent tasks. Hence,
a workflow system will be complete only if the reference monitor is able to identify and
deny tasks that would prevent subsequent tasks from being executed because certain
entailment constraints could not be satisfied. However, a reference monitor that guar-
antees a workflow system is complete is likely to be computationally expensive [2].

In the context of workflow systems, a user requests the permission to execute a
task in a workflow instance. In other words, M is a function that takes a triple (t, i, u)
and returns allow if the request is granted and deny otherwise. The triple (t, i, u)
is interpreted as a request by user u to execute task t ∈ T in Wi, the ith instance of
W = (T, A,C).

Let W be a workflow instance in which all the tasks in T′ ⊆ T have been executed,
where T′ is an order ideal in T. Then this workflow instance can be represented as a
function I : T′ → U , where user I(t) performed task t. The execution of a workflow
instance is constrained by I and C . Given a workflow authorization schema (T, A,C),
let W|I denote the workflow schema (W, A|I, C), where

A|I = {(t, I(t)) : t ∈ T′} ∪ {(t, u) ∈ A : t ∈ T \ T′}.

In other words, W|I is a constrained workflow authorization schema in which each
task t ∈ T′ has a single authorized user I(t); that is, the user that performed t in
instance I .

In general, given a partially completed workflow instance I and a request by u to
execute t in this instance there are three questions a reference monitor could consider:

Q1 Is u authorized to perform t?

Q2 Are all constraints in which t is the consequent task satisfied?

Q3 Can the workflow complete if u performs t?
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The reference monitor must certainly guarantee that the answers to the first two
questions are yes. It is up to the designers of the reference monitor to decide whether
the third question should always have an affirmative answer. Indeed, some research
has been done on overriding (that is, not enforcing) constraints in the event that a
workflow cannot complete because of previous task executions and the existence of
constraints [12]. We say a reference monitor is enforcement compliant if it guarantees
(for all requests) that the answers to the first two questions are yes and completion
compliant if it guarantees that the answer to each of the three questions is yes.

Let W = (T, A,C) be a constrained workflow authorization schema. In order to
implement a reference monitor for this workflow, we compute C∗ and use the algo-
rithm in Figure 4 to establish that an execution schedule for the workflow exists and to
compute a relation V ⊆ A ⊆ T × U , where (t, u) ∈ V implies that u is authorized to
perform t and all entailment constraints can be satisfied. We write V (t) to denote the
set {u ∈ U : (t, u) ∈ V }.

Let us first consider the case where t ∈ T is a minimal element (and hence can be
the first task executed in a workflow). In this case, I = ∅ and W|I = W.4 Then a
request to execute t may be granted if (t, u) ∈ V . If the request were to be granted,
then I = {(t, u)}; a completion compliant reference monitor must recalculate V for
the workflow W|{(t, u)}. If V (t′) = ∅ for some t′ ∈ T then the workflow schema,
and hence the workflow instance, cannot be satisfied. Hence, in order to implement a
completion compliant reference monitor, we simply run the algorithm in Figure 4 for
the workflow W|{(t, u)} before granting the request (t, i, u). If the request is granted,
the next request must be evaluated for the workflow W|{(t, u)}.

In the general case, let I be an instance of W = (T, A,C) and let I ∪ {t} be an
order ideal in T. Then a request by u to execute t in this instance of W is granted by a
completion compliant reference monitor if there exists an execution schedule for W|I
such that u executes t and there exists an execution schedule for W|(I ∪ {(t, u)}). In
other words, we simply run the algorithm in Figure 4 for the workflow W|(I∪{(t, u)})
before granting the request (t, i, u). If the request is granted, the next request must be
evaluated for the workflow W|(I ∪ {t, u}).

In summary, a completion compliant reference monitor must calculate V before
any instance of the workflow is created. The reference monitor must also re-calculate
V before every request (to check that the request is completion compliant) and update
the workflow after every successful request (to ensure that the fact that a particular
user executed a particular task is considered in enforcing constraints that apply to
subsequent tasks).

The only comprehensive treatment of completion compliant workflow systems in
the literature [2] includes an algorithm for “user planning”, which associates tasks with
a user-role pair. The complexity of this algorithm is O((NR · NU · Nact)|T|), where
NR is the maximum number of roles associated with any task in the workflow, NU is

4I = ∅ in the sense that there are no pairs (t, I(t)) defined.
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the maximum number of users associated with any role in the workflow and Nact is
the maximum number of activations associated with any task in the workflow. This
algorithm is run before any workflow instance is created and, in the worst case, is also
run when a request is received and when a task has been successfully executed. Our
algorithm has time complexity O(|T |w+2 · |NU |4). It has better time complexity than
the user planner algorithm for several reasons:

• firstly, we only consider entailment constraints, which makes the analysis of
constraints uniform and hence simpler;

• secondly, we only consider user-based constraints (having shown that role-based
constraints can be enforced in other ways [6]);

• thirdly, we do not compute every possible sequence of tasks and users, instead
computing the closure and determining if a workflow instance can complete
(without explicitly calculating a sequence of tasks and users).

We note that the performance of the user planner algorithm can be improved by adopt-
ing certain heuristics, but the worst case complexity is still exponential in the number
of tasks in the workflow specification.

5 Concluding remarks

The analysis of satisfiability in this paper suggests that there are distinct advantages
to our approach to authorization constraints in workflow systems. We believe our
approach has the following advantages over existing approaches:

• The ability to treat most, if not all, useful authorization constraints as special
cases of entailment constraints means that the analysis of a set of authorization
constraints for a workflow is greatly simplified.

• The ability to express authorization information in terms of entailment con-
straints means that satisfiability questions can be analyzed entirely in the context
of the closure of a set of entailment constraints.

• The fact that our model for constraints is independent of any underlying com-
putational model coupled with its simplicity means that it can be easily imple-
mented in a variety of ways.

There are numerous opportunities for further research. Perhaps the most obvi-
ous of these is a prototype implementation, perhaps using an off-the-shelf relational
database management system, to assess the usability and scalability of our approach.

In many workflow models, a task may be repeated several times within a work-
flow. When the number of occurrences of the task is fixed in each instance of the
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workflow, this can be modelled using cardinality constraints. However, in other mod-
els, the number of occurrences is allowed to vary. This clearly makes the analysis of
satisfiability and the design of a reference monitor for such systems more complex.
However, we believe that extending our model to include an entailment constraints of
the form ((t, t), ρ) may provide a suitable platform for investigating such workflow
systems. The investigation of this topic will be one of our immediate priorities in
future research.

Another avenue for further work is to consider substituting “proxy users” for actual
users in the analysis of the workflow schema. The complexity of the algorithm is
polynomial in the number of users and it is likely that the number of tasks will be
considerably smaller than the number of users. A proxy user is simply identified with
a subset of tasks (and hence is synonymous with a role). This means that proxy users
can also be used to derive a role hierarchy for the workflow.

The number of proxy users is certainly bounded by 2|T|, and we would expect the
number of roles to be bounded by the number of tasks. However, we also need to
consider “compound roles” consisting of tasks assigned to two or more roles. (For
example, we might identify that {t1, t2} naturally form one role and {t3, t4} form
another. We need to allow for the fact that a user may be assigned to both roles and so
there must be a proxy user for the set {t1, t2, t3, t4}.) Hence, in general the number of
proxy users will actually be bounded by the number of antichains in the role hierarchy.
We would expect that the number of roles is less than |T|. Hence we can run the
algorithm in Figure 4 using proxy users rather than actual users, thereby reducing the
time complexity of the algorithm to O(|T |W+w+2), where W denotes the width of the
role hierarchy.
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CPL: An Evidence-Based 5-Dimensional Logic for
the Compositional Specification and Verification of

Cryptographic Protocols
Part I: Language, Process Model, Satisfaction
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Abstract

We (1) define a logic1, called CPL (for Cryptographic Protocol Logic), where
truth is established on the grounds of evidence-based knowledge (as opposed to
awareness-based belief), spanning the dimensions2 of first-order, temporal, epis-
temic, deontic, and linear logic; (2) state a few of its key properties; and (3) illus-
trate how it can be used to compositionally specify and verify cryptographic pro-
tocols designed to establish trust in the security of communication (as opposed
to security of storage) between protocol-compliant participants in a hostile envi-
ronment. Our claim hereby is to give (1) the first formalisation of cryptographic
discourse within the framework of multi-dimensional logic, (2) the most compre-
hensive, logically connected formal model of cryptographic protocols proposed
so far, and (3) a rigourous clarification of the concepts constituting the common
knowledge of the community of protocol designers.

Keywords Modal and linear logics, process calculi

1 Introduction

Motivation Protocol designers commonly specify a cryptographic protocol jointly
by (1) a semi-formal description of its behaviour (local properties) in terms of protocol
narrations, and by (2) an informal prescription of its intended goals (global properties)
in natural language. Informal specifications present three major drawbacks: (1) they

1announced in [16]
2cf. [12] for a research monograph on multi-dimensional modal logic, characterised in [5] as

. . . a branch of modal logic dealing with special relational structures in which the states,
rather than being abstract entities, have some inner structure. . . . Furthermore, the acces-
sibility relations between these states are (partly) determined by this inner structure of the
states.
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do not have a well-defined, and thus a well-understood meaning; (2) they do not allow
for the verification of internal correctness (referring to an internal notion of truth),
i.e., the virtue that the conjunction of local properties implies each global property,
typically by means of a proof system; and (3) they do not allow for the verification of
external correctness (referring to an external notion of truth requiring a formal protocol
model), i.e., the virtue that a proposed implementation (protocol model) satisfies each
global property, typically by means of model checking.

In formal specifications of cryptographic protocols, local and global properties are
expressed either explicitly as such in terms of a logical (or property-based) language,
or implicitly as code, resp. as encodings in a protocol modelling (or model-based) lan-
guage. Examples of such encodings are equations between instantiations of protocol
schemata, and predicates defined inductively on the traces those instantiations may
exhibit [1]. However, such encodings present four major drawbacks: (1) they have to
be found; worse, (2) they may not even exist; (3) they are neither directly comparable
with other encodings in the same or in other protocol modelling languages, nor with
properties expressed explicitly in terms of logical languages; and (4) they are difficult
to understand because the intuition of the encoded property is implicit in the encoding.

Informal language and protocol modelling languages are patently inadequate for
expressing and comparing cryptographic properties. It is our belief that only a logi-
cal language equipped with an appropriate notion of truth, i.e., a cryptographic logic,
will produce the necessary adequacy therefore. A number of logics have been pro-
posed in this aim so far, ranging from ad-hoc special-purpose cryptographic logics [7,
the so-called BAN-logic] and [23, a unification of several BAN-logics], over classical
first- and higher-order, modal, and linear logics used for the special purpose of crypto-
graphic protocol analysis [9, 22, first-order], [21, higher-order], [14, temporal modal-
ities], [15, 8, epistemic modalities], and [20, deontic modalities], resp. [6, linear], to
combinations thereof, e.g., [4, epistemic, temporal and program modalities] and [11,
epistemic post-conditions]. However in our opinion and w.r.t. our understanding of
adequacy, each of these logics fails to be adequate due to limitations of scope (and
style), i.e., the power to express (intuitively3, succinctly, and endogenously4 ) arbitrary
cryptographic goals, and/or grain, i.e., the power to discriminate sufficient detail in the
analysis of cryptographic protocols. These limitations originate in design decisions of
syntactical (language-defining operators) and/or semantic (meaning-defining notion of
truth) nature.

3meaning that the conceptual dimensions of the goal are evident in distinctive forms in the formula
that expresses it

4an endogenous (as opposed to exogenous) logical language is purely property-based (pure in the
sense that the language is free from model-based forms, e.g., program fragments). Classical examples of
endogenous and exogenous logical languages are LTL and CTL, resp. Hoare Logic and Dynamic Logic.
The terms are due to Harel, Kozen, and Tyurin.
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Goal Our goal is to supply a logic that allows one to (1) express (cf. Section 2.3)
and compare (cf. Section 4.4) arbitrary cryptographic properties intuitively, succinctly,
and in an endogenous fashion, and to (2) verify correctness of cryptographic goals on
cryptographic protocols up to a fine (though for the moment still formalistic5) grain
of detail. Our design decision thereby is to equip the logic with (1) seven novel basic
operators and a selection of classical operators from first-order, temporal, epistemic,
deontic, and linear logics (cf. Section 2.2); and, in a first step, with (2) a novel external
notion of truth defined through satisfaction (cf. Section 4) in terms of cryptographic
processes (cf. Section 3).

JUSTIFICATION A cryptographic protocol involves the concurrent interaction of
participants that are physically separated by — and exchange messages across — an
unreliable and insecure transmission medium. It is folklore that expressing proper-
ties of concurrent interaction requires temporal modalities. The physical separation
by an unreliable and insecure transmission medium in turn demands the epistemic and
deontic modalities. To see why, consider that the existence of such a separation and
medium introduces an uncertainty among protocol participants about the trustworthi-
ness of the execution of communication acts (sending and receiving) and the contents
of exchanged messages, both w.r.t. actuality (an epistemic concern) and legitimacy (a
deontic concern). It is exactly the role of a cryptographic protocol to re-establish this
trustworthiness through the judicious use of cryptographic evidence (e.g., ciphers, sig-
natures and hash values) bred in a crypto(graphic) system (e.g., shared-key or public-
key cryptography) and from cryptographic germs (e.g., keys and6 nonces). However,
any use of keys (as opposed to hash values and nonces) requires that the knowledge
of those keys be shared a priori. This sharing of key knowledge is established by
cryptographic protocols called key establishment protocols [19, Chapter 12], which
are executed before any cryptographic protocol that may then subsequently use those
keys. Thus certain cryptographic protocols must be considered interrelated by a no-
tion of sequential composition, which in turn induces a notion of linearity between the
properties associated with those protocols. For example, the secrecy of a key k is a
linearly-necessary condition for the secrecy of any datum d encrypted under that key
in the following sense: only if k is secret in the protocol that distributes it as well as in
the protocol p that uses it to encrypt d, d is secret in p.

We give priority to the definition of an external notion of truth because we opine
that such a notion is practically more relevant, especially when defined through satis-
faction in terms of practically executable processes.

5as opposed to complexity- and information-theoretic
6themselves generated from cryptographic seeds (or seed values)
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2 Language

The language FM of CPL is parametric in the language of its individuals, i.e., protocol
messages M, which may mention protocol participants, keys, nonces, and — as a
novelty — also message types. It is chiefly relational, and functional in exactly the
language of messages M it may be instantiated with. The temporal fragment of FM
coincides with the syntax of CTL∗ with past.

2.1 Individuals

Our individuals shall be participants a, b, c ∈ P , shared keys k ∈ C, public keys
k+ ∈ C+, private keys k- ∈ C-, nonces x ∈ X , messages M ∈ M, and message
types σ ∈ T . Further, v ∈ V shall denote variables for individuals, F ∈ Mf so-called
message forms, and θ ∈ T f so-called message type forms. n ∈ N := P ∪ C ∪ C+ ∪
C- ∪ X shall be referred to as a name or constant, and shared and private keys as
confidential keys Cx, i.e., keys that must remain secret. Message forms will be used in
process terms where they may instantiate to (transmittable) messages via substitution
of names in the variables that occur in them.

Definition 1 (Messages) Messages shall be names, tuples of messages, hashed mes-
sages, shared-key encrypted messages, public-key encrypted messages, or signed mes-
sages:

M,M ′ ::= n | (M,M ′) | �M� | [M ]k | ‖M‖k+ | |M |k-

Message forms shall be messages with variables or the so-called abstract message �

(a meta-variable for messages).

Note that the formalistic approach leads us to (1) making abstraction from the ex-
act representation of messages, e.g., bit strings; and assuming (2.1) perfect hashing,
i.e., collision resistance (hash functions are injective) and strong pre-image resistance
(given �M�, it is infeasible to compute M ), and (2.2) perfect encryption (given [M ]k
or ‖M‖k+ but neither k nor k+, it is infeasible to compute M ). Further, observe that
our hashing operation is unkeyed and thus corresponds to a modification detection
code (MDC). A keyed hashing operation, or message authentication code (MAC), can
be emulated with an MDC and subsequent encryption.

Definition 2 (Message types) Message types shall be of the form described by Ta-
bles 1 and 2. Message type forms shall be message types with variables.

Observe that (1) for each kind of message there is a corresponding type (e.g.,
H[σ] for hashes, SCk[σ] for symmetric and ACk+ [σ] for asymmetric ciphers, Sk-[σ] for
signatures, and T[σ, σ′] for tuples), (2) encryption and signature types are parametric,
and (3) the union and difference of two message types is again a message type. In
short, message types are structure-describing dependent types closed under union and
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σ, σ′ ::= P | ς | H[σ]
| SCk[σ] | ACk+ [σ] | Sk- [σ]
| T[σ, σ′] | σ ∪ σ′ | σ − σ′ | S

ς, ς ′ ::= C | C+ | C- | X

Table 1: Pre-defined message types

σ ∩ σ′:= σ − (σ − σ′)
C∗:= Cx ∪ C+ Cx := C ∪ C-

N:= P ∪ C∗ ∪ X ∪ S

SC[M]:=
⋃

k∈C SCk[M]
AC[M]:=

⋃
k+∈C+ ACk+ [M]

S[M]:=
⋃

k-∈C- Sk- [M]
M:= N ∪ H[M] ∪ T[M, M] ∪ SC[M] ∪ AC[M] ∪ S[M]

Table 2: Macro-defined message types

difference. We further define the (meta) message type S (for sort) of message types,
and macro-define the type of the intersection of two message types, the message type
of names, resp. the message type of (general) messages.

2.2 Formulae

Definition 3 (Formulae) The set of formulae FM shall contain precisely those propo-
sitions that are closed (1) basic state predicates ψ, or compound (2.1) standard state
predicates ϕ, (2.2) linear state predicates λ, or (2.3) path predicates φ. These predi-
cates are formed with the operators of Table 3. Note that (1) a and b designate either
a participant or a variable, (2) n designates either a key, a nonce, or a variable, (3) ι
denotes the number of sessions during which a key is considered valid (with ι = 1 for
a session-key and ι = ∞ for a long-term key), and (4) quantification is typed, where v
may not occur in θ.

Note that predicates can be transformed into propositions either via binding of free
variables, i.e., generalisation (universal quantification) or abstraction (existential quan-
tification), or through substitution of constants into free variables, i.e., individuation.

λ, λ′ ::= ϕ | ¬λ | λ � λ′ | λ⊗ λ′ | λ⊕ λ′

ϕ, ϕ′ ::= ψ | ¬ϕ | ϕ ∧ ϕ′ | ∀(v : θ)(ϕ) | Ka(ϕ) | P(ϕ) | �φ
ψ, ψ′ ::= χ | F � F ′ | F : θ | θ 
 θ′

χ, χ′ ::= a gι n | a kF | s!(a, F, b) | a r! F

φ, φ′ ::= ϕ | ¬φ | φ ∧ φ′ | ∀(v : θ)(φ) | Ka(φ) | P(φ) | φ B φ′

| -X(φ) | X(φ) | φW φ′

Table 3: Pre-defined predicates
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Our operators are pronounced as: ¬ "not", � "linearly implies", ⊗ "linear and",
⊕ "linear or", ∧ "and", ∀(v : θ) "for all v of type θ", Ka "a knows that", P "it is
permitted that", � "for all futures", g "generated", k "knows", s!7 "precisely sent off
to", r! "precisely received", � "is a subterm of", : "has type", 
 "is a subtype of", B
"back to", -X "previous", X "next", and W "waiting for".

Linear formulas describe properties of multiple (concurrent) protocols (cf. Table 5)
whereas "[. . .] temporal formulas describe properties of [. . .] a single (concurrent) pro-
gram." (Goldblatt in [13, Section 7.3]).

K expresses knowledge de dicto8 (or propositional knowledge), i.e., justified true
belief. To us, ‘justified’ shall mean corroborated with adequate cryptographic evi-
dence, where the meaning of ‘adequate’ is determined by the degree of skepticism we
decide to adopt toward that evidence. For the moment, that degree shall be bounded by
the assumptions of perfect cryptography, i.e., perfect hashing plus perfect encryption
plus the impossibility to guess cryptographic germs. Knowledge de dicto is estab-
lished based on so-called bodies of first-order knowledge, which is why we also call it
higher-order knowledge. It conveys the knowledge that certain statements about cryp-
tographic communication are true. k expresses knowledge de re9, which is established
based on pieces of cryptographic information (first-order knowledge). It conveys pos-
session and understanding of the purpose of a piece of cryptographic information up
to cryptographically irreducible parts.

Further, we macro-define the predicates formed by the auxiliary operators of Ta-
ble 4 by assuming the remaining operators of (1) propositional logic ⊥, ∨, �, →, ↔,
and ∃(v : θ); and (2.1) branching-time logic

�

"there is a future s.t.", and (2.2) linear
time logic � "so far", � "henceforth", � "eventually", U "until", �− "once", and
S "since" macro-defined on basic and compound standard state and compound path
predicates (cf. Definition 3).

These auxiliary operators are pronounced as: kθ "knows down to grain θ", k!
θ

"knows precisely down to grain θ", k! "totally knows", kF
≤ "knows less or equally

much w.r.t. F than", sent! "is a sent message", s "sent off to", r "received", :! "has
precisely the type", F "it is forbidden that", keys "is a session key", keylt "is a long-
term key", key! "is a corrupted (session or long-term) key", key{a,b} "is a shared-key
among a and b", and keyo "is an operational confidential key". (Observe the alternative
definitions of k! and kF

≤.)

2.3 Some cryptographic goals and characterisations of adversaries and
participants

As an illustration of how CPL can be used to express cryptographic properties, we pro-
pose in [17] formalisations of principal cryptographic goals, such as forms of secrecy

7the ! mark can be viewed as a sort of connotation operator
8knowledge from saying
9knowledge from the thing, i.e., a piece of cryptographic information
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a g n := a g1 n ∨ a g∞ n

a kθ F := Ka(F : θ)

a k!
θ F := a kθ F

∧ ∀(v : S)(v � θ → ¬ a kθ F )

a k! F ::= ∃(v : S)(Ka(F :! v))
| ∀(v : M− C-)(v � F → a k v)
| ∀(v : M− C-)(v � F → Ka(v � F ))

a kF
≤ b ::= ∀(v : S)(a kv F → b kv F )

| ∀(v : M− C-)(v � F → (a k v → b k v))

a kF
= b := a kF

≤ b ∧ b kF
≤ a

a kF
�= b := ¬ a kF

= b

a kF
< b := a kF

≤ b ∧ a kF
�= b

sent!(F ) := ∃(v, v′ : P)(s!(v, F, v′))

s(a, F, b) := ∃(v : M)(F � v ∧ s!(a, v, b))

a rF := ∃(v : M)(F � v ∧ a r! v)

F = F ′ := F � F ′ ∧ F ′ � F

F ≺ F ′ :=F � F ′ ∧ F �= F ′

F :! θ :=∀(v : S)((F : v ∧ v 
 θ)→v=θ)
θ = θ′ :=θ 
 θ′ ∧ θ′ 
 θ

θ � θ′ :=θ 
 θ′ ∧ θ′ �= θ

K(ϕ) :=∀(v : P)(Kv(ϕ))
K(φ) :=∀(v : P)(Kv(φ))
F(ϕ) :=¬P(ϕ)
F(φ) :=¬P(φ)

-Xi+1(φ) := -Xi(-X(φ))
-X0(φ) :=φ

keys(k) :=∃(v : P)(v g1 k)
keylt(k) :=∃(v : P)(v g∞ k)

key!
s(k) :=keys(k) ∧ Eve k k

key!
lt(k) :=keylt(k) ∧ Eve k k

key{a,b}(k) :=Ka(b g k) ∨ Kb(a g k)

keyo(k, F ) :=∃(v : M)([v]k � F ∨ |v|k � F )

Table 4: Some macro-defined predicates

(e.g., ¬ �

�(Eve kM)) and forms of authenticity (e.g., Ka(s!(b,M, a))), as well as
characterisations of passive and active adversaries, and prudent10 participants in terms
of their capabilities to attack, resp. in terms of their competence to secure crypto-
graphic communication. Note that (1) authorisation goals (expressing legitimacy con-
cerns) can be expressed directly in CPL as the concept of authorisation is hardwired
in it via the operator P, and (2) protocol-compliant participants are non-repudiating
by definition. Our formalisations express secrecy and authenticity w.r.t. the content11

as well as w.r.t. the sender and recipient12 of a message, and to different degrees of
generality (arbitrary or specific message) and strength (weak/strong variants).

10in the spirit of [3]
11message content authenticity is also called message authentication
12with respect to a sender or recipient, secrecy is also called anonymity (of the corresponding entity)

and authenticity entity authentication
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3 Process model

We model cryptographic protocols as processes (as opposed to functions) and protocol
execution as non-deterministic process reduction defined by a reduction calculus. Pro-
cesses are composable and participant-name-based asynchronously communicating
distributed entities of concurrent non-recursive13 threads allowing for dynamic name
generation and secure and insecure input/output of cryptographic messages. Moreover,
they are parametric in the language of messages they may transmit, and in the language
of conditionals they may admit as guards on their execution. Process execution engen-
ders (1) the activity of protocol participants and the (Dolev-Yao [10]) adversary (Eve),
i.e., the generation of legitimate resp. illegitimate protocol events; and (2) the evolu-
tion (involving computation) of their respective knowledge de re and de dicto. As it
proceeds, it produces a history of protocol events and a sequence of knowledge states
recorded in suitable data structures and amenable to run-time model-checking.

The existence of primitives for insecure and secure input/output allows us to write
specifications of cryptographic goals in the style of process algebra, i.e., by means of
process equivalences. It is one of our goals to characterise these equivalences logically,
i.e., in terms of CPL-formulae.

Data structures We need the following data structures, i.e., abstractions for storage:
(1) a set for the body of first-order knowledge KEve of the adversary (Eve); (2) for
each participant b, a set for the body of their first-order private and public knowledge
K-

b resp. K+
b (cf. [17, Table 11]), and session counters sb(p, r) for each protocol p in

which they may take part and role r they may take on; and (3) a list H for the history
of protocol events.

Control structures Our control structures, i.e., abstractions for cryptographic com-
munication, are: abstractions for (1) the (participant-centered) execution of threads, (2)
the (protocol-centered) execution of processes, and (3) the evaluation of cryptographic
messages. Our abstraction for message evaluation is an algebra of cryptographic mes-
sages with a certain set of external14 operations:

Definition 4 (Message algebra) Let O denote a set of operations on messages M ∈
M with (1) fst, snd, decr, decr+, and vsign inverse operations for tuples, symmetric
and asymmetric ciphers, resp. signed messages; (3) Ci composition operations on mes-
sage operations; and (2) Pi projection operations on message operation parameters.

Then M shall denote our algebra of crypto messages:

M := 〈M,O〉
13cryptographic protocols do not have loops
14as opposed to internal operations that are equationally specified, as for example in the so-called

Applied Pi-Calculus [2]
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Our abstractions for protocol execution are process and thread constructors to-
gether with an associated notion of execution defined in terms of the reduction calculus
C3 (Calculus of Cryptographic Communication):

Definition 5 (Process reduction calculus) Let

• P ,Q ∈ P�,FM denote processes (cf. [17]) that transmit messages M ∈ M
and admit conditionals λ ∈ FM as guards on their execution

• ·−→·� ⊆ (P�,FM × S) × E × (P�,FM × S) denote a reduction relation (cf.
[17]). S denotes the set of memory states (or data structure states) m, and E the
set of protocol events.

Then C� shall denote a calculus of cryptographic communication instantiated with a
crypto system combining shared-key and public-key cryptography with hashing:

C� := 〈P�,FM × S, ·−→·�〉

4 Satisfaction

Our definition of satisfaction is anchored (or rooted) and defined in terms of models
of cryptographic protocols (process terms) and corresponding global memories (data
structures). It is novel in the sense that it proceeds via nested induction across three
layers of (logical) syntax. Nesting is resolved through exhaustion of operator combi-
nations.

Due to this combinatorics of operators, our definition may appear unnecessarily
complicated at first sight. However given the intrinsic complexity of cryptographic
reality, we claim that our definition is only just necessarily complex and even particu-
larly insightful. Our definition is insightful in the sense that it extricates the structure
of cryptographic discourse by revealing/inducing it in combinations of what we be-
lieve to be its elementary parts, i.e., the operators of our logic, and in the algebraic
laws that govern it.

These laws are induced in the sense that they hold by definition of the satisfaction
relation15; they are algebraic in the sense that they relate structures, i.e., combinations
of operators, that are logically equivalent.

4.1 Definition

We define satisfaction inductively and in a relational (as opposed to functional) style
on the structure of formulae.

15thus they are automatically sound axioms in any proof system for — or deduction relation on —
CPL formulae
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Definition 6 (Satisfaction) Let |=�� ⊆ P�,FM×FM denote satisfaction of a formula
λ ∈ FM in a process P ∈ P�,FM , the anchor/root of a an implicit (execution tree)
model for λ. Then satisfaction shall be defined as:

P |=�� λ :iff (P , �P �) ·��� λ

where �·� : P�,FM → S maps a process term to its initial (memory) state, and ·���
(cf. Tables 5 and 6) defines satisfaction on protocol-memory pairs referring to ���
denoting satisfaction on paths of such pairs (cf. Table 8).

(P ,m) ·�C3 ¬λ :iff not (P ,m) ·�C3 λ

(P ◦ Q,m) ·�C3 λ � λ′ :iff
if (P ,m) ·�C3 λ and (Q,m′) ·�C3 λ then (Q,m′) ·�C3 λ′,

for all m′ s.t. (P ,m) −→∗ (SKIP,m′)

(P × Q,m) ·�C3 λ⊗ λ′ :iff
(P ,m) ·�C3 λ and (Q,m) ·�C3 λ′

(P + Q,m) ·�C3 λ⊕ λ′ :iff
(P ,m) ·�C3 λ or (Q,m) ·�C3 λ′

(Q � λ� P ,m) ·�C3 λ′ :iff
((P × P ) + (P × Q),m) ·�C3(λ⊗ λ′) ⊕ (¬λ ⊗ λ′)

Table 5: Linear state satisfaction

(p〈P 〉:{C}l,m) ·�C3 ψ :iff (p〈P 〉:{C}l,m) ∈ V(ψ)
(p〈P 〉:{C}l,m) ·�C3 ¬ϕ :iff not (p〈P 〉:{C}l,m) ·�C3 ϕ

(p〈P 〉:{C}l,m) ·�C3 ϕ ∧ ϕ′ :iff
(p〈P 〉:{C}l,m) ·�C3 ϕ and (p〈P 〉:{C}l,m) ·�C3 ϕ′

(p〈P 〉:{C}l,m) ·�C3 ∀(v :σ)(ϕ) :iff
for all c ∈ �σ�, (p〈P 〉:{C}l,m) ·�C3 c/v · ϕ

(p〈P 〉:{C}l,m) ·�C3 Kc(ϕ) :iff Ks(c, ϕ)
(p〈P 〉:{C}l,m) ·�C3 P(ϕ) :iff Ps(ϕ)
(p〈P 〉:{C}l,m) ·�C3 �φ :iff

for all p ∈ paths((p〈P 〉:{C}l,m)), p@0 �C3 φ

Table 6: Modal state satisfaction

In Table 5, (1) note that ◦, ×, +, � λ � denote serial, parallel, alternative, resp.
conditional composition of protocols; and (2) observe how the interpretation of the
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Table 7: Defining relations for K and P for satisfaction on states (s) and paths (p)
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conclusion λ′ in the linear implication λ � λ′ takes place only after the left protocol
in the sequential composition has terminated, or — in the jargon of linear logics —
has been consumed as a resource (for execution).

In Table 6, observe that satisfaction of basic formulae ψ is defined in terms of a val-
uation function V (cf. [17]), and satisfaction of epistemic and deontic formulae is de-
fined in terms of the relations Ks resp. Ps (cf. Table 7). Note that paths((p〈P 〉:{C}l,m))
is defined as the set of paths p such that the first state of p is (p〈P 〉:{C}l,m) and the
last state of p is (p〈P ′〉:{C}l,m

′) where (p〈P 〉:{C}l,m) −→∗ (p〈P ′〉:{C}l,m
′) �−→.

Table 7 shows the combinations of what we believe to be the elementary parts of
cryptographic discourse about security of communication and the laws that govern it.
The table represents our main contribution in this paper. Observe the nested induction
across three layers of syntax in the definition of the operators K and P. The definition
is structured on states as well as on paths as follows:

K �� �� K �� P �� PK
��

�� �� PK��

Of course, this definition needs to be revised and refined so that consensus about
the meaning of those elementary parts can be established in the community of proto-
col designers and analysts. We hope that once this consensus has been established,
the definition will constitute a standard for the body of common knowledge of that
community.

In Ks observe or note that

1. synth〈M,≡〉 (cf. [17]) denotes a function of message synthesis. It is an enhanced
version of Paulson’s [21] in the sense that it is refinable via an equivalence ≡
⊆ M × M defined by the set of algebraic laws16 that may hold between the
cryptographic primitives in M. Further, � (cf. [17]) denotes a sub-term relation,
and � (cf. [17]) denotes a type-inference relation.

2. satisfaction of the formulae Kc(s!(a,M, b)) (capturing authenticity of datum M
w.r.t. its origin) and Kc(a r!M) (capturing acknowledged reception of datum
M ) is sound, i.e., conveys the desired meaning, iff the operational confidential
key v has been — and will remain — secret. Otherwise c’s knowledge actu-
ally is — resp. will eventually be — just true or false belief, depending on the
absence resp. presence of active impersonation. Thus, violation of the secrecy
of operational confidential keys entails non-monotonicity of knowledge, and its
observance is a necessary condition (or healthiness constraint of our definition
of satisfaction) for any goal relying on those keys. An open question is whether
there is a class of goals which it is (also) a sufficient condition for.

16such as the so-called homomorphic property of RSA, which would be expressed as |(M, M′)|k- ≡
(|M |k- , |M ′|k- )
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3. · is a syntactic expansion function of standard state and path formulae, e.g.,
Kc′(c k (x, x′) ∧ c k k) � Kc′(c k (x, x′)) ∧ Kc′(c k k) � Kc′(c kx ∧ c kx′) ∧
Kc′(c r k ∨ s(c, k, c′)) � . . . represents the beginning of the expansion chain
of Kc′(c k (x, x′) ∧ c k k) . Observe that such an expansion results in the elim-
ination of the operator for propositional knowledge or in a formula containing
occurrences of the formula Kc(ϕ) for ϕ ::= Kc′(Eve kM) | KEve(s!(a,M, b)) |
KEve(a r!M) | Kc′(M � M ′) | Kc′(M :σ). Satisfaction of such a formula is
defined in terms of those pieces of c′’s first-order knowledge that c must know
to be able to know that ϕ holds. We omit further details. However, it is now
clear that K is not truth-functional, i.e., it is not defined exclusively in terms
of the logical form, but rather also in terms of the information content of the
proposition it operates on. In this respect, K resembles strict17 (as opposed to
material) implication, which is not truth-functional either.

4. (branching) future of protocol execution is epistemologically inaccessible to par-
ticipants because they are not in control of that execution in reality (although
they may partially be in the model, e.g., in our model a participant may always
generate a new germ or send off some message to some participant).

In Kp observe or note that

1. linear future is epistemologically inaccessible to participants for the same reason
as is branching future.

2. the function δ calculates the difference of back (-X) and forth (X) steps in a
possible prefix of such steps in X(φ) The function 	 effectively chops that prefix
off.

In Table 8, note that p@i ��� φ is pronounced "path p satisfies the formula φ (in
the state) at position i", and that state(p, i,) returns the state at position i in p.

This concludes our definition of satisfaction.

4.2 Discussion

In the terminology of modal logics,

1. our calculus of cryptographic communication C� := 〈P�,FM × S, ·−→·�〉 with
universe P�,FM ×S, possible worlds w ∈ P�,FM ×S, and (temporal) acces-

sibility relation
·−→·� constitutes a frame and

2. the structure MCPL := 〈C�,V〉 with frame C� and valuation V constitutes a
model for the language FM.

17Strict implication requires that the antecedent imply the consequent in accordance with some notion
of necessity, e.g., inclusion of the information content of the consequent in the information content of the
antecedent.
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p@i �C3 ϕ :iff state(p, i) ·�C3 ϕ

p@i �C3 ¬φ :iff not p@i �C3 φ

p@i �C3 φ ∧ φ′ :iff p@i �C3 φ and p@i �C3 φ′

p@i �C3 ∀(v :σ)(φ) :iff for all c ∈ �σ�, p@i �C3 c/v · φ
p@i �C3 Ka(φ) :iff Kp(a, φ)
p@i �C3 P(φ) :iff Pp(φ)
p@i �C3 φ B φ′ :iff there is a k s.t. 0 ≤ k ≤ i and p@k �C3 φ′, and for all j, if k < j ≤ i

then p@j �C3 φ; or for all k, if 0 ≤ k ≤ i then p@k �C3 φ.

p@i �C3
-X(φ) :iff

{
p@(i− 1) �C3 φ if i− 1 ≥ 0
true otherwise

p@i �C3 X(φ) :iff

{
p@(i+ 1) �C3 φ if i+ 1 ≤ len(p)
false otherwise

p@i �C3 φW φ′ :iff there is a k s.t. i ≤ k and p@k �C3 φ′, and for all j, if i ≤ j < k
then p@j �C3 φ; or for all k, if i ≤ k then p@k �C3 φ.

Table 8: Path satisfaction

3. λ is a local truth in MCPL at w :iff (MCPL,w) ·��� λ.

4. λ is a semantic consequence of a set Λ of formulae in MCPL, written Λ ⇒�� λ,
:iff for all w ∈ P�,FM×S, if (MCPL,w) ·���

∧
λi∈Λ λi then (MCPL,w) ·��� λ.

5. λ is a global truth in MCPL, written MCPL ·��� λ, :iff for all w ∈ P�,FM ×S,
(MCPL,w) ·��� λ.

6. λ is a tautology of CPL, written ·��� λ, :iff for all MCPL, MCPL ·��� λ.

7. λ is an antinomy of CPL, written �·��� λ, :iff ¬λ is a tautology of CPL.

8. CPL�� := { λ | ·��� λ }

Observe that the frame C� neither mentions an epistemic nor a deontic accessibility
relation, which is non-standard for a frame of a logic with standard epistemic and
deontic modalities. However, CPL�� contains tautologies that characterise such a
frame (cf. next section). It follows that the temporal accessibility relation actually
induces both an epistemic and a deontic accessibility relation. We leave it for further
work to recover these implicit accessibility relations from the temporal one, and to give
an alternative presentation of CPL�� as a product (rather than as a fusion, as there is
intrinsic interaction between our modalities) of the corresponding single-dimensional
logics.
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4.3 Characteristic tautologies and antinomies

By definition, the set of all tautologies of a language constitutes the logic of that lan-
guage. It is a standard meta-theoretical task to try to isolate a subset S of that set
that characterises the logic in the sense that every tautology of the logic is a semantic
consequence of S. One says that S generates the logic via semantic consequence. In
effect, CPL�� contains at least the epistemic system S5, i.e., LO, ES, PI, and NI, and
the deontic system DAlt, i.e., DK, DCY, and CL (cf. Table 9). This means that our
implicit accessibility relations correspond in fact to an epistemic equivalence, and a
deontic functional and serial18 relation.

·�C3 Ka(ϕ→ ϕ′) → (Ka(ϕ) → Ka(ϕ′)) LO

·�C3 Ka(ϕ) → ϕ ES

·�C3 Ka(ϕ) → Ka(Ka(ϕ)) PI

·�C3 ¬Ka(ϕ) → Ka(¬Ka(ϕ)) NI

�·�C3 ϕ→ Ka(ϕ) GEI

·�C3 χ→ Ka(χ) LEC

·�C3 ¬χ → Ka(¬χ) LEC

�·�C3 ¬Ka(ϕ) → Ka(¬ϕ) ECM

·�C3 Ka(¬ϕ) → Ka(ϕ) ECY

·�C3(Ka(ϕ) ∧ Ka(ϕ→ ϕ′)) → Ka(ϕ′) PR

·�C3 Ka(ϕ) → ��Ka(ϕ) PM

·�C3 O(ϕ→ ϕ′) → (O(ϕ) → O(ϕ′)) DK

·�C3 O(ϕ) → P(ϕ) DCY

·�C3 P(ϕ) → O(ϕ) CL

·�C3 P(ϕ) → Ka(P(ϕ)) PLEK

·�C3 F(ϕ) → Ka(F(ϕ)) PLEK

·�C3 P(ϕ) → ��P(ϕ) SL

·�C3 F(ϕ) → ��F(ϕ) SL

Table 9: Some tautologies and antinomies

The abbreviations in Table 9 are pronounced as: LO "Logical Omniscience", ES
"Epistemic Soundness", PI "Positive Introspection", NI "Negative Introspection", GEI
"Global Epistemic Incompleteness", LEC "Local Epistemic Completeness", ECM
"Epistemic Constructivism", ECY "Epistemic Consistency", PR "Perfect Reasoning",
PM "Perfect Memory", DCY "Deontic Consistency" (note that O(ϕ) := F(¬ϕ) and

18a binary relation R is serial on a set S :iff for all s ∈ S, there is t ∈ S s.t. sRt.
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is pronounced "it is obligatory that"), CL "Constringent Law", PLEK "Perfect Legal
Knowledge", and SL "Static Law".

CPL�� also satisfies the following closure laws (PLOK "Perfect Logical Knowl-
edge", LL "Logic is Law"):

if ϕ ∈ CPL�� then Ka(ϕ) ∈ CPL�� PLOK

if ϕ ∈ CPL�� then O(ϕ) ∈ CPL�� LL

A note on common knowledge: it is commonly defined as the largest fixpoint
of propositional knowledge of a community of entities. Unfolding it leads to an in-
finitely deeply nested chain of operators K, e.g., . . .Kb(Ka(Kb(Ka(ϕ)))) for the com-
mon knowledge of ϕ among a community of two entities a and b. But asserting that
b knows that a knows that ϕ requires that b received at least one message from a pro-
viding evidence to b that a knows that ϕ (cf. Table 7). Hence, asserting that there
is common knowledge in a community of already two entities requires the transmis-
sion of an infinite number of messages. This proves informally — but constructively
— that establishing common knowledge across an insecure transmission medium is
infeasible. In particular, public knowledge is not common knowledge !

4.4 Comparing cryptographic goals

In Section 4.2, CPL was presented as a body of truth, namely CPL�� , based on the
key concept of validity. Alternatively, it can be presented as a system of inference
CPL�� := 〈FM,⇒��〉 based on the key concept of semantic consequence. We sug-
gest the latter, which is a partial order relation, and its derivative, semantic equivalence
⇔�� := { (λ, λ′) | λ⇒�� λ

′ and λ′ ⇒�� λ } as the basic means of comparing cryp-
tographic goals. We leave it for further work to compare the goals stated in [17].

5 Conclusions

This paper is about the mathematical and philosophical foundations of the security of
communication and its crystallisation into a standard logical theory.

Technical claims Our technical claims are to present (1) the first formalisation of
cryptographic discourse about the security of communication within the framework
of multi-dimensional logic, (2) the most comprehensive formal, logically connected
model of cryptographic protocols proposed so far, and (3) a novel technique for defin-
ing evidence-based satisfaction on that model. As a result, we (1) are able to express
and compare cryptographic properties intuitively and succinctly, (2) are confident to
be able to verify correctness of cryptographic goals on target protocols down to a fine
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grain of detail (cf. [17]), and (3) provide new insight into the subtleties of interac-
tion between quantifiers and modal operators (pointed out by Gabbay et al. in [12,
Page 143]), e.g., Ka(∀(v :σ)(ϕ)) ⇔�� ∀(v :σ)(a k v ∧ Ka(ϕ)).

Philosophical claims Our philosophical claims are to present new insight in the con-
cerns, the dimensions, and the structure of the universe of cryptographic discourse (cf.
Table 10). As a result, we obtain a rigourous clarification of the concepts constituting
common knowledge of the community of protocol designers and analysts.

In Table 10, by modulation of the interpretation structure we mean the variation of
the compositionality of the process term P in a world (P ,m). By modulation of the
scope of the truth statement, we mean the variation of the truth value of a formula ϕ
or φ due to the formula occurring in the scope of certain operators. By modulation of
the grain of the truth statement, we mean the variation of the degree (or probability) of
certitude about the truth value of a formula due to cryptographic evidence justifying
that value but having been generated by cryptographic functions that are breakable
under certain complexity-theoretic assumptions.

Model of reality Universe of discourse
Modelling Modelling Linguistic Semantic
concept concern dimension efffect

Cryptographic
Compositionality

Execution
Space

Modulation of the
process interpretation structure

Event

Sequentiality
Time

Modulation of the scope
of the truth statement

Concurrency
Actuality Knowledge

Legitimacy Norms

Message
Existence

Quantification
Universality

Cryptographic
function

Complexity Probability
Modulation of the grain
of the truth statement

Table 10: Security of communication

Further work We envisage work in the development of the following applied, theo-
retical, and meta-theoretical aspects of our logic: in the applied field, we are working
on a fully-fledged engineering methodology and on representative specification and
verification case studies. In the theoretical domain, it is conceivable to extend CPL
with (1) weak real time to allow for the use of time stamps as cryptographic evidence,
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(2) numeric keys to allow for key derivation, and (3) probability for propositional
knowledge and complexity for cryptographic functions (in the spirit of [18]) to ac-
count for imperfect cryptography. In the meta-theoretical domain, the framework of
standard mathematical logic provides us with a road map for work in (1) model the-
ory, e.g., the logical characterisation of relations (such as bisimulations) on process
models, (2) alternative semantics for our relational/possible-worlds semantics, e.g.,
axiomatic (proof system or relation of deduction) and game-theoretic (Ehrenfeucht-
Fraïssé games) semantics, (3) the study of decidability and complexity issues, (4) cor-
respondence theory, i.e., the isolation of a cryptographic fragment of first-order logic
via the so-called standard translation, and (5) intuitionism and process types (Curry-
Howard isomorphism).
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A Note about proofs

Our proofs of the mentioned tautologies, antinomies, and closure laws are essentially
based on the following lemmata: (1) ϕ ⇒�� ϕ

′ iff ·��� ϕ → ϕ′, (2) if K then not
K (proving ECY by inspection!), and (3) first-order knowledge increases monotoni-
cally (by inspection of process reduction). We are planning to present detailed proofs
validated by a theorem-prover.
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Abstract

Following up our previous work [9], we distinguish the monotonic properties
and the non-monotonic ones in our inference system based on the framework of
compositional logic, and give the way to include some non-monotonic properties.
As an example, we present a correctness proof of Challenge Response protocol,
and explain how such properties can be used in more powerful derivations. We
also give a semantics based on the notion of trace, and present a soundness proof
of our inference system including non-monotonic properties.

1 Introduction

Compositional logic (originally introduced by Durgin-Mitchell-Pavlovic [6] and Datta-
Derek-Mitchell-Pavlovic [3, 4]) is an inference system based on Floyd-Hoare style
logical framework for proving protocol correctness. By means of this framework, a
protocol is considered as a program, and a statement “from a principal P ’s viewpoint,
a general property ϕ holds at the end of his/her protocol action α” can be represented
as a formula of the form [α]ϕ (or of the form θ[α]ϕ in [3, 4]). One of the most advan-
tageous points of this framework is its compositional approach for reasoning about a
compound protocol: in order to prove a property about a compound protocol we can
reuse already established properties about its components.

In our previous work [9], we presented a way for making more explicit the compo-
sitionality property of this framework by introducing a notion of primitive actions in

�This work was partly supported by Grants-in-Aid for Scientific Research of MEXT, Center of Excel-
lence of MEXT on Humanity Sciences (Keio University), the Japan-US collaborative research program
of JSPS-NSF, Oogata-kenkyuu-jyosei grant (Keio University) and Global Security Center grant (Keio
University). The first author was also supported by Fellowship for Japanese Young Scientists from Japan
Society for the Promotion of Science.
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a role (i.e., sending, receiving or generating actions). While in [6, 3, 4] an assumption
about a principal’s honesty is represented as implication of the form Honest(Q) ⊃ ϕ
(which means “if principal Q is honest, then ϕ holds”), in our framework such as-
sumption (called honesty assumption) is represented by the predicates of the form
Honest(�αQ) (where �αQ is a sequence of primitive actions in a role performed by Q)
in the left hand side of a sequent style assertion. In a proving process of a property,
these honesty assumptions are composed by combining the usual contraction rule of
the sequent calculus and the following weakening rule (analogous to the weakening
rule of the traditional logic).

HonestQ(�α; �α′),Γ � [�β; �β′]ϕ

HonestQ(�α;α′′; �α′),Γ � [�β;β′′; �β′]ϕ
Weakening

(This means that, “from P ’s view, if a property ϕ is derived from Γ with Q’s honesty
on �α; �α′ after P ’s performance of the sequence of actions �β; �β′, then ϕ is also derived
from Γ with Q’s honesty on �α;α′′; �α′ after P ’s performance of �β;β′′; �β′, for any ad-
dition α′′ and β′′ in the roles”.) In [9], we showed that this type of inferences is used
for proving a property about a compound protocol, directly composing proofs of its
components.

When we can freely apply the weakening rule to ϕ, we call ϕ a monotonic prop-
erty1. Freshness, sending-fact, receiving-fact are examples of monotonic properties.
In [9], we took as an example a set of monotonic properties, and demonstrated that
such an inference system has enough power to prove (non-injective) agreement prop-
erty (in the sense of Woo-Lam [10]) of some protocols, even if we do not use logical
negation, nested implications, or any temporal operators as introduced in [3, 4]2.

However, if we want to prove a property stronger than the agreement property, we
need some non-monotonic properties. In this paper, we give the way to include some
non-monotonic properties in our framework of compositional logic. As an example,
we aim at proving matching conversations of Challenge Response Protocol [5] which
was also shown in [3, 4]. This property is stronger than the agreement property, be-
cause we need to prove additional properties about the ordering of actions performed
by the different principals. To prove this property, we introduce a non-monotonic
property “firstly sends. We show a proof of this property in this extended system
only by adding a few restrictions on the weakening rules previously shown and on the
inference rules on a principal’s honesty (called honesty inferences). In particular, we

1This notion of monotonic property is essentially the same as persistent property in the sense of
[6, 3, 4], except that the notion of monotonicity is related not only to weakening for protocol actions
(described in the square bracket “[ ]”) but also to weakening for honesty assumptions.

2The reason why we do not need logical negation nor nested implications (nor, disjunctions in the right
hand side of a sequent) is that we restrict the honesty inferences. By this restriction, in our framework
each sequent is expressed by a Horn-clause, however it is trade-off against some kinds of inferences on
honesty. (See also Section 5.)
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do not use logical negation, nested implication and temporal operators, which are used
in the original proof of [3, 4].

In this paper, we use the following notations (cf. Appendix A of [9]). The letters
A, B, C ,. . . (P , Q, R,. . . , resp.) are constants (variables , resp.) of principal’s names.
The capital letters K,K′, . . . ,K1,K2, . . . and N,N ′, . . . , N1, N2, . . . are constants
of keys and of nonces, respectively, while the small letters k, k′, . . . , k1, k2, . . . and
n, n′, . . . , n1, n2, . . . are variables of the same sorts as above. The letters m,m′, . . . ,
m1,m2, . . . are used to denote messages, and {m}K is the encryption of m with key
K, and 〈m1, . . . ,mn〉 is the concatenation of messages m1, . . . ,mn. We also intro-
duce m � m′ to represent the subterm relation as a meta symbol.

The rest of this paper is organized as follows. In Chapter 2, we shall review the
inference system introduced in [9]. In Chapter 3, we shall show how to include non-
monotonic properties in the system. Moreover, as an example, we prove the matching
conversations of CR protocol which cannot be proved only by the monotonic proper-
ties. In Chapter 4, we shall give a semantics based on the notion of trace, and sketch
out a soundness proof of the extended system. In Chapter 5, we shall present our
conclusions and some further issues.

2 Inference system

2.1 The Language

Predicates of our inference system are as follows: P generates n, P receives m 3,

P sends m, PK(P, k), P K↔ Q, fresh(n) and t = t′. While the first three predicates
are called action predicates (performed by P ), the rest of them are called non-action
predicates. The letters α, β, γ, δ, . . . , α′, α′′, . . . , α1, α2, . . . are used to denote action
predicates (also αP , βP , γP , δP , . . . to denote action predicates performed by P ) and
θ, θ′, . . . , θ1, θ2, . . . are non-action predicates. All those predicates except for equality
are chosen from the BAN logic predicates [1]. Equality is used for explicit treatment
of substitutions. As we have mentioned in Section 1, all those predicates except for
sends have monotonic properties (i.e., properties independent of the weakening rules
for principal’s actions and for honesty assumptions)4.

As logical connectives, we introduce only usual conjunction (denoted by “,”) and
non-commutative conjunction (denoted by “;”). Our intention is to use non-commutat-

3We distinguish two kinds of “receives”: the simple receiving and the receiving with decryptions.
P receives m({m′}∗K) means that “P receives a term m and decrypts the indicated subterm {m′}∗K of
m. For a more formal description, instead of using ∗, we could introduce a new predicate decrypts and
describe it by (P receives m) ∧ (P decrypts {m′}K).

4As we shall see in the explanation of the Matching rule of the honesty inferences below, predicate
“sends” is monotonic w.r.t. the weakening for concrete actions, however it is non-monotonic w.r.t. the
weakening for honesty assumptions. In other words, this predicate is non-monotonic in the sense of our
terminology, however it is “persistent” in the sense of [6, 3, 4].
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ive conjunction to represent a sequence of principals’ actions, implicitly treated in
[9]. While in [3, 4] some temporal operators are used to reason about the ordering of
actions, we get rid of any temporal operators: the orderings are directly derived from
the axioms, using inference rules presented in Appendix. We introduce the vector
notation such as �α to denote a sequence (i.e., non-commutative conjunct) of action
predicates. We also introduce some notions related to a sequence of action. We say
αi ∈ �β (= β1; · · · ;βn) if αi = βj for some j = 1, . . . , n. For a sequence �α =
α1; . . . ;αn and for αi, αj ∈ �α, we denote αi ≤�α αj if i ≤ j. For �α and �β (=
β1; . . . ;βn), if αi ∈ �β for all αi ∈ �α and if ∀αi, αj ∈ �α.(αi ≤�α αj ⇒ αi ≤�β

αj), we

say �β is an extension of �α and denote it by �α ⊆ �β.
Our inference system uses a sequent calculus style assertion. The basic form of

assertion is as follows (where Qi may be Qj in the list of P, . . . , Q).

Honest(�αP ), . . . ,Honest(�βQ),∆ � [�γ]A ϕ

Here each of �αP , . . . , �βQ is a sequence of action predicates performed by P, . . . , Q,
respectively, which represents a part of his/her role, and �γ is a sequence of concrete
actions performed by A.5 Each of the letters ϕ,ϕ′, . . . , ϕ1, ϕ2, . . . is a sequence (i.e.,
non-commutative conjunct) of action predicates, or a single non-action predicate. ∆
is of the form ϕ1, . . . , ϕn. Each predicate of the form Honest(�αP ) represents “a
principal P honestly follows a part of role �α”. We call it P ’s honesty assumption.
To formalize such assumptions on honesty, in [6, 3, 4], they introduce the predicate
Honest(P ) which means “principal P is honest”. On the other hand, our intention is
to make more explicit the compositionality of honesty assumptions: we separate each
honest principal’s role into his/her primitive actions, and construct a composed proof
by using some basic natural logical rules. (The details of the composing process were
presented in [9].)

If �αP consists of a sequence of primitive actions αP
1 ; · · · ;αP

n , we can consider the
predicate Honest(�αP ) as an abbreviation of Honest(αP

1 ); · · · ;Honest(αP
n ), which

is a conjunct of non-commutative conjunction.
Therefore, the intuitive meaning of the sequent previously introduced is “if prin-

cipals P, . . . , Q honestly follow the parts of their roles �αP , . . . , �βQ, respectively, and
if some properties ∆ hold, then after A performs a sequence of concrete actions �γ,
ϕ holds from A’s viewpoint”. (Here �γ may be empty. In such case we often use ϕ,
instead of [ ]ϕ.)

Finally, we introduce the postfix notation [�P , �n,�k] in order to denote the lists of
principal names �P (list of variables P1, . . . , Pm), and the lists of variables of nonces
and session keys �n,�k (as variables). Substitutions are represented in terms of this
notation.

5Note that for describing a sequence of action, while compositional logic of [6, 3, 4] uses the cord
calculus, we describe it by the predicates previously shown.
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2.2 Axioms and inference rules

Our inference system consists of the following four classes (I)-(IV) of axioms and of
inference rules. (The complete list is also presented in Appendix.)

(I) Logical inferences with equality: As logical inferences, we use some structural
rules (I-1) (weakening, contraction, exchange rules of the left hand side, and cut rule)
and equality inference rules (I-2), and substitution rules (I-3). These are chosen from
the traditional first order logic with equality. We also introduce some inference rules
for non-commutative conjunction (I-4).

(II) Action properties axioms: These are composed of the axioms about actions
and the axioms for relationship between properties in the sense of [6]. Our pro-
posed axioms are listed in (II-1) and (II-2), respectively. (Here, axioms including
non-monotonic property firstly sends, which is introduced in Section 3, are marked
with the symbol “†”.) However, our framework does not depend on any specific set of
axioms in this class.

(III) Honesty inferences:
For deriving Q’s other actions from P ’ viewpoint, P may assume Q’s honesty and

may use his/her own knowledge about Q’s role in the protocol. For example, if P
knows that Q has sent the message m in a current run, and assumes that Q is honest,
then P can derive Q’s previous action, because Q should not have sent the message
m if he/she has not already performed all the previous actions of his/her role. For
formalizing such inferences, compositional logic in [6, 3, 4] uses a special inference
(called honesty rule) for deriving a conclusion of the form Honest(Q) ⊃ ϕ. On the
other hand, in our system, inferences on honesty are formalized by the three kinds
of inference rules: Substitution (III-1), Matching (III-2) and Deriving another action
(III-3). These are called honesty inferences. For example, the following inference rule
is the Matching rule.

∆ � [�α]P �β; (Q sends m);�γ

∆,Honest(Q sends m′,m) � [�α]P �β; (Q sends m′);�γ
Hon(Match)

(Here �β and �γ are non-commutative conjuncts of some action predicates, respectively,
(where each of them may be empty), and m � m′.)

The intended meaning of this inference rule is that “if P assumes that Q is honest
and follows the sending action “Q sends m′”, and if P knows that Q sends a message
m containing m′”, then we can conclude that “P knows that Q has sent m′”. This
inference holds whenever the additional condition is satisfied such that “Q’s honesty
assumption does not include any other sending action of a message which includes m
as a subterm”. This means that the formula Q sends m′ appearing in the lower sequent
is non-monotonic. Thus, to keep our system monotonic, we restrict all applications of
honesty inferences and of weakening rule for honesty assumptions (explained in the
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next item (IV)) so as to preserve this condition. More formally, we extend the language
by introducing a new predicate Honest(α,m) (here Honest(α) previously defined
can be regarded as a special case such that m is empty), and all applications of the
honesty inferences and the weakening rule for honesty assumptions are restricted by
the following condition (denoted by (�)).

(�) Both predicates Honest(Q sends m′,m) and Honest(Q sends m′′)
(with m � m′′) do not appear in the left hand side of the lower sequent.

(IV) Weakening rules for actions and for honesty assumptions: We now introduce
the weakening rules for honesty assumptions and the weakening rule for concrete ac-
tions. All the applications of these weakening rules are restricted so as to satisfy the
(�) condition of Matching rule of honesty inferences.

If we introduce a non-monotonic predicate, as we shall explain in the next sec-
tion, some additional condition should be necessary. In other words, our choice of
predicates is one of the simplest formalism with respect to the weakening rules.

Finally we point out a limitation of our system. For a protocol including duplica-
tions of the same actions, we cannot distinguish one from another in our logic, because
our logic does not explicitly deal with position during the run of a protocol. In this pa-
per we consider only protocols which does not include any duplication.

3 Introducing a non-monotonic property in correctness
proofs

In this section, we give the way to include some non-monotonic properties in our
inference system presented in the previous section. In Section 3.1, as an example,
we introduce a non-monotonic predicate “firstly sends” which is used to reason
about some ordering of actions, and explain some additional restrictions on the honesty
inferences and the weakening rules. In Section 3.2, we show a proof of matching
conversations of Challenge Response Protocol [5]. This property was already proved
in [3, 4], however logical negation, nested implications and temporal operators are not
used in our proof.

3.1 Inferences for non-monotonic properties

In order to prove our aimed property, whereas the predicate Fresh is used in [3, 4],
we introduce a new predicate firstly sends (also denoted by fsends for readability).
P fsends (m,n) means “P sends a message m containing n as a subterm, and P does
not send any other message m′ containing n before the sending of m”. Clearly, this
predicate is non-monotonic, because if � [�α;α′′; �α′] P fsends (m,n) holds, where α′′

is P ’s sending of m, and if we insert another P ’s sending of m′ with n � m′ be-
fore α′′, then this predicate becomes false under this weakened assumption (in square
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bracket “[ ]”). As this observation tells us, if we introduce a non-monotonic predicate
in our framework, we must restrict all applications of the weakening rules (both for
honesty assumptions and for actions) and all the honesty inferences ((III-1)-(III-3)) by
the following additional conditions (denoted by (��)).6

(��) For each sequence �αP , �βQ, �γ and for each �δ (which appears in ∆) in
the lower sequent Honest(�αP ), . . . , Honest(�βQ),∆ � [�γ]ϕ, it is no ex-
tension of a sequence of the form (P sends m′); (P fsends (m,n)) (with
n � m,m′) for any P .

Some non-monotonic properties are useful for reasoning about ordering of actions.
Actually in the case of fsends, the order between different principals’ actions can be
derived by the additional inference rule and axiom as follows.

Firstly Sends:
Honest(�αP ), . . . ,Honest(�βQ),∆ � [�γ]�δ; (R sends m);�δ′

Honest(�α′P ), . . . ,Honest(�β′Q),∆ � [�γ′]�δ; (R fsends (m,n));�δ′

(Here R may be in the list of P, . . . , Q, and n � m, and each of �α′P , �β′Q and �γ′

is obtained from �αP , �βQ and �γ by replacing all occurrences of (R sends m) with
(R fsends (m,n)).

Ordering of Actions:
(P generates n), (P fsends (m,n)), α � (P fsends (m,n));α

(where α is an action predicate of message m′ with n � m′.)

Firstly Sends is used to derive a fsends predicate, and Ordering of Actions is
used to derive an order of actions performed by different principals. (This is essentially
the same as AF3 presented in Table 5 of p.23 of [4].) For the same reason as the case of
weakening rules and honesty inferences, we should restrict the application of Firstly
Sends by the same condition (��).

3.2 An example of correctness proof

Table 1 is the full proof of matching conversations of CR protocol from initiator A’s
viewpoint. A proof of the same conclusion is presented in Table 10 of p.49 in [4]. CR
protocol Π[P,Q, n1, n2] described in an informal description is as follows.

6Here we point out another way for keeping the weakening rule meaningful: introducing the logical
negation and separating the weakening rules into two rules as follows.

Γ � [�α; �α′]P fsends (m, n)

Γ � [�α; α′′; �α′]ϕ
W(Act)

Here if α′′ is P ’s sending of message m′ such that n � m′, and �α′ includes another P ’s sending of
message m, then ϕ is ¬P fsends (m,n), and if not, then ϕ is P fsends (m,n). This way is essentially
the same as [3, 4]. (The Freshness Loss Axiom in Table 4 of p.22 in [4] is the corresponding axiom.)
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PA fresh(N1) � [�α]A sends 〈a, b,N1〉;
A receives 〈b, a,N2, {N2, N1, a}∗K−1

B

〉 (1)

(1),NV1 fresh(N1) � [�α]A sends 〈a, b,N1〉;B sends m;
A receives 〈b, a,N2, {N2, N1, a}∗K−1

B

〉 (2)

(2),Hon(M) H(�γ′), fresh(N1) � [�α]A sends 〈a, b,N1〉;
B sends 〈q, p, n2, {N2, N1, a}K−1

B
〉;

A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉 (3)

(3),Hon(S) H(�γ),H(�γ′), fresh(N1) � [�α]p = A, q = B,n1 = N1,
n2 = N2 (4)

(3),(4),Eq H(�γ),H(�γ′), fresh(N1) � [�α]A sends 〈a, b,N1〉;
B sends 〈b, a,N2, {N2, N1, a}K−1

B
〉; (5)

A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉
(4),Hon(R),Eq H(�β);H(�γ),H(�γ),H(�γ′), fresh(N1) � [�α]B receives

〈a, b,N1〉;B sends 〈b, a,N2, {N2, N1, a}K−1
B

〉 (6)
(1),FS fresh(N1) � [�α′]A fsends 〈a, b,N1〉;

A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉 (7)

(6),FS H(�β);H(�γ),H(�γ),H(�γ′), fresh(N1) � [�α′]B receives
〈a, b,N1〉;B fsends (〈b, a,N2, {N2, N1, a}K−1

B
〉, N2) (8)

(7),(8),OA H(�β);H(�γ),H(�γ),H(�γ′), fresh(N1) � [�α′]A fsends
〈a, b,N1〉;B receives 〈a, b,N1〉 (9)

(5),(8),OA H(�β);H(�γ),H(�γ),H(�γ′), fresh(N1) � [�α′]B fsends
(〈b, a,N2, {N2, N1, a}K−1

B
〉, N2); (10)

A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉
(8),(9),(10), ; H(�β);H(�γ),H(�γ),H(�γ′), fresh(N1) � [�α′]A fsends

〈a, b,N1〉;B receives 〈a, b,N1〉; (11)
B fsends 〈b, a,N2, {N2, N1, a}K−1

B
〉;

A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉
Hon(W),Cont H(�β);H(�γ′), fresh(N1) � [�α′]A fsends 〈a, b,N1〉;

(11), ; B receives 〈a, b,N1〉; (12)
B fsends 〈b, a,N2, {N2, N1, a}K−1

B
〉;

A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉

Table 1: A’s view at end of run following the initiator’s role of Challenge-Response
Protocol
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1. P → Q. 〈p, q, n1〉
2. Q→ P . 〈q, p, n2, {n2, n1, p}K−1

Q
〉

3. P → Q. 〈p, q, {n1, n2, q}K−1
P

〉
In this table, for readability we use some abbreviations as follows. �α is a sequence

A sends 〈a, b,N1〉; A receives 〈b, a,N2, {N2, N1, a}∗K−1
B

〉; A sends 〈a, b, {N1, N2, b}K−1
A

〉.
�α′ is the sequence obtained from �α by replacing the first action A sends 〈a, b,N1〉
with A fsends (〈a, b,N1〉, N1). Each symbols H(�β), H(�γ) and H(�γ′) are abbrevia-
tions of Honest(Q receives 〈p, q, n1〉), Honest(Q sends 〈q, p, n2, {n2, n1, p}K−1

Q
〉)

and Honest(Q fsends (〈q, p, n2, {n2, n1, p}K−1
Q

〉, {n2, n1, p}K−1
Q

)), respectively. We

also omit the predicates concerning information about keys: in this protocol, KA and
KB are the public keys for A and B, respectively, and K−1

A and K−1
B are the se-

cret part of these keys, respectively. Moreover, some predicates not related to the
derived predicates at each line are omitted. (i.e., we implicitly use the contraction
rules of non-commutative conjunction.) Finally, m on Line (2) is a message such that
{N2, N1, a}K−1

B
� m .

First we would like to focus attention on the use of non-monotonic predicate
fsends. On Line (6), the conclusion is the agreement property from A’s viewpoint.
Note that we do not use fsends to prove the agreement property. Therefore, if we want
to prove the agreement property of this protocol, as we have also shown in our previous
paper [9], we do not need to introduce any non-monotonic predicate.

The predicate fsends is used to derive the orderings between A’s action and B’s
one. Particularly, the orderB fsends 〈b, a,N2, {N2, N1, a}K−1

B
〉;A receives 〈b, a,N2,

{N2, N1, a}∗K−1
B

〉 on Line (10) is derived by Firstly Sends and Ordering of Actions,

and it cannot be derived without such non-monotonic notion. (The same property
is derived on Line (10) in the example of [4] by means of the AF3 axiom.) In this
proof, fsends is introduced on Line (7) by using the cut rule and the weakening rule
for actions as follows: first, by applying the cut rule to (1) and FSends we obtain
the sequent fresh(N1) � [ ]A sends 〈a, b,N1〉;A receives 〈b, a, . . .〉, and then by ap-
plying some weakening rules for actions we obtain (7). Here we point out that at
the second step each application of the weakening rule is restricted by (��) condi-
tion that “no predicate of the form A sends m (with N1 � m) does not appear be-
fore A fsends (〈a, b,N1〉, N1) in the action operator (i.e., in the square bracket [ ])”.
However, in this case, we can obtain the sequent (7) by any order of applications of
weakening rules for the components of this sequence. (Line (8) is similar to (7).)

By introducing the non-monotonic predicate, all weakening inferences for con-
crete actions and for honesty assumptions below the application of Firstly Sends on
Line (7) and (8) are restricted by (��) conditions that “A’s sending of 〈a, b,N1〉 (intro-
duced at Line (7)) and B’s sending of 〈b, a,N2, {N2, N1, a}K−1

B
〉 (introduced at Line

(8)) cannot be inserted before the corresponding actions”. The information about or-
derings are necessary for proving our aimed property. Therefore, if we want to prove
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a weaker property such as the agreement property, as we have shown in our previous
paper [9], we don’t have to introduce such non-monotonic predicates. Note that in our
system we do not use any temporal operators for deriving properties about the orders
of principals’ actions: our formalization only use the non-commutative conjunction.
Remark. In our proof, Line (3) is derived by honesty inference Hon(Match). The in-
tended meaning of this inference is “if B sends a message including {N2, N1, a}K−1

B
,

then B should send 〈b, a,N2, {N2, N1, a}K−1
B

〉 under the assumption that B honestly

follows �γ”. we restrict applications of the weakening rules to satisfy the (�) condition
that “Q’s sending action of a message including {N2, N1, a}K−1

B
does not appear in

the honesty assumptions”. Here we point out that we formalize this kind of inference
by some restrictions instead of using logical negation. On the other hand, in the proof
in [4], the same conclusion is derived by the honesty assumption that “if B does not
freshly generate N2 as a fresh value, then B should send 〈b, a,N2, {N2, N1, a}K−1

B
〉

under the assumption B is honest”. This implication is obtained by using ¬Fresh.

4 Trace Semantics and Soundness of the System

In this section we give a semantics for our inference system. First we give a definition
of the semantics (in Section 4.1), and next we give a sketch of soundness proof of our
system (in Section 4.2).

4.1 Trace Semantics

Our semantics is based on the notion of trace, which is a sequence of states. A state is
a multiset of primitive states of the form “principal P has information m”, and denoted
by P (m), Q(m), . . .. We also introduce a special kind of primitive state “message m
sent by P is currently transmitted through the network”, and denoted by Net(m,P ).
The notion of state is defined by the same way in Multiset Rewriting System [2], how-
ever we use it as semantic notion.

For preparing the definition of the semantics, here we introduce some notions and
notations. s0, s1, . . . are used to denote states and s, s′, . . . to denote sequences of
states, namely traces. We also introduce some notions related to traces. The notions
of membership relation (denoted by si ∈ s), order relation on s (denoted by ≤s), and
extension (denoted by s ⊆ s′) are defined by the same ways as those of sequences of
actions. (See Section 2.1.) When si is the i-th element of s, the number i is called
the position of si in s. We denote the number of occurrence of facts P (m) in a
state si by ‖ si ‖P (m) (e.g. if si = {P (m), P (m), Q(m)}, then ‖ si ‖P (m)= 2).
Key(P, si) is used to denote the set of key possessed by principal P at position si.
For messages m, m′ and a set of keys {k1, . . . , kl}, “m is accessible in m′ with keys
{k1, . . . , kl}” (denoted by m ∈{k1,...,kl} m

′) is the reflexive-transitive closure satisfy-
ing the following conditions: (i) mi ∈{k1,...,kl} 〈m1, . . . ,mn〉 for some i = 1, . . . , n,
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(ii) m ∈{k1,...,kl} {m}kj
for some j = 1, . . . , l.

In this section, we assume that all states except for states of network are mono-
tonously increasing for any trace. That is, we consider only traces where, once an
information is possessed by a principal, it does not disappear in his/her memory.

By means of the notion of traces, truth conditions for predicates of our syntax is
defined as follows. We denote the basic semantic relation “ϕ is true at state si in s” by
“|=〈s,i〉 ϕ”.

Truth condition for predicates:

- |=〈s,i〉 PK(P, k) iff P (k′),KeyPair(k, k′) ∈ si and ∀X �= P.(X(k′) �∈ si).
- |=〈s,i〉 P

k↔ Q iff P (k), Q(k) ∈ si and ∀X �= P,Q.(X(k) �∈ si).
- |=〈s,i〉 t = t′ iff si[t/x] = si[t′/x].

(for any terms t and t′)
- |=〈s,i〉 P sends m iff P (m) ∈ si−1, Net(m,P ) �∈ si−1 and Net(m,P ) ∈ si.
- |=〈s,i〉 P receives iff ∃X. (Net(m,X) ∈ si−1 and Net(m,X) �∈ si) and

m({m1}∗k1
, . . . , {mn}∗kn

) ‖ si−1 ‖P (m) +1 =‖ si ‖P (m), and
{mj}kj ∈Key(P,si) m and
‖ si−1 ‖P (mj) +1 =‖ si ‖P (mj) for each j = 1, . . . , n.

- |=〈s,i〉 P generates m iff P (m) �∈ si−1 and P (m) ∈ si.
- |=〈s,i〉 fresh(m) iff ∃X.(X(n) �∈ si−1 and X(n) ∈ si) and n � m.
- |=〈s,i〉 P fsends (m,n) iff |=〈s,i〉 P sends m and n � m and

∀j < i.∀m′ � m.(�|=〈s,j〉 A sends m′).
- |=〈s,i〉 α1; · · · ;αn iff |=〈s,i1〉 α1 and · · · and |=〈s,in〉 αn,

and i1 ≤ · · · ≤ in ≤ si.
Next, the definition “ϕ is true for trace s” (denoted by |=s ϕ) is as follows.

- |=s β iff ∀si ∈ s.(|=〈s,i〉 β) (where β = PK(P, k) or P
k↔ Q, or

t = t′.)

- |=s fresh(m) iff ∃si ∈ s.(|=〈s,i〉 fresh(m)).
- |=s α1; · · · ;αn iff ∃si ∈ s.(|=〈s,i〉 α1; · · · ;αn) (where each αi is an

action predicate.)

We define that |=s Γ iff “|=s �α and . . . and |=s
�β, and |=s θi for each i = 1, . . . , n”

(where Γ = �α, . . . , �β, θ1, . . . , θn). By the above definition, it is clear that for any ϕ
except for fsends (i.e., for the case that ϕ is monotonic), if |=s ϕ then |=s′ ϕ for any
s ⊆ s′.

In terms of the above definitions, we define that the basic form of assertion is true
under s, namely,

Honest(αP
1 ); · · · ;Honest(αP

n ), . . . Honest(αQ
1 ); · · · ;Honest(αQ

k ), . . . ,Γ |=s [�α]ϕ

holds if and only if the following is satisfied (where ϕ is a state predicate or a sequence
of action predicates).
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If C1 ∀i ≤ n.∀i′ < i.(|=s α
P
i ⇒|=s α

P
i′ ), and

∀j ≤ k.∀j′ < j.(|=s α
Q
j ⇒|=s α

Q
j′),

C2 ∃s′.(s ⊆ s′ ∧ ∀i ≤ n.(|=s′ αi) ∧ ∀j ≤ k.(|=s′ αj)),
C3 |=s Γ,
C4 |=s �α,

then |=s ϕ.

Here for each honest predicate Honest(αX
i ), if it is of the form Honest(αX

i ,m
X
i ) for

X = P,Q and for i = 1, . . . , n or 1, . . . , k (i.e., mX
i is not empty), then the following

condition is also satisfied:

C5 ∀m′.((m′ � mX
i ) ∧ (m′ �= m′′) ∧ (αX

i = X sends m′′) ⇒ ∀s′ � s.(�|=s′

X sends m′)).

The reason why we need this additional condition is as follows: first recall that
Honest(αX

i ,m
X
i ) (where mX

i is not empty term) means that “X honestly follows the
sending action αX

i (say, X sends m′′) and he/she does not follow any other sending
actions of the message m′ including mX

i ”. Therefore, to satisfy this restriction, we
assume X sends m′′ is false for any extension s′ of s.

If the above form of assertion is true for any trace s, then this assertion is called
valid and we omit the subscription s.

Remind that in this paper we consider only protocols which do not include any
duplication of primitive actions. We assume that all traces considered here are also
restricted by the same condition. (Formally, for any state s and for any action predicate
α, if |=〈s,i〉 α and |=〈s,j〉 α then i = j.)

4.2 Soundness of the System

In this subsection we show a sketch of a soundness proof of our system. In our previous
paper [9], we presented a soundness proof for the system including only monotonic
predicates. Then, here we only consider some of cases related to the non-monotonic
predicate fsends.

Nonce verification 2: (where {m1}K � m2, m3, and {m1}K �� m5, and n � m1, m4, m5.)

(PK(K,Q)), (P fsends (m2, n)), (P generates n), (P receives m5)
� (P fsends (m2, n)); (Q receives m3({m1}∗K));

(Q sends m4); (P receives m5)

Assume that all the predicates appearing in the left hand side are valid. That is, for
any s (= s1, . . . , sn), (i) ∀j < n.∀X �= Q. ((Q(K−1) ∈ sj) ∧ (X(K−1) �∈ sj)),
(ii) ∃si1.((|=〈s,i1〉 P sends m2)∧ (∀j′ < i1.(�|=〈s,j′〉 P sends m′ with n � m′))), (iii)
∃i2 < i1.(|=〈s,i2〉 P generates n), (iv) ∃i3 > i1.(|=〈s,i3〉 P receives m5 with n � m5,
{m1}K �� m5). From (ii), (iii) and (iv), ∃X �= P.∃i4 < i3.(|=〈s,i4〉 X sends m5)
holds, and then ∃Y �= P.∃i5 < i4.((Y (n) ∈ s5) ∧ (∀Z �= P, Y.(Z(n) �∈ i5))).
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Then by (i) and (ii), ∃l.((i1 < l < i5) ∧ (|=〈s,l〉 Q receives m3({m1}∗K))) and
∃l′.((l < l′) ∧ (|=〈s,l′〉 Q sends m5) with n � m4). This is the truth condition
for (Q receives m3({m1}∗K)); (Q sends m4), and therefore, the sequence of actions
in the right hand side of the sequent is true.

Firstly Sends:
(Without loss of generality, here we only consider a special case such that only P ’s
honesty assumptions appear in the left hand side of each sequent and omit any context
for readability.)

Honest(αP
1 ; . . . ;αP

n ) � [�γ]�δ; (P sends m);�δ′

Honest(α′P
1 ; . . . ;α′P

n ) � [�γ]�δ; (P fsends (m,n));�δ′

(Here n � m, and for each α′Pi , α′P
i = P fsends (m,n) if αP

i = P sends m,
otherwise α′Pi = αP

i .)

Here it is clear that the soundness holds when α′Pi = αP
i for all i < n (i.e., �αP

does not contain P sends m). Then, from now we shall consider only the case that
αP

i = P sends m and α′P
i = P fsends (m,n) for some i < n. (In this case, by the

condition (��), �δ does not include δj = P sends m′ with n � m′ for all j < i.)
First, consider a trace s satisfying the conditions C1 and C2 (previously shown

in the definition of truth condition for the sequent) for Honest(α′P1 ; · · · ;α′P
n ). By

the definition of the truth condition for fsends, s also satisfies the conditions C1
and C2 for Honest(αP

1 ; · · · ;αP
n )”. Here we assume that the upper sequent is valid,

then |=s
�δ;P sends m;�δ′ holds. Moreover, if we assume that s satisfies C1 and

C2 for Honest(α′P
1 ; · · · ;α′P

n ), then by C1, the following holds that “if |=s α′
i (=

P fsends (m′, n)), then ∀j < i.(�|= P sends m′) with n � m′ and m′ �= m”. There-
fore, ∀j < i. �|=〈s,j〉 P sends m′′ for any m′′ with m � m′′. This is the truth condition

for |=s
�δ;P sends m. Therefore the right hand side of the lower sequent is valid.

Weakening rules:

Γ,Honest(�αP ; �α′P ) � [�β]ϕ

Γ,Honest(�αP ;α′′P ; �α′P ) � [�β]ϕ
W(Hon)

Γ � [�α;P �α′P ]ϕ
Γ � [�αP ;α′′P ; �α′P ]ϕ

W(Act)

(Here we only consider the case that α′′P is P sends m. It is similar way to prove the
case that α′′P is P fsends (m,n).)
(1) Weakening (Honesty):

Here we assume that the lower sequent satisfies the (��) condition. That is, �α′P

does not include any action of the form P fsends (m′, n) with n � m′. It is suf-
ficient to show that for any trace s, “if s satisfies the conditions C1 and C2 for
Honest(�αP ;α′′P ; �α′P ), then s also satisfies the condition C1 and C2 forHonest(�αP ;
�αP )”, however it immediately follows from the definition of the truth condition of
fsends and the (��) condition.
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(2) Weakening (Actions):
By (��) condition, we can assume that �α′P does not include P fsends (m′, n) with

n � m,m′. It is sufficient to show that for any trace s, |=s �α
P ; (P sends m); �α′P

then |=s �α
P ; �α′P , however, this immediately follows from the definition of |=s �α

P ;
(P sends m); �α′P .

Remark. As for the weakening rule for honesty assumptions, if the lower sequent vio-
late the (��) condition (i.e., if �α′P includes action predicate of the form P fsends (m′, n)
with n � m′), then there exists a trace such that it does not satisfy the conditions for
Honest(�αP ;α′′P ; �α′P ) whereas it satisfies Honest(�αP ; �α′P ). The same is true of the
other weakening rule.

5 Conclusions and future work

By the distinction between monotonic and non-monotonic predicates, we gave the way
to include non-monotonic properties, and showed that they can be used in more power-
ful derivation to prove correctness properties of a protocol. As an example, we proved
the matching conversations of CR protocol, where the ordering of actions performed
by different principals are derived by Firstly Sends and Ordering of Actions. Other
examples are Nonce Verification 2 and 3 presented in (II-2) of Appendix. These are
formalizations of the notion of Outgoing test in the Authentication tests based Strand
space method (cf. Guttman-Fábrega [7]). This notion can be formalized only by using
non-monotonic property fsends or similar one, which can represent the same notion
of uniquely originates (in [7]).

In our extended system, we did not use logical negation, nested implications and
any temporal operators to prove our aimed property, which were used in [3, 4]. (In
other words, in our system each sequent is the form of Horn-clause.) This simpli-
fication is realized by the restriction on the honesty inferences. However, this re-
striction is a trade-off. For example, the following kind of inferences cannot be ex-
pressed in our system: assume that a principal (say P ) is honest following a role
�α = α1;α2;α3 of a protocol. Then from this assumption, we can conclude that
“Honest(P ) ∧ (P performs β) ⊃ (β = α1) ∨ (β = α2) ∨ (β = α3)” (i.e., “if
P is honest and he/she performs an primitive action β then it is α1 or alpha2 or α3”),
because honest principal does not perform any other actions than the actions defined
by his/her role. One of our next aims is to investigate the formalization of such in-
ferences and clarify what kinds of properties (useful for a correctness proof) become
provable in such extended system.

We also gave a semantics based on the notion of trace and show a sketch of sound-
ness proof. This direction should make a contribution to our further target, namely,
automated generation of correctness proofs or correct protocols for example.
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Appendix: axioms and inference rules of the system
(I) Logical inference rules

(1) Structural rules: weakening, contraction and exchange rules in the left hand
side, and cut rule (Cut) (2) Inference rules for equality (Eq) (a typical rule which we
often use is presented below), (3) Substitution rule (Subst), (4) Inference rules for
non-commutative conjunction (;): Concatenation, Weakening and Contraction.

Γ � [�α]ϕ ϕ,∆ � [�α]ϕ′

Γ,∆ � [�α]ψ Cut
Γ � [�α]x = t ∆ � [�α]ϕ[x]

Γ,∆ � [�α]ϕ[t/x]
Eq;

Γ � [�α]�β;β′′ ∆ � [�α′]β′′; �β′

Γ,∆ � [�α; �α′]�β;β′′; �β′
Concat- Γ[x] � [�α[x]]ϕ[x]

Γ[t/x] � [�α[t/x]]ϕ[t/x]
Subst;

�β; �β′,Γ � [�α]ϕ
�β;β′′�β′,Γ � [�α]ϕ

Weak-
Γ � [�α]�β;β′′; �β′

Γ � [�α]�β; �β′
Cont-;

(II-1) Axioms about primitive actions

� [α1; · · · ;αn]α1; · · · ;αn

(II-2) Axioms for relationships between properties
(Here axioms including non-monotonic property are marked by †.)

Freshness 1:
P generates n � fresh(n)

Freshness 2: (where m � m′.)

fresh(m) � fresh(m′)

Nonce Verification 1: (where {m}K−1 � m′, m′′.)

(PK(K,Q)), (fresh(m)), (P receives m′({m}∗K−1))
� (Q sends m′′); (P receives m′({m}∗K−1))

Nonce verification 2†: (where {m1}K � m2, m3 and {m1}K �� m5 and n � m1, m4, m5.)

(PK(K,Q)), (P fsends (m2, n)), (P generates n), (P receives m5)
� (P fsends (m2, n)); (Q receives m3({m1}∗K));
(Q sends m4); (P receives m5)

Nonce verification 3†: (additionally to the condition for Nonce Verification 2,

{m1}′K �� m5 is also satisfied.)

(PK(K,Q)), (P fsends (m2, n)), (P generates n),
(P receives m5), (Q sends {m4}′K), (PK(K ′, A)) � m5 = {m4}′K
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We also admit axioms obtained from Nonce verification 1-3 by replacing PK(K,Q)
with P K↔ Q, respectively.

Shared secret: (where K′ � m1, m2.)

(P sends {m1}K1), (P sends {m2}K2), (P generates K ′), (P K1↔ Q), (P K2↔ R) �
(Q K ′↔ R)

Firstly Sends†:
This rule satisfies (��) condition (cf. Section 3.1).

Honest(�αP ), . . . ,Honest(�βQ),∆ � [�γ]�δ; (R sends m);�δ′

Honest(�α′P ), . . . ,Honest(�β′Q),∆ � [�γ′]�δ; (R fsends (m,n));�δ′

Ordering of Actions†: (where α is an action predicate of message m′ with n � m′.)

(P generates n), (P fsends (m,n)), α � P fsends (m,n);α

(III) Honesty inferences
For (1) Substitution and for (3) Deriving another action, we also admit the inference rules obtained by

replacing “receives” with “generates” or “sends”, respectively. These rules satisfy the (�) (cf. Section

2.2 (III)) and (��) conditions.

(1) Substitution: (where m � m′.)

Γ � [�α](Q receives m[t/x])
Γ,Honest(Q receives m) � [�α]x = t

H(S)

(2) Matching:

Γ � [�α]�β; (Q sends m);�γ

Γ,Honest(Q sends m′,m) � [�α]�β; (Q sends m′);�γ
H(M)

(3) Deriving another action in a role: H(R)

Γ � [�α]�β; (Q sends m);�γ

Γ,HonestQ(Q receives m′;Q sends m) � [�α]�β; (Q receives m′); (Q sends m);�γ

(IV) Weakening rules for actions and honesty assumptions
Weakening rule for honesty assumptions (left below) satisfies (�) and (��) conditions, and weakening

rule for actions (right below) satisfies (��) condition.

Γ,Honest(�αP ; �α′P ) � [�β]ϕ

Γ,Honest(�αP ;α′′P ; �α′P ) � [�β]ϕ
W(Hon)

Γ � [�αP ; �α′P ]ϕ
Γ � [�αP ;α′′P ; �α′P ]ϕ

W(Act)
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A Synchronous Model for Multi-Party Computation
and the Incompleteness of Oblivious Transfer

Dennis Hofheinz† and Jörn Müller-Quade†

Abstract

This work develops a composable notion of security in a synchronous com-
munication network to analyze cryptographic primitives and protocols in a reli-
able network with guaranteed delivery. In such a synchronous model the abort
of protocols must be handled explicitly. It is shown that a version of global bit
commitment which allows to identify parties that did not give proper input cannot
be securely realized with the primitives oblivious transfer and broadcast. This
proves that the primitives oblivious transfer and broadcast are not complete in
our synchronous model of security.

In the synchronous model presented ideal functionalities as well as parties
can be equipped with a “shell” which can delay communication until the adver-
sary allows delivery or the number of rounds since the shell received the message
exceeds a specified threshold. This additionally allows asynchronous specifica-
tion of ideal functionalities and allows to model a network where messages are
not necessarily delivered in the right order. If these latency times are chosen to be
infinite the network is no more reliable and becomes completely asynchronous.
In the full version [HMQ04] of this paper, it is shown that a large class of pro-
tocols which are secure in the asynchronous settings [Can01, CLOS02] can be
transformed into secure realizations in the new model by choosing infinite la-
tency times.
Keywords: Security protocols, oblivious transfer, protocol composition.

1 Introduction

In this contribution it is proven that in a communication network in which message
delivery is guaranteed and participating parties are periodically activated, oblivious
transfer together with a broadcast primitive are not complete for secure multi-party
computations.

To show this separation between security in reliable networks and security in
completely asynchronous networks a new synchronous model is developed. In ad-
dition to the properties of the synchronous models of [Can00] the new model al-

��IAKS, Arbeitsgruppe Systemsicherheit, Prof. Dr. Th. Beth, Fakultät für Informatik, Universität
Karlsruhe, Am Fasanengarten 5, 76 131 Karlsruhe, Germany
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lows very general composition of protocols along the line of the asynchronous set-
tings [Can01, PW01, BPW04]. The new model is a synchronous variation of [Can01]
(for a relation, cf. Section 2.5). It differs from the synchronous variant sketched
in [Can01], which was not suitable for our purpose as it does not guarantee activa-
tion of ideal functionalities in each round.

It might have been possible to formulate our main result in the frameworks of
[PW01, BPW04, PW00]. Yet since machine modeling and scheduling there differs
substantially from that in [Can01, CLOS02], it would be difficult to compare our re-
sult to established realizability results in the latter settings: Our goal is to point out
the importance of reliability assumptions on a network for deducing hierarchies of
primitives, and to relate our result to results derived for the asynchronous modelings
of [Can01, CLOS02].

Our new model shares with the aforementioned notions of security the concept of
simulatability. Intuitively, this means that a given protocol is compared to an ideal-
ization of the protocol task in question and considered secure if no difference can be
detected by any protocol environment, or, an arbitrary user. There is already a (pos-
itive and constructive) general realizability result for protocol tasks in a synchronous
variant of the setting [Can01], cf. [Can01, Theorem 9 of full version]. Another realiz-
ability result was established in [CLOS02], again for a slight (asynchronous) variation
of the setting of [Can01]. Specifically, [CLOS02] present a protocol construction with
which general reactive ideal functionalities (i. e., idealizations of protocol tasks) can
be securely realized, given only a common reference string. (A common reference
string, ideally drawn from a fixed distribution, can be considered an idealization of a
public set-up information.)

However, the setting of [Can01] (and the mentioned variations) does not allow
to formulate “timeouts” or functionalities which guarantee certain response times. In
consequence, even secure protocols in that sense may “get stuck” or “hang” in face of
corrupted parties, even if all protocol messages of the uncorrupted parties get delivered
immediately.1 Thus, we believe it is reasonable to investigate—in a simulatability-
based setting—security properties of functionalities which do guarantee service. In
Section 2, we therefore present a synchronous modeling of multi-party computation
which allows for universal composition, and a result allowing to carry over realizability
results established in the settings of [Can01, CLOS02] into our setting.

In the new model tools are provided to catch reliable or even asynchronous net-
works in our setting. In particular, we show that a protocol realizing a certain ideal
functionality in the settings [Can01, CLOS02] realizes a similar functionality in our
setting, yet one in which it is made explicit that no response can be guaranteed.

However, properties like guaranteed output and explicit abort can be especially
important for real world applications—e. g., an electronic election or an electronic
auction should not “hang”, but should be robust to attacks like the one presented here.

1For the framework of [PW01, BPW04], this problem was addressed in [BPSW02].
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If output is to be guaranteed, then aborting protocols must be handled explicitly. A
synchronous, i. e., a completely reliable network allows to distinguish different kinds
of abort—the most interesting of which is the abort with cheater identification. A com-
mitment of one party to all parties to the same bit (a global bit commitment) becomes
more challenging in a synchronous network as the ideal functionality aborts only if the
committer refused to commit. Hence this protocol allows for cheater identification. To
make this strong contrast to the asynchronous setting explicit we prove that it is not
possible to securely implement a global bit commitment in our synchronous model
given the cryptographic primitives of oblivious transfer and broadcast.

2 The modeling

2.1 Real and Hybrid Model

The real model is an abstraction of a malicious protocol environment as one would
expect it in reality. Thus, a real-model adversary may read all messages sent between
parties, or corrupt parties and then control their behavior. The hybrid model is a real
model in which parties are additionally offered blackbox access to idealizations of
(sub)protocols, henceforth called ideal functionalities.

All parties, adversaries and ideal functionalities are modelled as interactive Turing
machines (ITMs), just as in [Can01]. An ITM has read-only tapes for incoming com-
munication and local input, write-once tapes for outgoing communication and local
output, a work tape, a one-bit activation tape, a read-only random tape and read-only
tapes containing machine identity and security parameter, respectively. Unless explic-
itly noted, any ITM mentioned in this work is assumed to be polynomially bounded in
the sense that no matter with which tape contents activated, it terminates this activa-
tion within p(k) steps (i. e., transitions) for a fixed, ITM-specific polynomial p and the
value k on the security parameter tape. To reflect polynomial total length of a protocol
run, the ITMs Z and A described below are assumed to halt after a polynomial num-
ber of activations. An ITM which has halted terminates instantly—without switching
at all—on all future activations.

Aside from parties Pi and an adversary A, an environment machine Z (modelled as
an ITM2) takes part in a protocol run. Z represents an arbitrary procotol environment
in which the investigated protocol is run as a subprotocol. In particular, Z supplies
parties with input, reads their output and may even communicate with the adversary.
In the simulatability-based definition of security given below, Z takes a crucial role.

To protect the polynomially bounded adversary from being activated “too often”
by the environment, we introduce the following special capability of the adversary:
A may enter a special class of states to signal that further messages from Z are not

2In [Can01], Z is the only non-uniform ITM, i. e., Z gets as initial input the value of an arbitrary
function of the security parameter. We adopt this, but stress that all results below hold also for uniform
Z, cf. also the discussion in [HMQS03].
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to be delivered to A and thus, such messages do not cause activation of A. When A
enters such a state, we say that A blocks. This convention resembles the mechanism of
length functions used in [BPSW02] for similar purposes. Without such a convention
and polynomially bounded adversaries which may not depend on the distinguishing
environment, the environment may simply “kill” the adversary by activating it suffi-
ciently often right at the start of the protocol. This is especially crucial for simulators
(see below).

The real model can be seen as a (trivial) special case of the hybrid model, and
hence it suffices to give a description of a protocol run in the {Fi}-hybrid model for a
finite set {Fi} of ideal functionalities. First some terminology: Delivering a message
means moving it from the outgoing communication tape of the sending ITM to the
incoming communication tape of the receiving ITM. Here we assume authentication:
the sender identity is automatically added to the message at delivery. After an ITM
terminates its activation, its incoming communication tape is automatically cleared to
ensure future message processing.

All ITMs may, when active, of course access their own tapes; furthermore, Z
may read the local output tapes of the Pi and write onto their local input tapes in a
write-only manner. A may read all outgoing communication tapes of the Pi and may
also corrupt one or more parties. Upon corruption of Pi, A instantly gets a message
containing Pi’s complete past history (including states, head positions and tapes). A
may from then on write arbitrary messages on its outgoing communication tape in the
name of Pi, and all messages addressed to Pi are delivered to A. Moreover, a message
stating that Pi was corrupted is automatically delivered both to Z and to all Fi.3 Very
briefly, the message transfer rules are: Z may talk to A, A may talk to Z , to the parties
and the Fi, the Fi may talk to A and to the parties, and the parties may talk to each
other, to the Fi and to A. A detailed description of a protocol run in the {Fi}-hybrid
model follows.

1. Attack Phase: Basically, this is a message-driven interaction between Z , A and
the Fi, only Z and the Fi may not interact directly. First, Z is activated with
local input “round-start”. After Z has terminated its activation, all mes-
sages Z possibly wrote to A are delivered or, if A blocked messages from Z ,
simply erased. If there was no such message, or if Z has halted, we consider the
complete protocol run ended and the first cell on Z’s local output tape is inter-
preted as Z’s (binary) output. Otherwise, A is activated next or, if A blocked,
Z is activated again. Once A has terminated its activation and written at least
one message to Z , all such messages are delivered and Z is activated again.
However, if A wrote no message to Z , the first Fi (in order of ITM identities) to
which A wrote at least one message is activated with all messages addressed to
it from A delivered. This includes messages sent from A to Fi in the name of a

3This is in analogy to [Can01, CLOS02] and ensures that Z can be used to compare two protocols
using knowledge about the corruptions. Furthermore, it allows formulating strong functionalities Fi.
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corrupted party. Once this Fi terminates its activation, all messages it possibly
wrote to A or the parties are delivered and A gets activated again. If A wrote
messages neither to Z nor to an Fi, all messages A wrote to the Pi are delivered
and we proceed to the next phase.

2. Party Computation: All messages from any party Pi to another party Pj are
delivered. Then, all non-corrupted Pi are activated in parallel. When all Pi have
terminated their activations, messages they have written to the Fi or to A are
delivered.

3. Ideal Functionality Computation: All Fi are activated in parallel with local
input “computation”. After the Fi have terminated their activations, mes-
sages the Fi have written to A or to the parties are delivered. Then, we start
over with the attack phase.

Note that A cannot access communication of uncorrupted parties with ideal func-
tionalities. However, our scheduling models a “rushing” adversary that may let cor-
rupted parties send messages in dependance of the messages sent by honest parties in
the same round. Since all ITMs terminate their current activation in polynomial time
and both Z and A halt after a polynomial number of activations, a protocol run as de-
scribed above ends after a polynomial number of steps. When we speak of a protocol,
we mean a set of parties Pi running together as above. The output distribution of Z
when run on security parameter k in the {Fi}-hybrid model with protocol π and an
adversary A is denoted by Z({Fi}, π,A, k). Now we are ready to state the first part
of our security definition, which relates two protocols.

Definition 1 Let π be an n-party protocol formulated in the {Fi}-hybrid model and
let τ be an n-party protocol formulated in the {Gj}-hybrid model. We say that π
securely realizes τ (written π ≥ τ ) iff for every adversary A there exists an adversary
S (called simulator) such that for every environment Z the function

P(Z({Fi}, π,A, k) = 1) − P(Z({Gj}, τ,S, k) = 1)

is negligible4 in k. If this holds even with respect to Z which are not necessarily
polynomially bounded (but still halt after polynomially many activations), we say that
π securely realizes τ unconditionally (written π ≥≥ τ ).

Note that for the unconditional case, we have chosen to allow an unbounded envi-
ronment, but not an unbounded adversary. When considering unbounded adversaries,
there is a practical need for an unbounded environment, as known proof techniques for
composition don’t seem to apply when only the adversary, but not the environment is

4f : � → � is called negligible, iff ∀c ∈ � ∃k0 ∈ � ∀k > k0 : |f(k)| < k−c.
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unbounded. On the other hand, when considering an unbounded environment, the se-
curity notion which allows for unbounded adversaries is strictly weaker than the same
notion with polynomially bounded adversaries. Also, when allowing both unbounded
adversaries and environments, the resulting security notion does not imply the seem-
ingly weaker bounded security notion. (Our notion “≥≥”, though, does imply “≥”
trivially.)

2.2 Ideal Model

In contrast to the real model, the ideal model reflects an idealization of a given protocol
task. For simulation-based approaches, such an idealization is generally modelled as a
single ideal functionality F which reads all input and secretly computes output accord-
ingly, possibly in a reactive manner. This can be modelled in the {F}-hybrid model
with a set D(F) of n identical dummy parties. (Here, the number n of parties is im-
plicitly determined by the specification of F .) Each dummy party relays its local input
to F and locally outputs whatever it receives from F . For polynomially boundedness,
we assume that each dummy party terminates its activation after it has copied as much
input to F as F can read in one activation (analogously for the output F may have
written). Now we are ready to define the F-ideal model as the {F}-hybrid model with
dummy parties D(F) and an additional party computation step after the functionality
computation step. This is to reflect immediate output generation. The output of an
environment Z run on security parameter k in the F-ideal model (as described above)
and an adversary A will be denoted Z(F ,A, k). The second part of our security defi-
nition allows us to specify when we consider a protocol a secure implementation of an
ideal functionality.

Definition 2 Let π be an n-party protocol formulated in the {Fi}-hybrid model and
let F be an n-party ideal functionality. We say that π securely realizes F (written
π ≥ F) iff for every adversary A there exists an adversary S such that for any Z , the
function

P(Z({Fi}, π,A, k) = 1) − P(Z(F ,S, k) = 1)

is negligible in k. If this holds even with respect to Z which are not necessarily poly-
nomially bounded (but still halt after polynomially many activations), we say that π
securely realizes F unconditionally (written π≥≥F).

From the definitions, it is clear that the relations “≥” and “≥≥” are transitive rela-
tions on n-party protocols. Furthermore, π ≥ τ in conjunction with τ ≥ F implies
π ≥ F , analogously for “≥≥”.

2.3 Composition

Due to space limitations, here we only note our security notion for protocols behaves
well under universal composition. For details, cf. the full version [HMQ04].
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2.4 Shell Constructs

In contrast to [Can01, CLOS02], our model does not allow the adversary to block
messages, not even those sent from or to an ideal functionality. This allows formulating
functionalities in a very specific way, but often it might be necessary for simulation to
leave delivery—to a certain degree—up to the simulator. Therefore, we adapt the
idea of [Bac03] to equip a machine with a “coat”, or “shell”, which manages message
delivery to and from it. (In [Bac03], an “asynchronous coat” was used to investigate
synchronously formulated machines in an asynchronous setting.)

Namely, for an ITM M (one should have in mind a party or an ideal functional-
ity here), we define M ’s asynchronization [M ](precv, psend, clk) (often denoted [M ]
when the context is clear), with precv, psend ∈ Z[x] ∪ {∞} and clk ∈ {async,sync}.
Internally, [M ] keeps a simulation of M and relays local in- and output as well as com-
munication of M with A directly, with some exceptions explicitly noted below. Upon
an incoming message m from a sender S �= A, [M ] writes a message “request
receive j from S” to A; here, j simply denotes a running number assigned by
[M ]. If [M ] receives a message “allow receive j” from A, where j has been
assigned before, [M ] relays the corresponding message m to the simulated M . Also,
any message is automatically relayed to M after precv(k) activations of [M ]—or, if
M is an ideal functionality, after precv(k) local “computation” inputs. (There is
no automatic message delivery if precv = ∞.) Similarly, if M wants to send a mes-
sage m to a recipient R �= A, [M ] first generates a “request send j to R”
message to A and actually sends m to R upon an “allow send j” message from
A or—whatever happens first—after psend(k) rounds (i. e., [M ]-activations, resp. lo-
cal “computation” inputs). M is activated exactly once in every [M ]-activation if
clk = sync. Otherwise, M is activated only if one or more messages or local input are
relayed to it in the respective [M ]-activation; in that case, M is activated once for local
input other than “computation”, and each incoming message. The order is: local
input first, then incoming messages ordered by sender identity. (Formally, we assume
M only to process interleaved messages, as guaranteed by the delivery process in our
modelling.)

[M ] halts when M has halted and all messages from M have actually been sent.
Clearly, [M ] halts after a polynomial number of activations (resp., rounds in the case
of ideal functionalities) if and only if M does so, clk = sync and psend �= ∞. To
make [M ] polynomially bounded in each activation, we first mandate that [M ] reads
in each activation only one local input and one message per sender S �= A, truncated
to the maximum size which M is able to process in one activation. (We assume that
by the time of construction of the “shell”, the number n and the identities of par-
ties and adversary are already fixed.) Additionally, at most one “allow receive”
message from A per sender and at most one “allow send” message per recipient
is processed; also, at most one message from A to M is read and truncated if “too
long” for M . Processing of A’s messages stops as soon as “too long” or “too many”
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messages are encountered. Clearly, these restrictions limit the generality of [M ], yet in
many cases—as, e. g., the case M = FSFE of an ideal functionality for secure function
evaluation—this might be considered condonable.

By adding shells to the parties of a protocol, one can catch the notion of reliable
or even asynchronous networks, the former which deliver messages after a polynomial
number of steps. Furthermore, ideal functionalities may be formulated asynchronously
in the first place, and later a shell may be added to leave message delivery factually up
to the adversary (while it is possible to fix certain maximum latency times for messages
sent to and from the functionality).

2.5 Relation to Other Models

Due to space limitations, we only note that a large class of protocols secure in the sense
of [Can01] or [CLOS02] can be sensibly embedded into our model. This embedding
is security-preserving. For details, cf. [HMQ04].

3 Global Bit Commitment is Impossible

In [BG90, GL91, CvdGT95], different protocols for realizing general secure function
evaluation based only on oblivious transfer and broadcast were given—yet the notion
of security used in these contributions is not simulatability-based; furthermore, these
protocols can be aborted by a single party.

In this section we will show that in a reliable network with a broadcast functional-
ity with guaranteed delivery, the primitive oblivious transfer (together with a broadcast
primitive) is not complete as soon as three or more parties are involved. Namely, obliv-
ious transfer and a broadcast channel will be proven not to be sufficient to implement
a version of global bit commitment for which the output of the uncorrupted parties
upon abort allows to identify who did not cooperate. Cryptographic primitives which
upon abort allow to identify a corrupted party (which deviated from the protocol) are
of special interest as they could be used to expell “disruptors” and replace their input
by some default value until the protocol terminates successfully.

The constructions of [CLOS02] do not build up protocols from given primitives
like oblivious transfer or broadcast, but allow to translate protocols which are secure
with respect to passive adversaries into protocols which can tolerate an actively cor-
rupted majority. The compiler in [CLOS02] is designed for an asynchronous model
and no party or functionality can know if a message is missing due to deviation of a
corrupted party from the protocol, or if this message is simply not delivered by the
asynchronous network.

In contrast to that, the synchronous model of communication developed in this
work reflects the properties of a completely reliable network. Intuitively, this makes
it impossible for the adversary to let his actions appear as network problems. Hence,
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in a setting with authenticated links an uncorrupted party or a functionality is always
able to unambigiously identify the sender of a faulty message or a party who refuses to
send a message as required in the protocol. This allows to define multi-party primitives
which cannot be implemented with the primitives oblivious transfer and broadcast.
The functionality introduced here is a version of the primitive global bit commitment,
which allows to identify parties giving no proper input.

It is an interesting problem if a synchronous version of the compiler used in
[CLOS02] allows to securely implement general functionalities with cheater identi-
fication in a reliable network.

Settings in which oblivious transfer or secure channels are not complete were con-
sidered in the literature before. In [FGMO01] a complete three party primitive (obliv-
ious two cast) was presented which can implement all secure function evaluations in
presence of a corrupted minority without using a broadcast channel. However, oblivi-
ous two cast cannot implement oblivious transfer if one drops the assumption of an un-
corrupted majority.5 In [MQ02], a quantum cryptographic protocol, which implements
an unconditionally secure signature scheme along the line of [PW92] was presented.
In the protocol of [MQ02], uncorrupted parties can decide from their view if the signer
refused to sign a document or if some other party aborted the computation. As shown
there, this is impossible when using only classical secure channels and a broadcast
channel. The unpublished draft [MQI00] which inspired part of this work informally
sketches a multi-party primitive anonymous oblivious transfer which is claimed to be
more powerful than oblivious transfer.

Next we will describe a (single use per party) functionality FGCOM, intended to
formalize global bit commitment. Here, one party can be committed to all parties to the
same bit. Moreover, using the delivery guarantee of our synchronous model, a party is
either committed to all honest parties or all honest parties can deduce that Pi did not
use the functionality FGCOM. We will show that this functionality, which intuitively
allows to detect misuse, cannot be securely realized in the {[FOT‖pOT], [F�(k)

BC ‖pBC]}-

hybrid model (cf. Appendix A for a description of the broadcast functionality F�(k)
BC

and the oblivious transfer functionality FOT).

Theorem 3 In the {[FOT‖pOT], [F�(k)
BC ‖pBC]}-hybrid model (for arbitrary but fixed

choices of shell parameters and polynomials pOT(k), pBC(k), �(k)), there is no func-
tionality [FGCOM](precv, psend, clk) (with precv, psend �= ∞ and clk ∈ {async, sync})
which can be securely realized for n ≥ 3 parties.

Proof. A proof can be found in the full version [HMQ04]. We provide a very rough
sketch: A party P1 commits to P2, P3 using a protocol π assumed to realise [FGCOM].
But either P1 or P2 blocks all point-to-point communication between P1 and P2, es-
pecially the oblivious transfer channel. As P3 can from its view not decide who is

5Then, a collusion of all parties but the sender of an oblivious cast can reconstruct everything that was
sent.
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Functionality FGCOM

FGCOM proceeds as follows, running with parties P1, . . . , Pn and an adversary S .
Messages not covered here are simply ignored.

• Commit: When receiving “(commit,b)” from a party Pi with b ∈ {0, 1},
store the tuple (Pi, b) and send “(receipt,Pi)” to all parties and to the
adversary. Ignore any future “commit” messages from this party Pi as well
as all messages not of the form “(commit,Pi,b)”.

• Reveal: When receiving a message “(reveal)” from a party Pi: If a tuple
(Pi, b) was previously recorded, then send the message “(reveal,Pi,b)”
to all parties and to S . Otherwise, ignore.

Figure 1: Functionality FGCOM

cheating, the protocol π must produce a valid commitment without using any point-
to-point communication between P1 and P2. A variant of the attack of [CF01] on
universally composable bit commitment can be mounted in this situation. Thus, π
must be insecure. �

Here a remark is in place: functionalities like FGCOM and its shell-equipped vari-
ant [FGCOM] considered above may be hard to realize for trivial reasons, since real
and ideal model must be indistinguishable even if both respective adversaries have
already halted. Also in some cases, it might be more suitable to restrict to func-
tionalities which halt after a polynomial number of rounds. However, the result of
Theorem 3 remains true when restricting to explicitly “round-bounded” functionali-
ties [FGCOM], [FOT‖pOT] and [F�(k)

BC ‖pBC], which halt after a polynomial number of
rounds. Namely, the number of rounds each of the environments constructed in the
proof of Theorem 3 runs depends only on the choices of the shell parameters precv

and psend of [FGCOM], but not on π. In fact, the proof holds literally for “round-
bounded” functionalities [FGCOM] which halt after 2 · (precv + psend + 1) rounds.
Moreover, any protocol π realizing a functionality [FGCOM] in a hybrid model with

round-bounded [FOT‖pOT] and [F�(k)
BC ‖pBC] implies a protocol π′ which does so in

a hybrid model with unbounded (regarding the number of rounds) [FOT‖pOT] and

[F�(k)
BC ‖pBC]. Summarizing, the theorem holds also when restricting to round-bounded

ideal functionalities.
If one allows computational assumptions as well as use of a common reference

string (in form of an ideal functionality with guaranteed delivery), the functionality
FGCOM may become realizable even in our synchronous network by a synchronous
version of a protocol of [CLOS02] using a broadcast channel with guaranteed deliv-
ery. For this, one could use a non-interactive bit commitment and broadcast the com-
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mitment to all parties. As the broadcast functionality guarantees delivery this might
realize a guaranteed-delivery version of [FGCOM]. This would in particular imply that
such a common reference string functionality cannot be realized by oblivious transfer
and broadcast functionalities alone.

4 Conclusions and Open Questions

In this contribution a synchronous model of security was developed as an abstraction
of a reliable network with guaranteed delivery. Our model allows for universal com-
posability.

In the synchronous model a shell concept [M ](precv, psend, clk) was introduced for
ideal functionalities as well as for parties. A shell allows to delay incoming messages
to M up to precv rounds and outgoing messages from M up to psend. The parameter
clk can be set to sync to have the machine M in the shell activated in each round even
if no new message is to be received. For clk = async the machine M in the shell is
only activated if a message is delivered to it.

Also, shell constructs can be used for asynchronous specification of ideal function-
alities. In particular, completely asynchronous executions of protocols can be mod-
elled. It was proven that a large class of secure realizations in the setting of [Can01,
CLOS02] can be transferred to secure realizations in our model if the shell parameters
are set accordingly.

This work showed that security in our synchronous model with precv, psend �= ∞
is not completely covered by the the asynchronous definitions of [Can01, CLOS02].
A variant of global bit commitment was given as an example of a functionality which
allows the identification of a party who did not give input to the protocol. The func-
tionalities oblivious transfer and broadcast do not suffice to securely realize this global
bit commitment in our synchronous model. This especially implies that the primitives
oblivious transfer and broadcast are not complete in the synchronous model presented
here.

We also raised questions with respect to security in reliable networks like the one
considered here. Does a synchronous version of the compiler of [CLOS02] yield gen-
eral realizations of ideal functionalities which allow cheater identification? Which
ideal functionalities are complete for the synchronous model presented here?
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Functionality F�(k)
BC

FBC proceeds as follows, running with parties P1, . . . , Pn and an adversary S .
FBC is parameterized with a polynomial �(k) ∈ Z[k] bounding the length of
broadcasted messages. All messages not covered here are ignored.

• When receiving m ∈ {0, 1}l (with 1 ≤ l ≤ �(k)) from a party Pi, send m
to all parties P1, . . . , Pn and to S . Process at most one message per party.

Figure 2: The broadcast functionality F�(k)
BC

Functionality FOT

FOT proceeds as follows, running with parties P1, . . . , Pn and an adversary S .
All messages not covered here are ignored.

• When receiving “(sender,Pi,Pj,x1,x2)” from Pi, such that x1, x2 ∈
{0, 1} and there has been no such message before for this value of (Pi, Pj),
record this tuple and send “(sender,Pi,Pj)” to S .

• When receiving “(receiver,Pi,Pj,m)” from Pj , such that m ∈
{1, 2} and there has been no such message before for this value of (Pi, Pj),
record this tuple and send “(receiver,Pi,Pj)” to S .

• If at any time, there are tuples “(sender,Pi,Pj,x1,x2)” and
“(receiver,Pi,Pj,m)” for some Pi, Pj recorded, send the message
“(transferred,Pi,Pj,xm)” to Pj and the message
“(transferred,Pi,Pj)” to S .

Figure 3: The oblivious transfer functionality FOT
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Design of a CIL Connector to SPIN
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Abstract

The CAPSL Integrated Protocol Environment effort aims at providing an in-
tuitive and expressive language for specifying cryptographic authentication and
key distribution protocols and supporting interfaces to various analysis tools. The
CAPSL Intermediate Language CIL has been designed with the emphasis on
simplifying translators from CIL to other analysis tools. In this paper we de-
scribe the design of a CIL-to-Spin connector. We describe how CIL concepts
are translated into Spin and propose a general method to model the behaviors of
honest principals and the intruder. Based on the method, a prototype connector
has been implemented in Gentle, which an automatically translate CIL specifi-
cation to promela code and LTL formula, thus greatly simplifying the modelling
and analysis process.

1 Introduction

A cryptographic protocol is a series of carefully defined messages, often encrypted,
between two or more participants designed so that when it is complete, a specified
goal like authentication and secrecy has been achieved, even in the presence of an
intruder who can perform malicious acts. However, the design of these protocols is
error prone, and incorrectly designed protocols may become ideal entry points for var-
ious attacks. Over the last few years, formal methods have proven helpful for both
cryptographic protocol design and analysis. The use of formal languages supports the
rigorous formalization of protocol models and their properties. Moreover, they also
provide a basis for using tools such as model checkers and theorem-provers to prove
protocols correct or uncover security flaws. Unfortunately, most formal analysis tools

�Li and Xue are supported by Fundamental Research Projects in Institute of Software, Chinese
Academy of Sciences under contract No. cxk25056 and National Hi-Tech Program in China under con-
tract No. 2002aa144050, and NSFC project under Grant No.60173020 and Grant No.60373048.The
email address of the contacting author is lyj238@ios.ac.cn
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Figure 1: CAPSL translation Plan

require protocols to be expressed in a tool-specific language, with specific conven-
tions peculiar to cryptographic protocol analysis. The language may be low-level and
based on the general-purpose language that the tool was implemented in or designed
to support.

The CAPSL Integrated Protocol Environment is an effort to provide an intuitive
and expressive language for specifying cryptographic authentication and key distribu-
tion protocols and support interfaces to various analysis tools [1]. The general architec-
ture of the CAPSL Integrated Protocol Environment is illustrated in Figure 1. In this
environment, CAPSL, a Common Authentication Protocol Specification Language,
has been designed as a high-level language for security protocols. The core feature of
it is a message list like the ones that are often used to present cryptographic protocols
in articles and textbooks. Then CAPSL is translated into CIL [2], a CAPSL Interme-
diate Language, expressing state transition with term-rewriting rules. It turns out that
CIL is close to the state-transition representation used by almost theorem-proving and
model-checking tools. CIL is the core of the strategy by which CAPSL can be adapted
for use by various protocol analysis tools. It serves two purposes: to define the seman-
tics of CAPSL, and to act as an interface through which protocols specified in CAPSL
can be analyzed using different tools. The CAPSL Integrated Environment provides
parser and type checkers for CAPSL and CIL and a CAPSL-to-CIL translator.

Connectors are being written to adapt CIL to supply input to a variety of for-
mal analysis tools, including PVS for inductive verification and Maude for model-
checking, and so on. For each connector one has to solve several issues in order to
deliver specifications that fulfill the following two characteristics: (1) syntactical and
semantic correctness. One has to decide which CIL pieces are necessary for the trans-
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lation into the targeted tool, and how they are translated correctly in both syntax and
semantics. (2) Practicability. Executability, non-determinism, and performance as-
pects of the transformed specification have to be taken into account for efficient and
practical analysis. The connector algorithm might need to perform alternations and
optimization to meet these criteria.

In this paper, we describe the design and optimization solutions for a CIL connec-
tor to Spin [3], which is the most powerful general purpose model checker and has
achieved great success in the area of verification of software and communication pro-
tocols. In spite of many work that has been done in this area, there is few successful
works at using spin to verify cryptographic protocols, and we still think it important
for us to implement a tool like this. There are the following reasons to explain our
motivation. Firstly, there is a lack of free tools aiding us to analyze security protocols,
especially for those free researchers without commercial support in university. For ex-
ample, FDR[4], NRL[5], Athena[6] can only be obtained after we pay expensive fees
for licenses. But Spin is open and free, and powerful. By our work, we show that we
can produce a free tool based on Spin as much powerful as those above if we use some
additional encoding techniques. Secondly, by the detail work to model security proto-
cols, we will know the advantages and limitation in applying classical model checking
technique to analyze security protocols. And this will help us to put model check-
ing technique in a proper place in this area. Thirdly, the CAPSL Integrated Protocol
Environment provides a unified framework to both provide an intuitive and expres-
sive language for specifying cryptographic protocols and support interfaces to various
analysis tools. We believe that it is a significant effort and it may help us to combine
different techniques to analyze security protocols. In particular, implementing a con-
nector from CIL to Spin can help us to understand details of the technique which CIL
used to formalize all semantic aspects of security protocols.

In the following we describe the design of a CIL-to-Spin connector that has been
implemented in Gentle[7]. Such a connector automatically translates CIL specifica-
tions into Promela code and LTL formula which are suitable for model checking in
Spin. The remainder of this paper is organized as follows. Section 2 informally intro-
duces the syntax and semantics of CAPSL and CIL. Section 3 specifies the way the
connector builds the Promela model and formalizes the security property. Section 4 is
related work and conclusion. Appendix gives the detail about the experiments results
which the connector has done for NSPK protocol.

2 CAPSL and CIL

A CAPSL specification is made up of three kinds of subspecifications: type, proto-
col, and environment, usually in that order. The CAPSL specification of Needham-
Schroeder public key (abbr. as NSPK) protocol is listed in figure 2.

Type specifications define cryptographic operators and other functions axiomat-
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Figure 2: NSPK CAPSL specification

ically, and are also used to define different types of principals. There is a standard
CAPSL “Prerelude” defining several commonly used operators, such as the familiar
abstract symmetric-key and public-key encryption. For simple protocols, the prelude
contains enough type specifications for them; but for more complex protocols, we may
need to provide additional datatype specifications.

A protocol specification includes a message list. The message list is preceded by
programming language-like type declarations for protocol variables and assumptions
about initial conditions. It is followed by a list of security goals. In figure 2 (b), there
is the protocol specification of NSPK protocol.

There are three messages in this protocol. In the first message, principal A sends
the encrypted concatenation of a newly generated nonce Na and its address to another
principal B. A uses B’s public key for encryption. If the secret key of B is not com-
promised then only B can decrypt this message. Principal B replies by sending the
nonce Na and a newly generated nonce Nb back to agent A. In the third message prin-
cipal A acknowledges the receipt of nonce Nb. There are two types of goals specified:
secrecy and agreement goals. Nonce Nb should remain secret to the agents in roles
A and B. A secrecy goal is violated, if an intruder knows a nonce which is used by
an honest agent in a session with another honest agent. The agreement goal uses the
keyword PRECEDES. PRECEDES B : A | Na means that if a B-agent reaches its
final state, then there exists an A-agent that holds the same values as the B-agent on
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the variables A, B, and Na.
An environment specification module contains specific information for model

checking, which is relevant to setting up protocol sessions to be checked, defining the
agents taking part in the actual system, the actual parameters to be used, and the in-
truder’s initial knowledge. Agents are specified here by assigning constants to protocol
variables whose values are initially held by that agent. The first assignment must be
to the owner variable. Nonces could be assigned values here or not, depending on the
needs of the analysis tool.

CIL [2] is a term-rewriting based notation that is capable of expressing all aspects
of security protocols in a succinct, precise, and uniform way. The CIL representation
of a CAPSL protocol, automatically generated by the CAPSL-to-CIL translator, con-
sists of symbol table, slot table, axioms, localized assumptions, protocol rewrite rules,
localized goals, and environment information. The compiled CIL file of the NSPK
protocol specification in figure 2 is shown in Appendix A.

3 CIL-Spin Connector

The CIL-Spin connector takes CIL specifications as described in Section 2, and pro-
duces an output file, containing Promela code to model protocol agents and LTL for-
mula to model security protocols, which are suitable for model checking using Spin.
In this section, we give the details of the way the connector works protocol in Spin,
and explain how the output files can work. We assume some familiarity with Spin.

The first key issues arise in keeping the data of facts involved both finite and man-
ageable for Spin. In order to keep the set of facts finite, we only consider the facts
possibly used by the intruder to launch attacks in the finite protocol sessions defined
in the environment specification. Those facts can be computed automatically by our
connector according to the protocol specification. Even with such restriction on the
facts possibly used in the formal model, but we still find that these facts are structural
(or recursively defined) and difficult to handle for Spin. As a general purpose model
checker, Spin does not directly support the recursively defined symbolic data types, so
it is not directly manageable for Spin, and we need special technique to encode them.

Our Promela model is based on a datatype—called Fact type—representing the set
of the facts that can be formed from the atoms by sequencing, encryption, application
of hash functions, and so on. For the NSPK specification in figure 2, this is defined by:

Principal:: =Alice| Bob| Intruder Nonce::= NaS12|NaS13|NbS12|NbS13
Fact = Principal| Nonce|pk(Principal)|sk(Principal)cat(Fact,Fact)|

pke(Pk(Principal), Fact)
where Principal and Nonce are extracted from environment parts, and pk, sk, cat,

pke operator, which are needed in NSPK, are extracted from the symbol table and
message formats in the protocol rewrite rules of CIL input. Obviously, the datatype
Fact is still infinite. To keep data of facts finite used for model-checking, the connec-
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tor only considered those used by the intruder to launch attacks in the finite protocol
sessions, which can be computed by message formats defined by the protocol rewrite
rules and assignments in the environment specification. In the following, we assume
that Facts is the set of all the facts defined by the datatype. Obviously, we only need a
finite subset of Facts. We assume that PVars is the set of protocol variables defined in
the symbol table, and Msg Formats is the set of message formats used in the protocol
rewrite rules, Atoms is the set of all the atom facts defined by the datatype Fact, In-
truder InitialKnowledge is a set of all the facts known to the intruder initially, which
can be computed by the parts of environment specification and symbol table. And
an assignment A: PVars→ Atoms is a function that assign constant values to proto-
col variables, an interpretation is a function I:Msg Formats→( Assignment →Facts)
that interpret the meaning of a message format into an instance of fact under some
assignment.

Our connector will compute the set of all the possible assignments defined in the
environment specification — denoted by All Assignments, and the set of all the in-
stances of message formats under all assignments — denoted by All Msg Insts, the
set of all the subfacts of All Msg Insts plus Intruder InitialKnowledge – denoted by
All Facts. For the NSPK in Figure 2, this set has 41 members.

Obviously, the facts in the set All Facts are still recursively defined, it is not di-
rectly manageable for Spin. In order to manipulate them by Spin, we adopt the follow-
ing encoding strategy:

• A meta type is created for each atomic fact, each construct, each kind of protocol
message.

• All the facts possibly used in a sample protocol instance are represented by
elements of a ‘Facts’array. And the ‘Facts’ array is defined in figure 3. In
fact, we have represented all the above facts by a binary tree encoded in the
Facts’array.

where total fact is the constant to define the total number of the set All Facts.

#define total fact
typedef Tfact{
mtype oper; int operand1; int operand2;}
TFact Facts[total fact]

Figure 3 the data types of facts

Each element of the array “Facts” represents a fact, and the index of an element
represents the unique encoding number of the corresponding fact. In the definition of
data type “TFact”, the field “oper” is used to indicate the type of the corresponding
fact. For an atomic fact, the field “oper”is assigned to the meta type created for the
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atomic fact; whereas for a compound fact, it is assigned to the meta type for the corre-
sponding construct of the compound fact. And the fields “operand1” and “operand2”
are used to record the encoding number of the sub facts of the compound fact. For an
atomic fact, the two fields are both assigned to the special value -1.

To encode the facts possibly used in the NSPK protocol specification, we define
mtype={Bob,Alice,Intruder,S12Na,S13Na,S13Nb,S12Nb,cat,ped,pk,sk,Msg0,

Msg1,Msg2}
#define total fact 41
TFact Facts[total fact]
where Msg01, Msg1, Msg2 are corresponding to 3 kinds of the protocol messages.
The full content of the array Facts and their interpretation can be seen in Appendix,

here we just analyze a fragment of it. Facts[2] and Facts[7] are used to represent the
atom fact S12Na, Alice, and Fact[25] represent the composite fact cat(S12Na,Alice),
they are shown in figure 4. Our connector will generate the definitions of all meta
types defined for atom facts, and operators, message kinds, and the type definition for
TFact, and the fact array Facts which holds all the encoding number of the facts in the
set All Facts.

In our Promela model, all the processes communicate with each other through a
shared channel comm, which is defined as following:

chan comm = [0] of {mtype, short};
For the NSPK protocol instance in Figure 2, if a process sends message 2 whose

encoding number is Msgno, then the statement comm!Msg2(Msgno) will be used; and
comm?Msg2(Msgno) will be used to receive message 2 from the channel.

Now it is the step to define the agents acting various roles in the protocol specifica-
tion. Typically a cryptographic protocol involves several honest processes (often two:
an initiator and a responder) and perhaps a server that performs some service such as
key generation, translation or certification. In our model, such processes must be pa-
rameterized with the data that may change from session to session and from instance
to instance. And their behaviors include three aspects: (1)the messages exchange de-
scribed by the protocol; (2) actions that the processes do with the protocol messages
such as generation of keys and nonces, encryption and decryption, and deciding when
a message that has been received is correct so as to allow the protocol to continue.
(3)some additional signal events to indicate the agent’s beliefs, which are relevant to
verifying of security property. Here we just introduce (1), and (2). And (3) will be
shown later in this section.

Our connector will generate a proctype definition for every role defined in the
protocol specification. And it includes three parts: (1) parameters definition; (2) defi-
nition of local variables to store the atoms in the received messages; (3)statements to
represent actions of this role.

For the NSPK protocol, the connector will define proctype roleA for the initiator
A as follows:

proctype roleA(mtype Na;mtype A;mtype B)
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{ short Msgno; TFact Msg;
mtype Loc Na;mtype Loc A;mtype Loc B;
mtype Loc Nb; mtype Memory Nb;
atomic{
cons Msg0(B,Na,A,Msg,Msgno);
comm!Msg0(Msgno); };
atomic{
comm?Msg1(Msgno);
destruct Msg1(Loc A,Loc Na,Loc Nb,Msg,Msgno);
Memory Nb=Loc Nb;
A==Loc A;
Na==Loc Na;} ;
atomic{
cons Msg2(B,Memory Nb,Msg,Msgno);
comm!Msg2(Msgno); }
}
The knowledge of the intruder is represented by the facts known to the intruder. In

order to model the knowledge held by the intruder, we use a Boolean array “Spy know”
with the same length as the array “Facts”to represent the knowledge of the intruder.
Each element of the array “Spy know” is related to a unique fact, and the value of it
is used to indicate whether the intruder has known the corresponding fact (“1”is set if
the intruder has known the fact, otherwise “0”is set). So the knowledge of the intruder
is represented as following:

bit Spy Known[total fact]
The initial value of the array Spy Known represents the initial knowledge of the

intruder, and the value of the array Spy Known is changing during the run of protocol
sessions because the intruder may infer new facts according to the inference rules and
the messages intercepted from the network. The connector will generate the definition
the array Spy Known and the initialization code for the array.

Now we discuss the representation of the rules of deduction for the intruder. In
essence, a deduction is a pair <Conclusion, Assumptions> where Assumptions is a
finite non-empty subset of All Facts, which are not in the initial knowledge of the
intruder, and Conclusion is an element in All Facts. Informally speaking, the meaning
of a pair <Conclusion, Assumptions> is that Conclusion can be derived if all the facts
in the Assumptions has been obtained. Note that we always assume that the intersection
between Assumptions and the initial knowledge of the intruder is empty because the
initial knowledge of the intruder are already known and need not been obtained again.
More formally,

Deductions⊆{< Conclusion,Assumptions > | Intruder InitialKnowledge∩
Assumptions= ∅, .∅.⊂Assumptions.⊆ All Facts ,Conclusion.∈ All Facts }
where the set Intruder InitialKnowledge is the initial knowledge of the intruder;
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Note that all the deductions used by the intruder in the sessions defined in protocol
environment specification can be statically computed by our connector.

For all the deductions, we encode them in our Promela model as following:
typedef TDeduction{
bit Deduced; int Conclusion;int Assumption1,Assumption2;};
TDeduction Deductions[DeductionNum];
where DeductionNum is the total number of all the deductions involved in the pro-

tocol sessions. And in the definition of the type TDeduction,the field Deduced shows
whether the rule has been used, and fields Conclusion, Assumption1, Assumption2 are
the encoding number of facts of the conclusion and assumptions respectively.

Having defined data structures used by the intruder, we can define the algorithm to
model the behaviors of the intruder. Our connector defines proctype PI which describes
the behaviors of a general intruder as follows:

proctype PI ()
{ TFact M; short Mno,headAssumption; short A q head=0, A q tail=0;
short D q tail=0, index=0;TDeduction CurDeduction;
Assumptionqueue[total fact];
do :: atomic { comm?Msg0(Mno); addKnowledge(M,Mno);}

::atomic { sel Msg(Msg0,Mno); comm!Msg0(Mno);}
::atomic { comm?Msg1(Mno); addKnowledge(M,Mno);}
::atomic { sel Msg(Msg1,Mno); comm!Msg1(Mno);}
::atomic { comm?Msg2(Mno); addKnowledge(M,Mno);}
::atomic { sel Msg(Msg2,Mno); comm!Msg2(Mno);}

od;}
The body of the intruder process is a never ending loop, and each branch of the

repetition is either a message input action followed by deductions to infer new facts, or
selecting a message from facts in its knowledge possession and sending the message.

Macro addKnowledge(M,Mno) is to model the inference system of the intruder.
In essence inferences are to derive new facts from the facts known to the intruder to
date under the deduction rules. New facts just derived will be used as assumptions
again to infer new facts, and this procedure do not stop until no new fact is inferred. If
we define a function close(S) which calculates all the facts that are buildable from S
under the deduction rules.

close(S)=let S′={f | X ⊆ S, < X,f >∈ Deductions} in if S′ ⊆ S then S
else close(S’∪S)

where S is the knowledge of the intruder to date, and the intruder intercept a mes-
sage M from the system, then the knowledge of the intruder will evolve to close({M}
∪S). Macro addKnowledge(M) will just model all the deductions which augment
the intruder’s knowledge from S to close({M}∪S). Due to limitation in space, here
we just introduce addKnowledge(M) in an algorithm level, its Promela code can be
obtained in Appendix.

In the following algorithm, we assume that:
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1. Spy Known⊆Facts: the set of the facts known to the intruder;

2. Unused Deductions ⊆ Deductions: deductions which have not been used by the
intruder;

3. Assumption Queue : a queue that are used to store new facts that has just been
derived and will be used to deduce new facts as assumptions;

Function addKnowledge(Fact M)
{Assumption Queue:=null; put(Assumption Queue, M);
Spy Known:= Spy Known .∪{M};
repeat

Head Fact:=get(Assumption Queue);/*get the head out of Assumption Queue
and assign it to Head Fact*/
DeducesHF :={< Conclusion,Assumptions> | < Conclusion,Assumptions>∈

Unused Deductions, Conclusion/∈Spy Known,
Head Fact∈ Assumptions, Assumptions⊆ Spy Known };

Unused Deductions := Unused Deductions- DeducesHF ;
for all <Conclusion, Assumptions>∈ DeducesHF {

put(Assumption Queue, Conclusion);
Spy Known:=Spy Known ∪ {Conclusion};}

until (Assumption Queue<>null)}
On the other side, macro sel Msg(Msgk,Mno) randomly selects an message of the

kind Msgk, which is known to the intruder, and assign the its encoding number to Mno.
The detail of Macro sel Msg(Msgk,Mno) can also be seen in Appendix.

Our connector will generate all the data structure and promela code of the intruder
for the specified protocol system. In fact, most of this procedure is rather common for
all kinds of protocols due to our encoding style of facts and the ability of the intruder
for cryptographical protocols. The difference between the intruders in the different
protocol specification lies in the initial knowledge and deduction rules mastered by
the intruder, and the kinds of the messages the intruder can sent and receive. But the
type definition and the code to model deduction system of the intruder is the same.

Now we can define the checked system which is defined in environment specifica-
tion. It is simply specified by initializing facts, deductions, and introducing a process
instantiation statement in the init process for each principal acting some role of the
system respectively.

For NSPK in Figure 2, the connector defines the following init process:
init {. . . . . . (/*the initialization of array Facts,Deductions,Spy Known, and so on*/)
atomic { if atomic {run roleA(S12Na,Alice,Intruder);

run roleB(S13Nb,Bob);
run PI();}}

In this paper, we concentrate our attention on secrecy and authentication proper-
ties, which are dealt with by LTL now. These are safety properties, in the sense that
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they require that bad things should not happen – that a data item is not leaked and
an agent does not incorrectly accept the identity of another agent. In order to define
secrecy properties, we need to introduce additional informal information into proto-
col descriptions to enable a description of what is expected of the system at particular
points during a run of the protocol. This information might be thought of as capturing
the intention of the designer of the protocol.

Secrecy goal like loc(nodes(node(roleA,3),node(roleB,3)),secret(Nb,ids(B,A)))
will be expressed as the requirement that if honest principals a, b acting roles roleA
, roleB finished a session, then the actual value of the protocol nonce variable Nb
should not be detected by the intruder provided that both a and b are honest. Our
connector always assumed that the protocol variable Nb is a fact that originated by a
unique principal of a or b, and the secrecy should also be self-known to its originator.
If a principals acting role RoleA originates a message containing secrecy m, then we
explictly introduce actions of claiming secrecy in the proctype definition of RoleA. In
detail, we adopt the following strategy to check secrecy properties:

• If RoleA originates a message containing secrecy m, i.e., secret(m,ids(. . . , A,
. . . ))) is defined in the protocol goal specification, and m is originated by prin-
cipals acting as role A, then the connector allocates an array
RoleA Claim secret m[totol inst of RoleA] to store all the encoding number of
the possible instances of the protocol variable m claimed by the honest princi-
pals acting the role RoleA, where totol inst of RoleA is the total number of the
honest principals acting the role. The intial value of each element in the array
RoleA Claim secret m is set to -1.

• The connector assigns a unique index for every principal acting the role RoleA.
And this index will be computed by a special promela macro code
index RoleA Inst according to the identity of the principal. The macro code
index RoleA Inst is also generated by our connector.

• In the definition of the proctype RoleA, the connector inserts codes to explicitly
expressing actions of RoleA claiming secrecy. These codes are introduced just
after RoleA originates a message including the protocol variable m. For the
secret goal ,secret(Nb,ids(B,A)) in NSPK protocol, the connector will insert the
following codes after the statement of sending message {na,nb}pk{A} in the
proctype RoleB.

if
::(B!=I)->{look up atom(Nb,Msg,Msgno);
index Role Inst(B, BIndex);
RoleB Claim secret Nb[BIndex]=Msgno ; }
::else->skip;
fi;
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The property which the role RoleB cliams that Nb should be secret can be ex-
pressed in the following LTL formalism:

[](!(RoleB Claim secret Nb[0]==-1)
-> Spy Known[RoleB Claim secret Nb[0]]==0)&&. . . . . .

!(RoleB Claim secret Nb[totol inst of RoleB-1]==-1)
->Spy Known[RoleB Claim secret Nb[totol inst of RoleB-1]]==0))

Authentication properties like loc(nodes(node(roleA,3),node(roleB,3)),
precedes(B,A,ids(Na))) will be expressed as the requirement that if an honest principal
bacting the role roleB finished a session, then there exists an honest principal a acting
role roleA helds the same values as b on the protocol variables A, B, and Na. Here
we also assume that the nonce Na must be originated by a. In order to verify this
correspondence,

• the connector allocates an array Commit on Na[ totol inst of RoleB, totol inst
of RoleA]1 to store all the encoding number of the possible instances of the
protocol variable Na which are commited byb acting the role RoleB, i.e., Com-
mit on Na[ BIndex, AIndex] stores the encoding number of instance of Na held
by the honest principals b acting the role RoleB , andais the principal who is
thought as the communication party by b in the session, where BIndex, AIndex
are the unique index of b and a respectively. The initial value of all the elements
in this array are all set to -1. And the connector will insert the following codes
into the body of proctype RoleB after the statement of the action of receiving the
message that contains Na in the first time.

if
::(B!=Intruder)->{ index RoleA(B, BIndex);
index RoleA(Memory A, AIndex);
look up atom(Loc Na,Msg,Msgno);
Commit on Na[BIndex, AIndex]=Msgno;}
::(B==Intruder)->skip;
fi;
These codes will assign the value of protocol Na to Commit on Na[BIndex, AIn-

dex] and the value is held by a principal B acting the role RoleB, and thought to be
agreed with principal Memory A by B.These codes are use to explicitly the belief of
principal B on the value Na.

• the connector also allocates an array Init on Na[ totol inst of RoleA, totol inst
of RoleB] to store all the encoding number of the possible instances of the pro-
tocol variable Na origninated bya acting the role RoleA, i.e., Init on Na[AIndex,

1In fact, the syntax of multi-dimensional arrays can not be directly declared as Commit on Na[i, j],
and they should be constructed indirectly with the use of typedef definitions. Here we use the syntax in
order to make our context more readable.
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Figure 3: An attack on the NSPK protocol

BIndex] stores the encoding number of instance of Na held by the honest prin-
cipals a acting the role RoleA, andbis the principal who is thought as the com-
munication party by a in the session. The initial value of all the elements in this
array are all set to -1. And the connector will insert the following codes into the
body of proctype RoleA after the statement of the action of sending the message
that contains Na in the first time.

if
::(A!=Intruder&&B!= Intruder)->{ index Role Inst(A, AIndex);
index Role Inst(B, BIndex);
look up atom(Na,Msg,Msgno);
Init on Na[AIndex, BIndex]=Msgno;}
::else ->skip;
fi;
The property precedes(B,A,ids(Na))) should be secret can be expressed in the fol-

lowing LTL formalism:
[](!(Commit on Na[0, 0] ==-1)

-> Commit on Na[0, 0]== Init on Na[0, 0]&&. . . . . .
!(Commit on Na[i, j] ==-1)-> Commit on Na [i,j]== Init on Na[j, i] &&. . . . . . )
where 0.≤i< totol inst of RoeB, 0.≤j< totol inst of RoleA
Spin can automatically find the attack shown in Figure 3 for the secrecy goal se-

cret(Nb,ids(B,A)).

143



4 Related work and Conclusion

Although there are quite a few good works in the area of model checking cryptographic
protocols, it seemed that there is few successful work by using Spin to model checking
cryptographic protocols. In [9], Paolo Maggi used spin to model check security pro-
tocols, and to statically analyze the configuration of the sample protocol instance to
simplify the intruder knowledge representation. And Zhang [10] ported the approach
developed by G.Lowe in [11]to Spin environment. Both of them have checked the au-
thentication properties for the classical case, i.e., the Needham-Schroeder Public key
Authentication Protocol. Although they obtained the expected result, but both of their
model are ad hoc to the Needham-Schroeder Public key Authentication Protocol, and
are not easy to be adapted to other protocols. The crux is in that they did not propose
a general approach to represent the facts used in the checked protocol sessions, so it
is very difficult to automatically generate the promela model for protocol environment
specification from its use-friendly specification if we follow their approach.

To solve this issue, we have developed the following approaches:

• We have developed a general technique to encode all the facts involved. Basing
on it, we can easily represent the protocol messages, the intruder′s knowledge
and deduction rules;

• We have developed a general approach to model all honest principals. Basing
on it, we have shown how to develop the code of theirs.

• We have developed a general approach to model the intruder. Basing on it,
we have successfully modeled both data structures and the algorithms of the
inference system of the intruder.

• Our approach described above can be adapted to a wide variety of protocols,and
be employed to automatically generate Pomela model and LTL formula from a
CIL specification. In fact, we have developed a CIL-Spin connector to help us
with such work.

Similar work has been done by G.Lowe, who have developped FDR-CASPER
[12] to model check cryptographic protocols. There are three main lessons out of his
approach. The first is the uniformed way facts are defined symbolically for a variety of
cryptographic protocols in CSPM , the modeling language of FDR. The second is that a
standard deduction system of the intruder is effectively emulated by a parallel process,
which exploits the multi-way synchronizations allowed in CSPM . The third is the way
renaming operator has been used to wire all the nodes of the network together. The
above have been integrated into the design of Casper, which takes protocols described
in a more abstract notation as input, and outputs a CSPM file to check various forms of
correctness. All of this has made FDR into arguably the most powerful tool available
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at the time of writing for checking properties of cryptographic protocols. Compared
with the work , the way that the facts in a sample protocol instance are encoded in
our framework is more complex than that in CSPM because Promela does not directly
support recursively defined symbolic data types to model the facts, whereas CSPM
does so. Despite the complexity of the way of encoding facts, we still consider it
direct and useful for the applications of model checking involves in recursively defined
symbolic data types. And the way we model the intruder and wire the network together
is much simpler than that in [12], because the former only require the analyzer to have
knowledge about simple imperative constructs such as loops, conditionals, and so on;
whereas the latter requires that the analyzer should have profound knowledge in CSP.
For example, in order to understand the way of modeling the deduction system of the
intruder by a parallel process in CSPM, we should have good understanding about the
multi-way synchronization operator, which is too complex to master for a people who
are not experienced in CSP.

Another issue is efficiency. The initialization code and the code of the intruder’s
deduction system seem long enough, but the check we carried out to find the errors
listed in this paper are well within Spin′s limit: the checks typically took about one
second and searched about 565 states. The detail of verification results are listed in
the appendix. So we think that our method is a practical and useful way of analyzing
cryptographic protocols. We believe that the high efficiency is obtained by our fine-
tuned model. First, we have minimized the set of symbolic facts as much as possible,
as mentioned in section 3 Second, the encoding of intruder’s deduction system is ef-
ficient enough to guarantee that no redundant deduction and no redundant facts will
be generated, which minimizes the searching space as much as possible. Third, we
use atomic steps as much as possible to minimize the amount of allowed interleaving.
The above experiment is also an evidence that it is extremely important to optimize
the model for us to obtain high efficiency in model-checking. In fact, we have adopted
another two important approaches to achieve further efficiency, which is mentioned in
[13]. The reason that we do not list he is in that the codes are not as readable as those
here, and the interpretation of the attacker graph may not as clear as that here.

The last, but not the least is limitation of the technique of applying classical apply-
ing classical model checking technique to analyze security protocols. In principle, this
technique models each honest principal taking part in the protocol and the intruder as
a process, then examining all possible execution traces of the checked system to test
whether the security properties are satisfied. Obviously, this technique is constrained
by the intrinsic limitations: only finite systems of reasonably small size can be tackled.
Here, “a finite system” means that only a finite number of runs of protocol sessions
can be modeled, finite principals are involved, and each principal can be engaged in
a finite number of runs of the protocol. Typically a finite system only accounts for at
most three or four principals, including the intruder. However, if the system of lim-
ited size does not suffer any attacks, it is not obvious that neither does the system of
arbitrary size. Another limitation of the technique is the expressibility for protocol.
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No protocol goals have been discussed in detail except secrecy and authentication by
classical model checking technique. But the principle underlying the design of a se-
curity protocols, in particular for a large security protocols, is very subtle, it does not
necessarily mean that all its goals are achieved even if secrecy and authentication goals
are achieved. It is difficult to express all protocol goals using the logical formalisms
provided by the classical model checker. Nevertheless, model checking technique is
more suitable for finding attacks, and in fact it is the main contribution that this tech-
nique has provided in this area. And Spin has provided message sequence charts to
show attacks, which has better visualization than others and make it clearer to interpret
the attacks. So we think it may be more proper if we use model checkers to find flaws
for security property, and use theorem prover or others to prove that the design of a
security protocol has achieved its goals. If we can not prove that the security properties
has achieved, we can collect the environment information from the proof, set up the
checked agents, and model check them to find whether there are attacks. Integration of
different methods may lead to cleaner and deeper understanding for security protocols.
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Abstract

We propose a novel multi-layers paradigm for the design of key exchange
protocols. In the top layer, protocols are specified in a high-level, declarative,
formal language using speech acts as the basic components. The declarative
semantics of speech acts are specified by their preconditions and effects like in
Hoare logics. No reference to cryptography is made at this level. High-level
speech act-oriented protocols are translated into lower-level message exchanging
protocols by a ”protocol compiler” that implements speech acts by sending and
receiving appropriate encrypted messages.

Under the Dolev-Yao assumption of perfect cryptography, the proposed new
paradigm offers two novelties:

1) Using the language of speech acts, protocol designers could develop their
protocols in a modular and compositional way that are correct from the outset
without any reference to cryptography

2) The secrecy of exchanged keys is guaranteed by simply requiring that a
speech act should not be executed if its preconditions are not satisfied, a general
but easily verifiable condition called well-designedness.

1. INTRODUCTION
In general, security protocols often have structures that determines the composi-

tion of the intention and semantics of the individual messages. Recognizing these
structure could allow us to create a radically new modular approach to security proto-
col development in which high-level security designs are translated stepwise to code.
The obtained protocols at all levels are guaranteed to be correct from the outset. To
illustrate this idea, let us look at an example

Example 0.1 Consider a protocol for distributing a fresh session key K generated by
a server S, to two principals A and B. At the end of the protocol, both A and B are
expected to get K and also to know that the other has got K as well.
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(1) A → S : req, newkey,A, Init, S, Server,Na, B
(2) S → A : {rep, newkey, S, Server,A, Init,Na ,K,B}KAS

(3) S → B : {inf, newkey, S, Server,B,Resp,K,B,A, S}KBS

(4) B → A : {req, keyconfirm,B,Resp,A, Init,Nb,Hash(K), S}KA

(5) A → B : {rep, keyconfirm,A, Init,B,Resp,Nb}KB

(6) B → A : {inf, keyconfirm,B,Resp,A, Init, S}K

Note that KX (resp. KXY ) represents a public (resp. secret common) key of X
(resp. between X and Y). {g}k denotes the encryption of g using key k. Following
the prudent engineering practice of Abadi and Needham [2] each message is designed
to contain explicitly the identity of the sender, receiver together with their roles in the
protocol as well as the purpose of the message.

The first message is a request from A, as initiator, to S, as server, for a fresh session
key with B. The keywords req, newkey indicate that the message represents a request
for a new key.

S replies by sending a newly generated session key K to A in the second message.
The keywords rep, newkey indicate that the message is a reply to an earlier request
for a new key. After getting the reply message, A knows that K is a fresh session key
between A and B generated by S.

S informs B about key K in the third message (B plays the role of a responder). The
keywords inform, newkey indicate that the message is intended to inform B about a new
key. After receiving the third message, B could only say that it has been informed about
K without being sure whether K is fresh or not. This is because B has no knowledge
about K before receiving the third message and hence, B could not verify whether this
message is just sent recently or it has been replayed by a penetrator.

To verify the information it has just obtained, B requests A in the fourth message to
confirm that A knows that K is indeed a fresh session key between A and B generated
by S. The keywords req, keyconfirm indicate that the message represents a request for
confirming the status of the included key.

A replies to B by sending the fifth message to confirm that K is indeed a fresh
session key between A and B. The keywords rep, keyconfirm indicate that the message
represents a reply to an earlier request to confirm the status of K. After getting this
message, B knows that what it has been informed before is correct.

B sends A the sixth message to confirm that B now knows that K is a secret session
key between A and B. The keywords inform, keyconfirm indicate that the intention of
the message is for B, to confirm to A that it knows about K.

The above protocol could be viewed as an implementation of the following more
abstract one using speech acts as the basic building blocks1:
S1 : A requests S to generate a new session key for communication with B
S2 : S replies to A by sending A a newly generated key K

1Speech acts have been proposed as the basic primitives for declarative agent communication lan-
guage in the AI community [14]
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S3 : S informs B that K is a new session key between A and B generated by S
S4 : B requests A to confirm that K is a fresh session key between them generated

by S
S5 : A replies to B to confirm that K is indeed a fresh session key between

them generated by S
S6 : B informs A to confirm that B knows that K is a fresh session key between

them generated by S
where A,B,S play the roles of initiator, responder and key server respectively.

The new approach proposed in this paper allows protocol designers to develop
their protocols in an abstract speech act-oriented language like above without worrying
about cryptography. A ”protocol compiler” would translate automatically the abstract
protocols into lower-level ones.

�

In this paper, we propose a multi-layered approach in the design of key exchange
protocols. In the top layer, protocols are specified using speech acts as the basic build-
ing blocks. No reference to cryptography is made at this level. Like in Hoare logics,
the declarative semantics of speech acts are specified by their preconditions and ef-
fects. High-level protocols are translated automatically into the lower-level message-
exchanging protocols by ”protocol compilers” where speech acts are implemented by
sending and receiving appropriate encrypted messages. Like in conventional program-
ming, ”protocol compilers” are developed by the designers of speech act languages,
not by their users. Ensuring the correctness of ”protocol compilers” is hence a respon-
sibility of the speech act language designers, not of the protocol programmers. Under
the Dolev-Yao assumption of perfect cryptography, the proposed new paradigm offers
two key novelties :

1) Using the language of speech acts, protocol designers could develop their pro-
tocols in a modular and compositional way that are correct from the outset.

2) The secrecy of exchanged keys is guaranteed by simply requiring that a speech
act should not be executed if its preconditions are not satisfied, a general but easily
verifiable condition called well-designedness.

The paper is organized as follows. In chapter 2, we present a language of speech
acts and the call of well-designed protocols. In chapter 3, a protocol logic called
ProtoLog that is based on the modal system S5 [13, 9] is introduced. A ”protocol
compiler” is introduced in chapter 4 and the soundness and completeness of the pro-
tocol logic ProtoLog wrt the translation implemented by the compiler are discussed in
chapter 5. In chapter 6, we discuss related works.

2. SPEECH ACTS AND WELL-DESIGNED PROTOCOLS

2.1 KL: A Keys Logic
We first propose a simple logical language for specifying the mental states of pro-

tocol principals. In contrast to BAN-style logics [4, 19], we do not employ a belief
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operator. Instead we have two operators: ”being informed” and ”knowing”. Intu-
itively, to say that an agent knows something is to say that the agent’s information
about this something is correct and the agent is also aware about the correctness of the
information [9] while to say that an agent is informed of something simply indicates
that the principal has obtained a piece of information without giving any hint about the
correctness of the information as well as the awareness of the agent about it.

We assume the existence of pairwise disjoint sets NONCE, NVAR, KEY, KVAR
and PI, PVAR of nonces, nonce variables, keys, key variables and principals and prin-
cipal variables respectively. There is a distinguished identifier PE ∈ PI denoting the
penetrator. A principal that is not the penetrator is called regular. In security proto-
cols, principals often play different roles like the roles of initiators, responders or key
servers. The roles of the principals involved in a protocol form an important compo-
nent in its semantics. We assume the existence of a finite set RO of predefined role
identifiers. A principal term is either a principal from PI, or a principal variable from
PVar. Nonce term and key terms are defined similarly.

Let A,B,C,X,Y,Z be principal terms, n be a nonce term and K be a key term and ρ
be a role. A basic formula has one of the following forms:

1. GKA,ρ(K,B,C) stating that principal A acting in role ρ has generated a fresh
key K as a session key between B and C

2. GNA,ρ(n) stating that principal A acting in role ρ has freshly generated nonce n

3. HNA,ρ(n) stating that principal A acting in role ρ has nonce n

4. InformedA,ρ(K,X, Y,Z) stating that principal A acting in role ρ has been
informed that K is generated recently by Z as a session key between X,Y.

5. Key(K,A,B,C) stating that K is a session key between principals A and B
generated recently by C.

6. Access(A,K) stating that A has access to key K

A formula is composed from basic formulas using the logical operators ∧,∨,¬,→
together with the knowledge operator KnowA,ρF stating that A acting in the role ρ,
knows that F holds.

One may wonder of whether it is possible to replace the notion Key(K,A,B,C) by
just Key(K,A,B) without mentioning explicitly the generator C of K. Example 0.1 is
a case where an employment of Key(K,A,B) would lead the responder B to believe
in the trustworthiness of K even if S is the penetrator and A mistakenly believes S is
honest while B is aware about the true identity of S.

We introduce now KL (Keys Logic), a specialized version of the modal logic S5,
for reasoning about keys and its association to principals. The logic is needed to define
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well-designed protocols. Let A,B,C,D be regular principal identifiers and X be a prin-
cipal identifier. KL extends the system S5 in modal logic [13, 9] with the following
axioms:

A1 Key(K,A,B,C) → Key(K,B,A,C)
A2 InformedA,ρ(K,B,C,D) → InformedA,ρ(K,C,B,D)
A3 GKA,ρ(K,B,C) → GKA,ρ(K,C,B)
A4 GNA,ρ(n) → HNA,ρ(n)
A5 GKA,ρ(K,B,C) → Key(K,B,C,A)
A6 F → KnowA,ρF for all basic formula F of the form GKA,ρ(K,B,C),

GNA,ρ(n), HNA,ρ(n) and InformedA,ρ(K,B,C,D)
A7 KnowA,ρKey(K,B,C,D) → InformedA,ρ(K,B,C,D)
A8 InformedA,ρ(K,B,C,D) → Access(A,K)
Axioms A1-A5 and A8 follow directly from the intuitions of the involved basic

formulas. The intuition of axiom A6 is that if a principal is doing something then it
is also aware about it. Axiom A7 relates the knowing and being informed operators,
stating the obvious that if A knows that K is a fresh session key between B,C generated
by D then A is also informed about it. The axioms and proof rule in modal system S5
[13, 9] are adapted to KL as follows:

KnowA,ρF → F
KnowA,ρF ∧ KnowA,ρ(F → G)
→ KnowA,ρG

KnowA,ρF → KnowA,ρKnowA,ρF ¬KnowA,ρF → KnowA,ρ¬KnowA,ρF
From � F infer � KnowA,ρF

2.2 Speech Acts and Well-Designed Protocols
We introduce a set of speech acts consisting of Request, Reply and Inform acts

that we believe form a core of primitives that capture the most essential structures in
security protocols. This set is extensible to capture further structures with new acts.

There are two types of speech acts: newkey, keyconfirm. Intuitively, an act of type
newkey is used for distributing a new key while an act of type keyconfirm is used for
confirming the knowledge of a new key. For example, the first (resp. last) three acts in
the abstract protocol in example 0.1 are of type newkey (resp. keyconfirm).

Speech acts are defined as speech act forms that contain no variables. The structure
of speech act forms are given in the following table

Request Reply Inform
Sender: A Sender: A Sender: A
Role of Sender: ρ Role of Sender: ρ Role of Sender: ρ
Receiver: B Receiver: B Receiver: B
Role of Receiver: τ Role of Receiver: τ Role of Receiver: τ
Type: t Type: t Type: t
Content: Con Content: Con Content: Con
Reply-With: n Reply-To: n
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where A,B are principal terms, ρ, τ are roles , n is a nonce term, t ∈ {newkey,
keyconfirm}, and Con represents the content of the acts. It is required that the roles
of sender and receiver in an act must be different, i.e. ρ �= τ . The nonce n in a request
act is generated randomly by A when A performs the act.

The content of a request of type newkey has the form Key(?,A,C,B) stating that A
requests B to generate a new session key for A to communicate with C.

The content of a request of type keyconfirm has the form Key(K,A,B,C) stating that
A asks B to confirm that B knows that K is a fresh session key between A and B
generated by C.

In a reply or inform act of type newkey, the sender A sends the receiver B a freshly
generated session key for communication with C. If the key has not been generated,
then the sender has to generate it first and then sends it. In this case the content of the
act has the form νK.Key(K,B,C,A). Otherwise it has the form Key(K,B,C,A) in
a reply act or the form Key(K,B,C,A) or Key(K,B,A,C) (depending on whether
K is generated by A or by C) in an inform act.

The content of a reply or inform act of type keyconfirm is simply of the form
Key(K,A,B,C) affirming that K is indeed a fresh session key between A and B
generated by C.

The declarative semantics of speech acts is specified by their preconditions and
effects. The preconditions describe the necessary information and knowledge a honest
principal should have to be able to send the acts and for the receiver to accept and
process it without leaking any secret information or being fooled by the penetrator.
The effects of a speech act describe the information and knowledge a principal gains
after sending it (for the sender) or receiving it (for the receiver). Regular principals are
assumed to be honest.

Let S be a speech act form as defined above. The preconditions and effects of the
event of sending (resp. receiving) S are denoted by Pre(+S) and Eff(+S) (resp. Pre(-S)
and Eff(-S)) and formalized in the tables below.

The definition of key exchange protocols is based on a notion of conversation form
where a conversation form is a pair (Req,Rep) of request and reply act forms of the
same type and with the same nonce such that 1) the sender (resp. receiver) and its role
in Req coincide with the receiver (resp. sender) and its role in Rep respectively, and
2) if the acts in the conversation are of type keyconfirm then their contents coincide,
and 3) if the acts in the conversation are of type newkey and the content of the request
has the form Key(?,A,C,B) then the content of the reply has the form Key(K,A,C,B)
or νK.Key(K,A,C,B)

Definition A speech act oriented key exchange protocol (or simply key exchange
protocol) is a sequence of speech act forms S1, . . . , Sk such that

1) For each request (resp. reply) Si, there is exactly one reply (resp. request) Sj ,
j > i (resp. j < i) such that Si, Sj (resp. Sj, Si) form a conversation form.

2) Each principal term has at most one role, i.e. for each principal term P in AP,
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if there exist Si, Sj such that P appears as a sender or receiver in both Si and Sj then
P has the same role in both acts. 2

3) Every role in AP is occupied by exactly one principal term, i.e. for all principal
terms P,Q in AP, if there exist Si, Sj and ρ ∈ RO such that P has role ρ in Si and Q
has role ρ in Sj then P = Q.

4) Variables representing nonces of different conversation forms are standardized
apart.

5) The penetrator identifier does not appear in any Si.
6) There is exactly one key term appearing in the protocol and the first act in which

it appears is a reply or inform act of type newkey that is also the only act in the protocol
with a content of the form νK.Key(K,A,B,C)

Now we can introduce well-designed protocols. For each speech act form S, define
Pre(S) = Pre(+S) ∧ Pre(−S) and Eff(S) = Eff(+S) ∧ Eff(−S).
Definition A key exchange protocol AP = S1, . . . , Sk is said to be well-designed if
speech acts are scheduled for execution only when their preconditions are satisfied,
that means following conditions are satisfied:

1) Pre(S1) = True
2) For each 2 ≤ i ≤ k: Eff(S1) ∧ . . . ∧ Eff(Si−1) � Pre(Si)

Act Request
S newkey keyconfirm

Pre(+S) True InformedA,ρ(K,A,B,C)

Eff(+S) GNA,ρ(n) GNA,ρ(n)

Pre(-S) True KnowB,τKey(K,A,B,C)

Eff(-S) HNB,τ (n) KnowB,τInformedA,ρ(K,A,B,C) ∧ HNB,τ (n)

2This condition ensures that normally different principals have different roles in a run of the protocol.
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Reply
Act newkey

S
Con =
νK.Key(K,
B,C,A)

Con =
Key(K,B,
C,A)

keyconfirm

Pre(+S) HNA,ρ(n)
HNA,ρ(n)∧
GKA,ρ(K,B,C)

KnowA,ρKey(K,A,
B,C) ∧ HNA,ρ(n)

Eff(+S) GKA,ρ(K,B,C) True True

Pre(-S) GNB,τ (n)
GNB,τ (n)∧
InformedB,τ (K,A,
B,C)

Eff(-S)
KnowB,τGKA,ρ(K,B,C)∧
KnowB,τHNA,ρ(n)

KnowB,τHNA,ρ(n)∧
KnowBτKnowAρ

Key(K,A,B,C)

Inform
Act newkey

S
Con =
νK.Key(K,
B,C,A)

Con =
Key(K,B,X, Y )
where
(X,Y ) = (A,C)
or (C,A)

keyconfirm

Pre(+S) True
KnowA,ρKey(K,
B,X, Y )

KnowA,ρKey(K,
A,B,C)

Eff(+S) GKA,ρ(K,B,C) True True

Pre(-S) True True
KnowB,τKey(K,
A,B,C)

Eff(-S)
InformedB,τ (K,
B,C,A)

InformedB,τ (K,
B,X, Y )

KnowB,τKnowA,ρ

Key(K,A,B,C)

It is not difficult to see that the abstract protocol in example 0.1 is well-designed.
The following example illustrates how a violation of the well-designed condition could
lead to serious flaws.

Let S1, . . . , S6 be the acts of the abstract protocol in example 0.1. Consider a new
protocol P ′ = S′

1, S
′
2, S

′
3, S

′
4, S

′
5 defined by S′

i = Si for i ∈ {1, 2, 3} and S′
4 = S6 and

S′
5 is an inform act of type keyconfirm from A to B to confirm the receipt of K. P’ is

in fact an abstraction of the Needham-Schroeder protocol with symmetric key (NSPS)
[6]. P ′ is not well-designed as the preconditions of S′4 do not follow from the effects
of the previous acts in it. Similar to NSPS, P’ is subjected to a replay attack in which
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the penetrator replays an old message S′
3 to B whose key K has become stale. The

penetrator then intercepts the message S′
4 that B sends to A and then sends S′

5 to B as
specified by the protocol. B is then tricked into falsely believing that it has a secret
common key for communicating with A generated by S.

3. PROTOLOG: A LOGIC FOR WELL-DESIGNED PROTOCOLS
We introduce now ProtoLog, a protocol logic, for reasoning about the mental

states of principals participating in well-designed protocols. Let ρ ∈ RO be a role
in a protocol AP = S1, . . . , Sn. The ρ-track of AP is the sequence APρ =
σi1Si1 , . . . , σikSik where σij ∈ {+,−}, 1 ≤ i1 < i2 < . . . < ik ≤ n, such that for
each 1 ≤ j ≤ n, +Sj ∈ APρ (resp.−Sj ∈ APρ) iff ρ is the role of the sender (resp.
receiver) in Sj . For illustration, the initiator-track of the abstract protocol in example
0.1 is +S1,−S2,−S4,+S5,−S6 while its responder-track is −S3,+S4,−S5,+S6.
A run of principal A in the role ρ according to a protocol AP is a ground instance of
a prefix of the ρ-track APρ of AP in which A is the principal having the role ρ. A
proper-regular run is a run where the penetrator PE does not appear in any of its acts.
Let R = E1 . . . Ek be a run. Define Effect(R) = Effect(E1)∧ . . .∧Effect(Ek).

To reason about the effects of runs of protocols , we introduce new formulas called
protocol formulas of the form AP.R [F] stating that formula F holds after run R
according to AP has been executed.

Let AP be a protocol, E be an event of sending or receiving a speech act, R be
a proper-regular run of A in a role ρ according to AP, and F,F’ be formulas. Further
let A,B,C,D be regular principal identifiers and X be a principal identifier. Protolog
extends KL with following axioms and proof rules:

A9 Key(K,B,C,A) → GKA,ρ1(K,B,C) ∨ . . . ∨ GKA,ρk
(K,B,C)

where RO = {ρ1, . . . , ρk}
A10 GKA,ρ(K,B,C) ∧ GKA′,ρ′(K,B′, C ′) → (A, ρ) = (A′, ρ′) ∧ (B,C)

= (B′, C ′)
A11 A �= B ∧ A �= C ∧ A �= D → ¬InformedA,ρ(K,B,C,D)
A12 Key(K,B,C,A) ∧ X �= A ∧ X �= B ∧ X �= C → ¬Access(X,K)

Effect Rule Consequence Rule

� AP.R [F ], � F → F ′

—————————— ——————————–
� AP.R [Effect(R)] � AP.R [F ′]

Axiom A9 states that if a key K is generated by A then K is generated by A acting
in some role. Axioms A10,A11,A12 are based on the honesty assumption of regular
principals. The intuition of axiom A10 is that generated keys are random and hence
it is impossible for an agent to generate the same key twice. The axiom A11 follows
from the structure of the speech acts that requires that when a key is sent in a speech

157



act, information about the association of the key to the receiver of the act must be
included. Hence a honest principal would never receive a key that is not associated
with it. Axiom A12 states that freshly generated session keys are accessible only by
their generator and the principals for whom they are generated. This axiom does not
hold for every protocol but it holds for well-designed protocols. In other words, well-
designed protocols protect the secrecy of the exchanged keys.

Let AP be the abstract protocol in example 0.1. Let R0, R1 be complete runs of A
and B in the initiator and responder roles respectively. It is easy to see that
� AP.R0[KnowA,InitKnowB,RespKey(K,A,B, S)] and
� AP.R1[KnowB,RespKnowA,InitKey(K,A,B, S)] hold

4. IMPLEMENTING SPEECH ACTS
A speech act is implemented by sending and receiving certain message. The mes-

sage used to implement the events of sending and receiving a speech act S is denoted
by mS. We also often say that mS represents S. Taking a hint from prudent engi-
neering [2], a representation of a speech act should contain vital information about its
type, its content, the identity and role of its sender and receiver and other information
like reply-to, and reply-with-nonces. There are many ways to implement a speech act.
In this chapter, we give some of them. A systematic study of all possible ways to
implement speech acts is beyond the scope of this paper.

Let S be a speech act from a sender A in role ρ to a receiver B in role τ .
If S is an inform act of type newkey whose content contains the formula Key(K,B,

X,Y) (where (X,Y) = (A,C) or (C,A)) then
mS = {inf, newkey,A, ρ,B, τ,K,B,X, Y }KAB

, or
mS = {inf, newkey,A, ρ,B, τ,K,B,X, Y }KB

,
If S is an inform act of type keyconfirm with a content of the form Key(K,A,B,C)

then
mS = {inf, keyconfirm,A, ρ,B, τ, C}K , or
mS = {inf, keyconfirm,A, ρ,B, τ,Hash(K), C}KB

The representation of a request (resp. reply) act depends on the representation of
the reply (resp. request) act in the same conversation. Let (S,S’) be a conversation
form and n be the nonce in S,S’.

If (S,S’) is a conversation of type newkey and the content of S’ contains the formula
Key(K,A,C,B), then there are at least two different ways to represent (S, S′):

• mS = {req, newkey,A, ρ,B, τ, n,C}KB
and

mS′ = {rep, newkey,B, τ,A, ρ, n,K,C}KA

• mS = req, newkey,A, ρ,B, τ, n,C and
mS′ = {rep, newkey,B, τ,A, ρ, n,K,C}KAB

,

If (S,S’) is a conversation of type keyconfirm and the content of S is Key(K,A,B,C),
then there are at least two different ways to represent (S, S′):
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• mS = {req, keyconfirm,A, ρ,B, τ, n,Hash(K), C}KB

and mS′ = {rep, keyconfirm,B, τ,A, ρ, n}KA

• mS = req, keyconfirm,A, ρ,B, τ, n,Hash(K), C
and mS′ = {rep, keyconfirm,B, τ,A, ρ, n,Hash(K), C}KAB

As there are many different ways to implement speech acts, a speech act-oriented
protocol could have many different implementations. For example, there are at least
16 different but equivalent ways to implement the abstract protocol in example 0.1.

Role Topology and Message Forwarding
Many security protocols do not allow principals acting in certain roles to commu-

nicate directly. An example is the well-known Otway-Rees protocol [6] that does not
allow initiators to communicate directly with servers. All messages between principals
in these roles are routed through the responders.

In general, each security protocol P assumes the existence of a directed graph
G = (RO,V ), V = RO × RO describing the connection topology of the roles in
P. A direct link from role ρ to role τ in G represents a direct communication channel
from principals acting in role ρ to principals acting in role τ . A question that imme-
diately arises is how to implement a speech act if the role topology forbids a direct
communication between its sender and receiver.

Let P be a well-designed speech act oriented protocol and G = (RO,V ) be a
given connection topology for the roles in P. Let S be a speech act in P and ρ, τ be
the roles of the sender A and receiver B in S respectively. Further let ρ, ρ1, . . . , ρk, τ
be a shortest path from ρ to τ with A1, . . . , Ak being the principal terms occupying
the roles ρ1, . . . , ρk in P. S is implemented by forwarding the message mS from A
through A1, . . . , Ak to B as: A

mS−→ A1
mS−→ . . .

mS−→ Ak
mS−→ B. P is translated into

a message exchanging protocol by successively translating each of its acts as above.
Consider the abstract speech act oriented protocol in example 0.1. Suppose that the

connection topology forbids direct communication between responders and servers. In
this case, the speech act (3) in which S informs B about the new key K is implemented
by letting S (server) send message to B (responder) through A (initiator). The abstract
protocol is implemented by the following message exchanging protocol:

(1) A → S : req, newkey,A, Init, S, Server,Na, B
(2) S → A : {rep, newkey, S, Server,A, Init,Na ,K,B}KAS

(3.1) S → A : {inf, newkey, S, Server,B,Resp,K,B,A, S}KBS

(3.2) A → B : {inf, newkey, S, Server,B,Resp,K,B,A, S}KBS

(4) B → A : {req, keyconfirm,B,Resp,A, Init,Nb,Hash(K), S}KA

(5) A → B : {rep, keyconfirm,A, Init,B,Resp,Nb}KB

(6) B → A : {inf, keyconfirm,B,Resp,A, Init, S}K

Steps (2) and (3.1) could be combined by letting S sending both mS2,mS3 to A in one
step.
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5. SOUNDNESS AND COMPLETENESS OF PROTOLOG
Strand spaces have been introduced by Fabrega, Herzog and Guttman [8] to give

an operational semantics for message-exchanging protocols under the Dolev-Yao as-
sumption of perfect cryptography. We adapt the strand space model to our framework
to give an operational semantics to the lower-level message-exchanging protocols. The
protocol logic Protolog is then interpreted over the adapted strand models.

Let AP be an arbitrary but fixed speech act oriented key exchange protocol. For
simplicity and due to the limited space, we assume that AP has a role topology in
which there is a direct link between every pair of different roles (all the results in this
chapter are proved for the general case in the full paper). A strand is a sequence of
nodes labelled by actions ±m of sending or receiving messages m. The ith node of
a strand s is denoted by (s,i). Act(s,i) denotes the ith action in s. The message of the
action labelling (s,i) is denoted by term(s, i). Let ⇒= {((s, i), (s, i + 1)) | s is a
strand }

Let S be a set of strands and (s,i) be a node in S. A key or nonce b is said to
originate at (s,i) if Act(s,i) is a sending action and b occurs in term(s,i) and for all
j < i, b does not occur in term(s,j). b is said to uniquely originate at (s,i) in S if (s,i)
is the only node in S at which b originates.

There are two kinds of strands, regular strand and penetrator strands. A node
lying on a regular (resp. penetrator) strand is called a regular (resp. penetrator) node.
We often say that a regular node N implements a speech act event ±S if the action
labelling N is ±mS . For a regular principal A and a role ρ ∈ RO, an AP-regular
strand of A in role ρ is a regular strand s = N1, . . . , Nm such that each Ni implements
the event Ei in a run R = E1, . . . , Em of A in role ρ according to AP. We also say that
strand s implements run R. There are eight kinds of penetrator strands:

Key-strand: 〈+K〉 where K ∈ KEY \ K S-strand: 〈−gh+g+h〉
RO-strand: 〈+ρ〉 where ρ ∈ RO E-strand: 〈−K − h + {h}K〉
PI-strand: 〈+A〉 where A ∈ PI C-strand: 〈−g − h + gh〉
Nonce-strand: 〈+n〉 where n ∈ NONCE D-strand: 〈−K−1 − {h}K + h〉

where K consists of all secret shared keys KAB, and private keys K−1
A of regular

principals.
With the exception of the Key, and RO-strands, the other definitions of penetrator

strands coincide with the definitions given in [8, 11]. In [8, 11], the penetrator is
assumed to possess initially a set of keys and the key the penetrator could pick up in a
key strand should belong to this set. We do not impose this restriction on the penetrator
as we assume that the penetrator has access to any algorithm that could be used for
key or nonce generation. The assumption that the keys or nonces generated by regular
principals are random and hence could not be generated by the penetrator is captured
by their unique origination requirement in the defintion of bundles ( introduced shortly
below)

A bundle of AP is is defined as a pair (S,→) whereas S is a finite set of strands,
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→ is a binary relation over the set of nodes in S such that the following conditions are
satisfied:

1) Every regular strand in S is AP-regular.
2) For each node (s,i) in S, if Act(s,i) is a receiving action then there is exactly

one node (s’,i’) such that Act(s′, i′) is a sending action and (s′, i′) → (s, i) and
term(s, i) = term(s′, i′) hold

3) The transitive closure of the relation → ∪ ⇒ is acyclic
4) For each regular node (s,i) in S, if a nonce or a key b is generated in the speech

act implemented by (s,i), then b uniquely originates at (s,i) in S.
5) If a key or nonce b originates at a regular node (s,i) then b is also generated at

(s,i).
Note that the assumption that the keys or nonces generated by principals during a

run of the protocol are random is captured by their unique origination requirement.
We say that a key K is associated with principals A,B,C in a speech act S if the

content of S contain the formula Key(K,A,B,C) or Key(K,B,A,C). It is not difficult to
see that for each regular node N, term(N) represents uniquely a speech act. We say
that a key K is associated with principal identifiers A,B,C at a node N if K is associated
with principal identifiers A,B,C in the speech act represented by term(N).
Definition(Model Semantics) Let B be a bundle of a well-designed protocol, A,B,C
be regular principals, D be an arbitrary principal and ρ be a role. Further let n be a
nonce and K be a key.

1. B |= HNA,ρ(n) iff there exists a regular strand s ∈ B of A in role ρ such that n
is contained in an action in s.

2. B |= GNA,ρ(n) iff there exists a regular strand s ∈ B of A in role ρ such that
nonce n is generated in some sending action in s.

3. B |= InformedA,ρ(K,B,C,D) iff there is a regular strand s ∈ B of A in role
ρ and a node N in s such that N implements the (sending or receiving) event of
an inform or reply act and K is associated with B,C,D at N.

4. B |= GKA,ρ(K,B,C) iff there exists a regular strand s ∈ B of A in role ρ such
that key K is generated at some sending node N in s and K is associated with
B,C,A at N

5. B |= Access(D,K) iff

(a) D is a regular principal and there exists a regular strand s ∈ B of D such that
K is contained in an action in s, or

(b) D is the penetrator and there exists a penetrator node N such that K = term(N)

6. B |= Key(K,A,B,C) iff there exists a regular strand s ∈ B of C such that key
K is generated at some sending node N in s and K is associated with A,B,C at N
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Let B and B′ be bundles of the same well-designed protocol, and A be a regular
principal identifier and ρ be a role. Further let Ω (resp. Ω′) be the set of nodes of A
in role ρ in B (resp. B′). We say that B,B′ are (A, ρ)-indistinguishable, denoted by
B ≡A,ρ B′ if there is a bijection φ between Ω and Ω′ such that for all nodes N,N′ ∈ Ω
following conditions hold:

1) The actions labelling N and φ(N) coincide.
2) N ⇒ N ′ iff φ(N) ⇒ φ(N ′)
What a principal in a role ρ knows at a certain state of the world depends on what

it considers to be a possible world at this state [9]. Syverson [17] defined a world state
as a bundle. Similarly, we define a world state as a bundle where a possible world for
a principal A acting in a role ρ in a state B is a historical bundle B′ such that B,B′ are
(A, ρ)-indistinguishable.

Definition(Model Semantics, continued)
B |= KnowA,ρF iff for all B′ s.t. B,B′ are (A, ρ)-indistinguishable: B′ |= F

Let R be a run of a principal A according to a well-designed AP. Define
|= AP.R[F] iff for each bundle B of AP, if B contains a recent strand implementing
R then B |= F .

Let AP be a well-designed protocol, B be a bundle of AP, F be a formula and R
be a proper-regular run of A in role ρ according to AP. The soundness as well as a
limited completeness of the protocol logic ProtoLog are established in the following
theorems. The proofs are given in the full version of this paper.

Theorem 1(Soundness)
1) If � F then |= F
2) If � AP.R[F ] then |= AP.R[F ]

Theorem 2(Limited Completeness)
If |= AP.R[KnowA,ρKey(K,B,C,D)]
then � AP.R[KnowA,ρKey(K,B,C,D)]

6. RELATED WORKS
There is a good body of work on designing security protocols. Guttman [10] has ar-

gued that the framework of authentication tests could be used in the design of security
protocols. The notion of conversation we introduced could be viewed as a high-level
declarative embodiment of the idea of authentication tests. Gong and Syverson [12]
has developed an informal method for developing fail-stop security protocols. Mead-
ows [15] has suggested that the design of cryptographic protocols should be layered
in which a abstract model is used at the top layer and each successive layer is an im-
plementation of the layer above it. A requirement language for security protocols has
been given by Syverson and Meadows in [18]. Buttyan, Staamann and Wilhelm [5]
has proposed an abstract BAN-like logic to be used in the protocol design. But it is
not clear how to translate a protocol specified in the abstract logic into a lower level
protocol and how to verify the correctness of such translation. Boyd and Mao [3] have
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discussed informally set-theoretic guidelines for the design of key exchange protocols.
Abadi and Needham [2] have proposed a set of informal guidelines for authentication
protocol design. Perrig and Song [16] has developed tools based on the idea of strand
space for analyzing protocols and later applied it in the design of protocols. A more
recent work by Datta, Derek, Mitchell and Pavlovic [7] is especially relevant to our
work. Though they do not propose a high-level language for protocol programming
comparable to our language of speech acts, the techniques they study could turn out
to be especially useful in the development and optimization of ”protocol compiler”.
Abadi work on secrecy by typing [1] seems to be closely related to our result on the
secrecy of exchanged keys of well-designed protocols.
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A Monadic Analysis of Information Flow Security
with Mutable State
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Frank Pfenning

We explore the logical underpinnings of higher-order, security-typed languages
with mutable state. Our analysis is based on a logic of information flow derived from
lax logic and the monadic metalanguage. Thus, our logic deals with mutation explic-
itly, with impurity reflected in the types, in contrast to most higher-order security-typed
languages, which deal with mutation implicitly via side-effects.

More importantly, we also take a store-oriented view of security, wherein security
levels are associated with elements of the mutable store. This view matches closely
with the operational semantics of low-level imperative languages where information
flow is expressed by operations on the store. An interesting feature of our analysis lies
in its treatment of upcalls (low-security computations that include high-security ones),
employing an “informativeness” judgment indicating under what circumstances a type
carries useful information.

1 Introduction

Security-typed languages use a type system to track the flow of information within a
program to provide properties such as secrecy and integrity. Secrecy states that high-
security information does not flow to low-security agents, and integrity dually states
that low-security agents cannot corrupt high-security information. In this paper, we
will restrict our attention to secrecy properties. A variety of security-typed languages
have been proposed, and several of them are both higher-order (i.e., support first-class
functions) and provide mutable state [4, 9, 11, 17].

However, when adopting one of these languages to the Typed Assembly Language
[8] setting, one faces a tension between the high-level view of information flowing
from the values of sub-terms to the result value of a complete term and the assembly-
language imperative view of instructions operating on a mutable store. What is needed

�This material is based on work supported in part by NSF grants CCR-9984812 and CCR-0121633.
Any opinions, findings, and conclusions or recommendations in this publication are those of the authors
and do not reflect the views of this agency.
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is a typed calculus in which values have structure (i.e., like in high level languages)
but information flows through the store (i.e., like in a low-level language).

In this paper, we explore this store-oriented view of information flow: one of the
steps towards a TAL with information flow, we look at a language with a clean sepa-
ration between values and computations. A suitable starting point is Moggi’s monadic
metalanguage [6, 7] and its corresponding logic (via a Curry-Howard isomorphism).

Our presentation of lax logic is based on that of Pfenning and Davies [10]. The
principal distinctive feature of Pfenning and Davies’s account is a syntactic distinc-
tion between terms and expressions, where terms are pure and expressions are (pos-
sibly) effectful. They show that this distinction allows the logic to possess some de-
sirable properties (local soundness and local completeness) that state in essence that
the logic’s presentation is canonical. Although these properties are not particularly
important here, the distinction also provides a clean separation between the pure and
effectful parts of our analysis, which greatly simplifies our system.

Our system bears some resemblance to the work of Abadi et al. [1], who also use a
monadic structure to reason about information flow. However whereas we use monads
in a conventional manner to separate values from computations, they use a monad to
endow values with a security level. It is not clear how to adopt their work to a low-level
setting where the values and operations ought to correspond to those of a real machine.

A natural question is whether this store-oriented security discipline limits the ex-
pressive power of our account relative to ones based on a value-oriented discipline, but
we show (in Section 5) that it does not.

Overview The static semantics of our analysis is based on two typing judgments,
one for terms (M ) and one for expressions (E). Recall that terms are pure and that
security is associated with effects, so the typing judgment for terms makes no mention
of security levels. Thus, the typing judgment takes the form Σ;Γ � M : A (where A
is a type, Γ is the usual context and Σ assigns a type to the store).

Expressions, on the other hand, may have effects and therefore may interact with
the security discipline. Each location in the store has a security level associated with
it indicating the least security level that is authorized to read that location. Thus, the
typing judgment for expressions tracks the security levels of all locations an expression
reads or writes. Only the reads are of direct importance to the security discipline (recall
that we do not address integrity), but writes must also be tracked since they provide a
means of information flow. The judgment takes the form: Σ;Γ � E÷(r,w)A indicating
that r is an upper bound to the levels of E’s reads, and w is a lower bound to the levels
of its writes, and also that E has type A. Naturally we require that r � w, or else E
could manifestly be leaking information.

So our language can be seen as a conservative extension of purely functional lan-
guages such as Haskell. Existing terms continue to be type-safe. On the other hand
new effectful code that makes use of the security discipline can be cleanly separated.
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In lax logic, expressions are internalized as terms using the monadic type ©A.
Terms of type ©A are suspended expressions of type A. Thus, the introduction form
for the monadic type is a term construct, and the elimination form (which releases
the suspended expression) is an expression construct. Similarly, our expressions are
internalized as terms using a monadic type written ©(r,w)A. Since the effects of the
suspended expression will be released when the monad is eliminated, the levels of
those effects must be recorded in the monad type.

Most of the rules in our account follow from the intuitions above. One remaining
novelty deals with the information content of types. Ordinarily, an expression would be
deemed to be leaking information if it were to read from a high-security location, use
the result of the read to form a value, and pass that value to a low-security computation.
However, that expression would not be leaking information if one could show that the
type of that value contained no information, or contained information usable only by
a high-security computation (who could have performed the read anyway). Thus the
type system contains a judgment � A ↗ a stating that the type A contains information
only for computations at the level a at least. This notion of informativeness is essential
to accounting for the key issue of upcalls (low-security computations that include high-
security computations).

The remainder of this paper is organized as follows: In Section 2 we present our
basic logical account, including static and dynamic semantics, but omitting the key
issue of upcalls. In Section 3 we extend our account to deal with upcalls. In Section 4
we state and prove a non-interference theorem. In Section 5 we show that our store-
oriented account provides at least the expressive power of value-oriented accounts by
embedding one value-oriented language into our language. Section 6 discusses some
related work, Section 7 offers some concluding remarks.

2 The Secure Monadic Calculus

We begin by describing the syntax, evaluation rules and an initial set of typing rules for
our language. While this language will be secure, as we will see in the next section its
type system rules out too many programs to be practical. By including some additional
rules, we will be able to make it more useful while still retaining the required secrecy
property.

As in other work on information flow, we have in mind an arbitrary lattice (L,�
,�,�,⊥,�) of security levels.

Operation levels To track the flow of information, we classify expressions not only
by the value that they return, but also by the security levels of their effects. In particu-
lar, we keep track of an operation level o = (r,w), for each expression. The security
level r is an upper bound on the security levels of the store locations that the expression
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A, B, C ∈ types ::= 1 | bool | A → B | refa A | refra A | refwa A | ©o A
M, N ∈ terms ::= x | ∗ | true | false | if M then N1 else N2

| λx : A.M | MN | � | val E
E, F ∈ expressions ::= [M ] | let val x = M in E | refa (M : A) | !M | M := N

Γ ∈ contexts ::= · | Γ, x : A
Σ ∈ store types ::= {} | Σ{� : A}
V ∈ values ::= ∗ | true | false | λx : A.M | � | val E
H ∈ stores ::= {} | H{� �→ V }
S ∈ states ::= (H, Σ, E)

Figure 1: Syntax

reads, while w is a lower bound on the security level of the store locations to which it
writes.

Since expressions that write at a security level below their read level may obviously
be insecure, henceforth we restrict our attention only to operation levels (r,w) with
r � w.

The operation levels have a natural ordering (r,w) 
 (r′, w′). Given some ex-
pression E, if it reads from level at most r, then it surely reads from level at most r′,
provided that r � r′. Similarly, if it writes at level at least w, then it writes at level at
least w′, provided that w′ � w. That is, operation levels are covariant in the reads and
contravariant in the writes: (r,w) 
 (r′, w′) iff (r � r′ and w′ � w)

2.1 Syntax

The full syntax of our language is given in Figure 1. The language is split into two
syntactic categories: pure terms M that are evaluated to values V and expressions E
that are executed for effect as part of compuation states S.

Terms At the term level, we have variables, unit, booleans and conditional terms,
function abstractions and applications. For simplicity, we did not include a mechanism
for defining recursive terms, although the inclusion of such a facility would not pose
a problem. Store locations are also terms, with each location � having a fixed security
level Level(�). The store associates locations with the values they contain. A subtyping
relation, allows us to treat store cells as either read-write, read-only, or write-only. The
term val E allows expressions to be included at the term level as an element of the
monadic type ©oA. Since terms are pure, a val E does not execute the expression E,
but rather represents a suspended computation.

Expressions The expressions include a trivial return expression [M ]. The return ex-
pression has no effect, and simply returns the value to which M evaluates. In general,
when an expression has no read effects, we say its read level is ⊥, and if an expression
has no write effects, we say its write level is �. Accordingly, the operation level of [M ]
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is (⊥,�). Note that (⊥,�) is the least element in the 
 ordering, so our subsumption
principle will let us weaken the operation level of [M ] to any operation level.

The sequencing expression let val x = M in F evaluates M down to some val E,
and executes E followed by F . The return value of expression E is bound to the
variable x in F . If E and F both have operation level o, then so does the sequencing
expression.

We will often write let x = E in F as syntactic sugar for let val x = val E in F ,
and run M for let val y = M in [y].

In addition, there are expressions that allocate, read from, and write to the store.
A read expression !M has operation level (a,�), where a is the security level of the
store location being read, and returns the contents of the store location. Dually, a write
expression M := N has operation level (⊥, a) and updates the store location with the
value of N ; it does not return an interesting value (i.e., it returns unit).

Store allocation refa (M : A) specifies the security level a and type A of the new
store location.

Allocation cannot leak information. Evidently, it is not a read operation. Less
obviously, it is not a write operation either. With a write, another expression may learn
something about the current computation by observing a change in the value stored at
a particular store location. However, the key to this scenario is that the same location
is mentioned by more than one expression. On the other hand, allocation creates a new
location that is not aliased. Thus, there can be no implicit flow of information via an
allocation expression. As a result, allocation has operation level (⊥,�). Of course
if there were a primitive mechanism in place to distinguish locations (for example by
comparing locations for equality), allocation would once again be observable.

Although there is not a primitive mechanism for recursion at the level of expres-
sions, recursion can be encoded at the level of expressions using back-patching, see an
example in Section 3.2.

States A computation state is a partially executed program, and consists of a triple
(H,Σ, E) of a store H , a store type Σ and a closed expression E. The store maps
locations to values, and the store type maps locations to the types of those values.

We assume that in a state (H,Σ, E), the store binds occurrences of store locations
� in H and E, and we identify computation states up to level-preserving renaming
of store locations. In addition, as usual, we identify all constructs up to renaming of
bound variables.

2.2 Static Semantics

The type system of our language consists of two main mutually recursive judgments
for typing terms and expressions, and some judgments for typechecking stores, and
computation states. The first judgment Σ;Γ � M : A says that the term M has
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Σ;Γ � M : A

Σ; Γ � x : Γ(x)
(1)

Σ; Γ � � : refLevel(�) Σ(�)
(2)

Σ; Γ � M : bool Σ; Γ � N1 : A Σ;Γ � N2 : A

Σ;Γ � if M then N1 else N2 : A
(3)

Σ; Γ, x : A � M : B

Σ; Γ � λx : A.M : A → B
(4)

Σ; Γ � M : A → B Σ; Γ � N : A

Σ;Γ � M N : B
(5)

Σ; Γ � E ÷o A

Σ; Γ � val E : ©oA
(6)

Σ; Γ � M : A � A ≤ B

Σ;Γ � M : B
(7)

Figure 2: Typing rules (terms).

type A in the context Γ, where the store has type Σ. The jugment for expressions
Σ;Γ � E ÷o A says that E returns a value of type A and performs only operations
within level o.

We assume that contexts Γ are well-formed, that is, they contain at most one oc-
currence of each variable x. We tacitly rename bound variables prior to adding them
to a context to maintain well-formedness. Similarly, we assume that store types are
well-formed, that is, they contain at most one occurrence of each store location �.

Terms The typing rules for terms are unsurprising for a simply-typed lambda calcu-
lus with unit, bool and function types. A store location � (provided that it is in dom(Σ))
has type refLevel(�)Σ(�). A computation term val E has the type ©oA, provided the
expression E has type A and operation level o. The rules are summarized in figure 2.

Expressions The typing rules for expressions (given in Figure 3) follow our infor-
mal description. Trivial computations have the type of their return value, and op-
eration level (⊥,�) (rule 8). By rule (9), the sequencing expression let val x =
M in E is well-typed provided both of the sub-computations have the same operation
level (which may require using rule (13) to weaken the operation level of the sub-
computations). Allocation (rule 10) returns a new read/write store location. For read
and write expressions (rules 11 and 12) we only require that the corresponding store
location is readable or writable, respectively.

Subtyping Subsumption (rules 7, 14) allows us to weaken the type A of a term M
or an expression E, provided A is a subtype of B. Selected subtyping rules are given
in Figure 4.
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Σ;Γ � E ÷o A

Σ;Γ � M : A

Σ;Γ � [M ] ÷(⊥,�) A
(8)

Σ; Γ � M : ©oA Σ; Γ, x : A � E ÷o A

Σ;Γ � let val x = M in E ÷o A
(9)

Σ; Γ � M : A

Σ; Γ � refa (M : A) ÷(⊥,�) refa A
(10)

Σ; Γ � M : refra A

Σ; Γ �!M ÷(a,�) A
(11)

Σ; Γ � M : refwa A Σ;Γ � N : A

Σ; Γ � M := N ÷(⊥,a) 1
(12)

Σ; Γ � E ÷o A o � o′

Σ; Γ � E ÷o′ A
(13)

Σ; Γ � E ÷o A � A ≤ B

Σ; Γ � E ÷o A
(14)

Figure 3: Typing rules (expressions).

� A ≤ B

� A ≤ B a � b

� refra A ≤ refrb B
(15)

� B ≤ A b � a

� refwa A ≤ refwb B
(16)

� A ≤ B a � b

� refa A ≤ refrb B
(17)

� B ≤ A b � a

� refa A ≤ refwb B
(18)

� A ≤ B o � o′

� ©oA ≤ ©o′B
(19)

Figure 4: Selected subtyping rules.
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S → S′

M → M ′

(H,Σ, let val x = M in E) →
(H,Σ, let val x = M ′ in E)

LETVAL1
(H,Σ, E) → (H ′, Σ′, E′)

(H,Σ, let val x = val E in F ) →
(H ′, Σ′, let val x = val E′ in F )

LETVALVAL

(H,Σ, let val x = val [V ] in E) →
(H,Σ, E[V/x])

LETVAL

� �∈ dom(H) Level(�) = a

(H,Σ, refa (V : A)) →
(H{� 	→ V }, Σ{� : A}, [�])

REF
(H,Σ, !�) →
(H,Σ, [H(�)])

BANG

� ∈ dom(H)

(H,Σ, � := V ) →
(H{� 	→ V }, Σ, [∗])

ASSN
M → M ′

(H,Σ, [M ]) →
(H,Σ, [M ′])

RET1

Figure 5: Operational Semantics (Expressions, selected rules)

Stores and states A store H is well-typed with store type Σ, provided that each
value Vi in the store is well typed under Σ and the empty context, where Σ has the
same domain as H . A computation state (H,Σ, E) is well-typed provided that the
store and the expression are each well-typed with the same store type:

dom(Σ) = {�1, . . . , �n} Σ; · � Vi : Σ(�i) for 1 ≤ i ≤ n

� {�1 �→ V1, . . . �n �→ Vn} : Σ
(20)

� H : Σ Σ; · � E ÷o A

� (H, Σ, E) ÷o A
(21)

2.3 Operational Semantics and Safety

A computation state is called terminal if it is of the form (H,Σ, [V ]). An evaluation
relation S → S′ gives the small-step operational semantics for computation states.
We write S ↓ if for some terminal state S′, S →∗ S′. Since terms are pure, their
evaluation rules may be given simply by the relation M → M′ (no store is required).
The evaluation rules for terms are entirely standard, and are omitted. The evaluation
rules for expressions are given in Figure 5. We write M [N/x] and E[N/x] for the
capture-avoiding substitution of N for x in the term M or expression E. We write
H{� �→ V } for finite map that extends H with V at �.

A computation state S is stuck if it is not terminal and there is no S′ such that
S → S′. In the extended version of the paper [2] we show the expected type safety
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theorem: whenever S is well-typed, if S →∗ S′, then S′ is not stuck.

3 Upcalls

Although the approach discussed so far is secure, it falls short of a practical language.
There is no way to include a computation that reads from the high-security store in a
larger low security computation. In any program with a high security read, the read
level of the entire program is pushed up. However, many programs that contain upcalls
to high security computations followed by low security code are secure.

Consider the program let z = P in E where P ÷(�,�) 1 and E has operation level
(⊥,⊥). P does not leak information because 1 carries no useful information, and P ’s
writes are above E’s reading level. Thus we would like to give the entire program
the operation level (⊥,⊥). However the type system we have presented so far would
instead promote the operation level of E and the entire program to (�,�).

In order to have a logic of information flow, we must offer an account of upcalls.
Indeed, the power to perform high security computations interspersed in a larger low-
security computation is the sine qua non of useful secure programming languages. We
offer a detailed analysis of two cases where upcalls do not violate our intuitive notion
of security. From these examples, we develop a general principle for treating upcalls
— our notion of informativeness — discussed in Section 3.2. We take up the question
of non-interference in Section 4.

3.1 A more general example

Now consider a computation E with operation level (r,w), but this time, suppose that
E has type refa B for some type B. Are there any situations where E may be given a
different operation level?

Suppose that r � a. In that case, any computation that may read the refa B is also
able to read any store locations that E may read. Again, any computation can either
do what E does itself, or it cannot gain information from E’s return value.

On the other hand, consider the case where r �� a. The particular value of type
refa B that E returns may carry information from store locations at security level r.
For example, E may return one of two such store locations �1 or �2 from level a based
on some boolean value V from a store location at security level r. In that case, a
computation that reads at security level a may learn something about E’s reads (at
level r) by reading from E’s return value. Since r �� a, this represents a violation of
secure information flow.

So if E returns a refa B, we can demote its reading level whenever r � a, because
any computation that wishes to make use of that return value would need a read level
of at least r. In other words, a refa B is informative only to computations that may
read at least at some security level (namely a) above r.
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� A ↗ a

� A ↗ ⊥ (23)
� A ↗ a b � a

� A ↗ b
(24)

� A ↗ a � A ↗ b

� A ↗ a � b
(25)

� B ↗ a

� A → B ↗ a
(26)

� refa A ↗ a
(27)

� A ↗ a

� refb A ↗ a
(28)

� A ↗ a

� refrb A ↗ a
(29)

� refrb A ↗ b
(30) � refwa A ↗ a

(31)
� A ↗ a

� ©(r,w)A ↗ w � a
(32)

Figure 6: Informativeness judgement.

This observation suggests a new subsumption rule for expressions that alters the
operation level:

Σ;Γ � E ÷(r,w) A � A ↗ r

Σ;Γ � E ÷(⊥,w) A
(22)

where the new informativeness judgment � A ↗ r formalizes the idea that values of
type A, if they are informative at all, are informative only at level r or above.1

In terms of this new judgment, our earlier observations are that � 1 ↗ r for any r,
and � refa A ↗ r whenever r � a.

3.2 Informativeness

We now consider some properties of the new judgment � A ↗ a (see Figure 6).
Several structural rules (23,24,25) for the judgment are immediate. If A is informative
at all, then it’s informative only at ⊥ or above. Also, if A is informative only at or
above a and if b � a, then A is informative only at or above b. That is, we may choose
to discard some knowledge about when a type is informative. Finally, suppose A is
informative only above a, and A is informative only above b. Then for any r if values
of type A are informative to computations that read at r, we know that both a � r and
b � r. Therefore, for any such r, a � b � r. So, A is informative only above a � b.

A value of type bool is informative for any computation at all, since it may be
trivially analyzed with a conditional. So aside from the structural axiom � A ↗ ⊥,
there should be no other rules for bool. We would give a similar account of other types
that may be analyzed by branching (e.g., sum types A + B or integers int).

Since functions are used by application, a value of type A → B is useful exactly
when B is.

We have already alluded to rule (27) for refa A. There is an additional rule for refs.
Even if a computation can read from a store location of type refb A (i.e., its read level

1Informativeness is closely related to protectedness in DCC [1] and to the tampering levels of [5]. We
discuss the relationship in Section 6.
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λc : ©(�,�)bool.
val let wref = ref� (val [∗] : ©(⊥,�)1) in
let w = [val (let b = run c in run (if b then val (let w′ = !wref in run w′) else val [∗]))] in
let = wref := w in
run w

Figure 7: untilFalse : ©(�,�)bool → ©(⊥,�)1

is above b), only if A is informative at its operation level, can refb A be informative.
Read-only store locations are useful only to computations that may read from

them. Consequently, by an argument similar to the one for read-write store cells, they
have analogous rules.

For write-only store cells refwa A, we have to consider aliasing. One way that a
computation may learn whether two store locations are aliases is by writing a known
value to one of them, and then reading out the value from the other. Because of sub-
typing, if a lower-security computation has a store location � of type refra A, a value
of type refwa A may be informative if the computation can read from (the seemingly
unrelated) �.

Finally, consider the type ©(r,w)A. A value of this type is informative both to
computations that may read at least security level w (that is, the level the suspended
expression writes to), and to computations for which the type A is informative.

With informativeness in hand, many more useful terms become well-typed. Con-
sider, for example, the term in Figure 7. The function untilFalse takes as argument
a computation that reads and writes high before returning a boolean, and runs that
computation repeatedly until it returns false. Recursion is accomplished using back-
patching: a store location with a dummy value is allocated and is bound to wref ,
recursive calls in the body of the loop dereference wref and run the contents. The
recursive knot is tied by overwriting the contents of wref with the real loop body w.

Interestingly, although untilFalse takes a high-security computation as an argu-
ment, our type system is able to give it the type ©(�,�)bool → ©(⊥,�)1, that is
its return type is a low-security computation. Intuitively, even if f is a high-security
computation, untilFalse f does not leak any information to low-security since any
information gained from f ’s return value is used only within the loop.

4 Non-interference

Informally, non-interference says that computations that have a low read level do not
depend on values in high security store locations. As in similar arguments [17, 16],
“low” means below some fixed security level ζ , and “high” means not below ζ .
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Operationally, the low security sub-computations of a program should behave
identically irrespective of the values in the high security store locations. On the other
hand, it is alright for high security sub-computations to behave differently depend-
ing on values in high security store locations. However once a high security sub-
computation completes, the low security behavior should again be identical modulo
the parts of the computation state that are “out of view” of the low security part of the
program.

4.1 Equivalence property

Formally, we define an equivalence property of computation states (and term and ex-
pressions) such that two states are equivalent whenever they agree on the “in view”
parts of the computation state. Then, in the style of a confluence proof, we show that
this equivalence property is preserved under evaluation.

Stores and States Certainly values in high security store locations are out of view.
Less obviously, some values in the low security locations are out of view as well: if a
low security store location appears only out of view, its value is also out of view. We
parametrize the store equivalence judgment by a set U of in view store locations. Two
(well-typed) stores are equivalent only if their in view values are equivalent:

� H1 :Σ1 � H2 :Σ2 Σ1 � U =Σ2 � U Σ1; Σ2; · � H1(�) ≈ζ H2(�) : Σ1(�) for � ∈ U

� (H1 : Σ1) ≈U
ζ (H2 : Σ2)

(33)

Where the notation Σ � X means Σ restricted to locations in the set X.

For a pair of computation states, only low security locations that are common
to both computations are in view. Since allocation does not leak information, it is
possible for two programs to allocate different low security locations while executing
high security sub-computations. However such locations are out of view for the low
security sub-computation.

Pairs of computation states are equivalent if their stores are equivalent on the in-
view locations, and if they have equivalent expressions (where ↓(ζ) = {� | Level(�) �
ζ} is the set of all low security locations) :

� (H1 : Σ1) ≈dom(H1)∩dom(H2)∩↓(ζ)
ζ (H2 : Σ2) Σ1; Σ2; · � E1 ≈ζ E2 ÷o A

� (H1, Σ1, E1) ≈ζ (H2, Σ2, E2) ÷o A
(34)

Terms and Expressions High security sub-computations of a program may return
different values to the low security sub-computations. However, by the upcall rule, the
type of those values must be informative only at high security.
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Values of a type that is informative only at high security are out of view. As a
result, any two values of such a type are equivalent since two such values vacuously
agree on their in view parts:

Σ1; Γ � V1 : A Σ2; Γ � V2 : A � A ↗ a a �� ζ

Σ1; Σ2; Γ � V1 ≈ζ V2 : A
(35)

The remaining rules for term and expression equivalence are congruence rules that
merely require corresponding sub-terms or sub-expressions to be equivalent. They are
given in the extended paper.

4.2 Non-interference theorem

The main result necessary to establish non-interference is the so-called “Hexagon
Lemma” : given two equivalent computation states that each take a step, we show that
in zero or more steps we can reach two computation states that are again equivalent.

As previously noted, while a program is executing a high security sub-computation,
it may behave differently based on the contents of the high-security store. However,
as the following preliminary lemma shows, during any such high security steps, the in
view parts of the stores remain equivalent.

Lemma 4.1 (High Security Step (HSS)). Given two states (H1,Σ1, E1) and (H2,
Σ2, E2) such that � (H1 : Σ1) ≈U

ζ (H2 : Σ2) where U = dom(Σ1)∩dom(Σ2)∩↓(ζ),
and for i = 1, 2, there exist Ci and oi = (ri, wi) such that Σi; · � Ei ÷oi Ci and
wi �� ζ . If (Hi,Σi, Ei) →∗ (H ′

i,Σ
′
i, E

′
i) for i = 1, 2 then � (H′

1 : Σ′
1) ≈U ′

ζ (H ′
2 : Σ′

2)
where U ′ = dom(Σ′

1) ∩ dom(Σ′
2) ∩ ↓(ζ)

The proof of this lemma appears in the extended version of the paper [2].

Lemma 4.2 (Hexagon Lemma). For all ζ , if o = (r,w) with r � ζ , and if � S1 ≈ζ

S2 ÷o C and S1 → S′
1, S2 → S′

2 where S′
1 ↓ and S′

2 ↓ then there exist S′′
1 , S′′

2 such
that S′

1 →∗ S′′
1 , S′

2 →∗ S′′
2 and � S′′

1 ≈ζ S′′
2 ÷o C

Proof. By Inversion on � S1 ≈ζ S2 ÷o C , we get that each computation state Si is
a triple (Hi,Σi, Ei), and that the two stores and the two expressions are equivalent
Σ1; Σ2; · � E1 ≈ζ E2 ÷o C . We prove the theorem by induction on this derivation.
We consider one case below, the remaining cases are proved in the extended paper [2].

Case:
Σ1; Σ2; Γ � E1 ≈ζ E2 ÷(r′,w) C � C ↗ r′

Σ1; Σ2; Γ � E1 ≈ζ E2 ÷(⊥,w) C
(36)

If r′ � ζ , we can invoke the induction hypothesis to get two equivalent compu-
tation states with operation level (r′, w), and then use the upcall rule to construct the
desired derivation (with operation level (r,w)).

On the other hand, if r′ �� ζ , then since r′ � w, it follows that w �� ζ and so, by
the High Security Step Lemma, running both of the computation states to completion
produces equivalent stores. Since we also know that their return values are out of view,
we can show that the resulting terminal states are equivalent.
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t ∈ types ::= 1 | bool | s1
pc−→ s2 | ref s

s ∈ security types ::= (t, a)
bv ∈ base values ::= ∗ | true | false | � | λ[pc]x : s.e
e ∈ expressions ::= x | bva | if e1 then e2 else e3 | e1e2 | ref (e : s)) | !e | e := e′

Figure 8: λREF
SEC Syntax

Theorem 4.3 (Non-interference). If � H : Σ and Σ;x : A � E ÷(r,w) B and if
Σ;Σ; · � V1 ≈r V2 : A then if (H,Σ, E[V1/x]) →∗ S1 and (H,Σ, E[V2/x]) →∗ S2

and both S1, S2 are terminal, then � S1 ≈r S2 ÷(r,w) B

Proof. By some easy structural properties, we can show that Σ;Σ; · � E[V1/x] ≈r

E[V2/x] ÷(r,w) B. By repeated application of the Hexagon Lemma, the two com-
putations evaluate to equivalent terminal states. Since the operational semantics are
deterministic (upto renaming of bound store locations), those terminal states are S1
and S2, respectively.

5 Encoding a value-oriented language

A natural question is whether we sacrifice expressive power in comparison to value-
oriented secure languages. In such languages, terms are classified by security types:
pairs of an ordinary type and a security level. The type system ensures that each term is
assigned a security level at least as high as the security level of the terms contributing
to it. In our account only the store provides security. We consider the language λREF

SEC

(summarized in Figure 8) of Zdancewic [15] and show that it can be encoded into our
language.

In an imperative setting, information gained via control-flow may leave an ex-
pression non-locally (e.g., via a write to the store). As a result, it becomes necessary
to track such implicit flows of information. Secure imperative languages use a so-
called program counter security level, pc, as a lower bound on the information that a
computation may gain via control flow. Consequently, the results and effects of each
expression must be at least as secure as any information gained via control flow.

The typing rules for λREF
SEC are unsurprising for a value-oriented language (see the

extended paper). The rule for lambda captures the program counter annotation in the
arrow type, and an application expression releases the effects provided that they do not
leak information through control flow or the return value.

Σ; Γ, x : s[pc] � e : s′

Σ; Γ � λ[pc]x : s.e : s
pc−→ s′

Σ; Γ[pc] � e1 : (s′
pc′−−→ s, a) Σ; Γ[pc] � e2 : s′ pc � a � pc′

Σ; Γ[pc] � e1e2 : s � a
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Encoding In order to emulate the sealing behavior of value-oriented languages in our
store-oriented discipline, we embed source-language values of security type s = (t, a)
into read-only refs in our language s = refra t.

In a λREF
SEC function of type s

pc−→ s′ the program counter annotation pc is a conser-
vative approximation of the information gained by the body of the function. Therefore,
values written by the body must have security level at least pc. Thus, the correspond-
ing writes in the translation must have write level at least pc. Consequently, the corre-
sponding translated type for a function is s → ©(⊥,pc) s′.

The encoding for λREF
SEC expressions is given by a pair of judgments Σ;Γ � bv :

t ⇒ M and Σ;Γ[pc] � e : s ⇒ E, given in the extended paper. In [2] we show
that the translation preserves typing, that is (extending · pointwise to store types and
to contexts) whenever Σ;Γ[pc] � e : s ⇒ E, it follows that Σ;Γ � E ÷⊥,pc s.

Non-interference Of course a type correct (but insecure) embedding could be con-
structed by ignoring the security levels of the source and placing everything at level
⊥. We wish to show that the embedding is actually secure. To do so, we show that an
instance of non-interference for λREF

SEC is preserved by our translation.

Theorem 5.1 (λREF
SEC non-interference). Suppose Σ0;x : (t, a)[b] � f : (bool, b) ⇒

F where a �� b, and suppose that H,Σ are such that Σ ⊇ Σ0, and � H : Σ. If
Σ; · � �i : refra t for i = 1, 2 and if there exist H1,H2,Σ1,Σ2, V1, V2 such that
(H ′,Σ′, F [�i/x]) →∗ (Hi,Σi, [Vi]) for i = 1, 2, then Vi = �′i and H1(�′1) = H2(�′2)
as booleans.

Proof. From the type-correctness of the translation, and since the argument locations
�i are out of view, by the non-interference theorem we conclude that � (H1,Σ1, [V1])
≈b (H2,Σ2, [V2]) ÷(b,b) refrb bool.

By inversion and by a canonical forms lemma, each Vi must be some store location
�′i ∈ dom(Σi) and Σ1; Σ2; · � �′1 ≈b �′2 : refrb bool. Since each Σi(�′i) must be a
subtype of refrb bool, each Level(�′i) must be below b, and the two locations must be
in-view. Therefore, �′1 = �′2 and furthermore, the values in those locations must, in
turn, be equivalent Σ1; Σ2; · � H1(�′1) ≈b H2(�′2) : bool. Since bool is informative at
any security level, by inversion, it must be the case that H1(�′1) = H2(�′2).

6 Related Work

There is a large body of existing work on type systems for secure information flow.
Volpano, Smith and Irvine [14] first showed how to formulate an information flow
analysis as a type system. An excellent survey by Sabelfeld and Myers [12] outlines
the key ideas in the design of secure programming languages.

Our account is most related to the Dependency Core Calculus [1]. Like our lan-
guage, DCC uses a family of monads to reason about information flow. However in
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DCC, terms of monadic type are used to seal up values at a security level. In our ac-
count, monads are used in a more traditional role as a means of threading state through
a program. Central to DCC is the notion of protectedness of a type at a security level.
If T is protected at a then T is at least as secure as a. This is closely related to our
notion of informativeness.

When viewed through the lens of the encoding of (a pure subset of) λREF
SEC , the two

relations serve the same purpose, ensuring that a computation’s output is at least as
secure as its inputs. In DCC, this is done directly. In our account, this occurs indirectly:
to access a value carrying information only at a particular level, a computation must
adopt a read level at least as high. (However, our account also offers the facility —
not employed in the λREF

SEC embedding — not to seal all computations’ return values in
order to obtain a ⊥ effective read level).

The definitions of protectedness and informativeness are the same on the standard
type operators, but do not include the idiosyncratic cases: our language has no ana-
log of DCC’s monad, nor does DCC contain references or a traditional (i.e., effects-
oriented) monad. Moreover, if it did, we conjecture that DCC’s definition for these
would be somewhat different from ours. Nevertheless, the similarity between the two
suggests that our account might be profitably combined with DCC to produce a lan-
guage capable of expressing security in both value-oriented and store-oriented fash-
ions.

A further similarity exists between the tampering levels of Honda and Yoshida [5]
and informativeness. They work in a concurrent setting of a typed π-calculus, and
the tampering level of a process represents the least security level that may observe
the effects of a process of a given type. They present a calculus in the style of [13]
extended with local variables, reference types and higher-order procedures and a trans-
lation of it into their typed process calculus. Much of the complexity of their language
stems from tracking the action set of a command, that is, the references (conflated with
program variables) that a command may read or write. Our language may be seen as
a restatement of their language in a more conventional monadic style. In the setting
of [5], our upcall rule (exploiting the informativeness judgment) would correspond to
leaving out the information that a command read from some variables from its action
set whenever the command does not tamper below a certain security level.

Harrison et al. [3] observed that monads and monad transformers may be used to
separate pieces of the state with different security levels, thus ensuring a kind of non-
interference via the monad laws. However by construction their system does not allow
computations to access any state with a different security level.

7 Conclusion

We give an account of secure information flow in the context of a higher-order lan-
guage with mutable state. Moreover, motivated by a low-level store-oriented view of
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computation, we arrive at a view of security based on lax logic. Rather than sealing
values at a security level, we instead associate security with the store. A family of
monadic types is used to keep track of the effects of computations. To account for
upcalls, we classify the informativeness of types at particular security levels.

Since we treat terms apart from the effectful expressions, our approach can straight-
forwardly encompass additional type constructors. The question of how to account for
additional effects requires further work. From the point of view of non-interference,
effects introduce the possibility of different behavior from seemingly related expres-
sions. We expect that by further refining the monadic type to restrict the behavior of
related terms, we may be able to account for effects such as I/O or non-local control
transfers.

Certain complications beyond those discussed in this paper remain in developing a
typed assembly language that tracks information flow. One problem to be dealt with is
the re-use of registers between low-security and high-security computations. Any mu-
tation of a register by a high security computation could potentially be observed once it
returns to a low-security caller. As a result it is necessary to exploit informativeness to
ensure that the contents of registers are not informative to the caller. We conjecture that
informativeness in conjunction with linear continuations [17] will prove invaluable to
the design of a secure TAL.

Our formulation of the monadic language is in the style of Pfenning and Davies [10].
One avenue of future work is to study whether there is a formulation of information
flow in a modal logic that decomposed our monad into the possibility and necessity
modalities.

Acknowledgments Thanks to Matthew Harren and Steve Zdancewic for their com-
ments and suggestions on earlier drafts of this paper.
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Abstract

Information flow analysis is a program analysis that detects possible illegal
information flow such as the leakage of (partial information on) passwords to
the public. Recently, several type-based techniques for information flow analysis
have been proposed for various kinds of programming languages. Details of
those type systems, however, vary substantially and even their core parts are
often slightly different, making the essence of the type system unclear.

In this paper we propose a typed lambda calculus λ�
s as a foundation for in-

formation flow analysis. The type system is developed so that it corresponds to
a proof system of an intuitionistic modal logic of validity by the Curry-Howard
isomorphism. The calculus enjoys the properties of subject reduction, conflu-
ence, and strong normalization. Moreover, we give a very simple proof of the
noninterference property, which guarantees that, in a well-typed program, no in-
formation on confidential data is leaked to the public. We also demonstrate that
a core part of the SLam calculus by Heintze and Riecke can be encoded into λ �

s .

Keywords: Curry-Howard isomorphism, information flow analysis, modal logic, non-
interference, and type systems.

1 Introduction

Background. Increasing demands for security in software have recently been stimu-
lating the research on language-based security. Among such work is a program analy-
sis technique called information flow analysis [8, 24], which statically checks whether
or not secret information, such as passwords, is leaked by program execution.

Information flow analysis keeps track of how information on confidential data
flows. In the literature, information flow is classified into two: explicit and implicit
flow. Explicit flow occurs when, for example, confidential data are assigned to public
variables while implicit flow arises from the control structure of a program: it oc-
curs when confidential data control which conditional branch to take. For example,
consider the following program fragment:

pub := if length(passwd) > 5 then 1 else 2;
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and suppose pub is a public variable, passwd is a confidential string, and length
is a function to compute the length of a given string. In information flow analysis, this
program is considered insecure—even though passwd itself is not leaked, its partial
information, that is, whether passwd is more than five characters, is leaked to pub. A
principal correctness property of information flow analysis is called noninterference.
This property intuitively means that, given a program that takes a confidential input
and yields a public output, the output remains the same no matter what value is given
as the input.

Recently, a lot of type-based techniques for information flow analysis have been
proposed for various kinds of languages, including procedural [27, 26], functional [10,
1, 23], object-oriented [19, 3, 4] and, concurrent languages [25, 11, 12, 22, 15]. The
basic idea of type-based analysis is as follows: (1) types are extended so that they in-
clude security information as well as standard information on the kinds of values, such
as int or int → int; (2) typing rules are constructed by taking security information into
account—for example, a conditional expression whose test involves a high-security
type is well typed only if both branches are given high-security types to prevent im-
plicit flow; and, finally, (3) a type reconstruction algorithm for the type system is
developed. Type-based information flow analysis has been drawing much attention,
partially because it cleanly separates the specification and algorithm of the analysis as
a type system and type reconstruction, respectively.

Details of those type systems, however, vary substantially (apart from the differ-
ence of their base languages) and even their functional core parts are often slightly
different. Also, fairly complicated techniques are used to prove noninterference (es-
pecially in those for functional languages): some use denotational semantics [10, 1, 3]
and some use a non-standard operational semantics [23]. It makes it difficult not only
to compare those techniques but also to grasp the essence of the type system and the
noninterference property.

Our Goal and Approach. Our goal here is to give a foundational account for type-
based information flow analysis. To achieve this goal, we, inspired by the following
observation, develop a natural extension of the Curry-Howard isomorphism between a
type system for information flow analysis and a certain modal logic.

Modal logic is a language to talk about truth relative to time or places, etc., which
are abstracted as possible worlds. Here, we talk about things like at what level the
information on certain values can be available. So, it seems to natural to relate the
notion of security levels to possible worlds. Since information available at a lower
level is also available at a higher level, a suitable modality seems to be local validity
(or validity for simplicity) ��, which means “it is true at every level higher (or equal
to) the security level � that . . . ” So, the fact that �1 is higher than �2 (or information can
flow from �2 to �1) can be regarded as that a possible world �1 is reachable from �2. It
is expected that the proposition ��A naturally corresponds to the type that represents
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the values of type A at the security level �.

Our Contributions. The contributions we make in this paper are summarized as
follows:

• As discussed above, we point out an informal correspondence between a type
system for information flow analysis and a certain modal logic.

• To make this correspondence more formal, we develop a typed λ-calculus λ�s
with modal types of the form ��A and prove that it enjoys subject reduction,
Church-Rosser, and strong normalization.

• We also prove noninterference, which is essential to information flow analysis.
Our proof is very simple, without using complex denotational techniques or
non-standard reduction relations as in previous work.

• To demonstrate that λ�
s can be a foundation for information flow analysis, we

develop encoding from (a purely-functional subset of) the SLam calculus [10]
to λ�

s .

Structure of the paper The rest of the paper is organized as follows. Section 2 in-
troduces λ�

s with its syntax, type system and reduction. Section 3 proves its properties
including noninterference. After showing how the SLam calculus can be encoded to
λ�

s in Section 4, we discuss related work in Section 5 and give concluding remarks in
Section 6. Most of the proofs are omitted for brevity.

2 The System λ�
s

In this section, we define the typed λ-calculus λ�
s . We first briefly introduce a proof

system of the modal logic discussed in the previous section and then proceed to the
formal definition of λ�

s .

2.1 Modal Logic of Local Validity

The proof system is partially inspired by Pfenning and Davies’ formalization [21],
based on the notion of judgments.

The basic idea is to consider judgments to assert truth and local validity separately.
Accordingly, a judgment has two kinds of assumption sets and that of truth is written
A�1

1 , . . . , A�n
n ;B1, . . . , Bm −� C . It means C is true at � under the assumption that Ai

is true everywhere reachable from �i and Bj is true at the current level. (In what fol-
lows, we write ∆ for A�1

1 , . . . , A�n
n and Γ for B1, . . . , Bm.) A locally valid assumption

can be used only when the current level is reachable from the level of the assumption,
while the rule for (ordinary) truth assumptions are as usual, as the following two rules:
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�i � �

A�1
1 , . . . , A�i

i , . . . , A�n
n ; Γ −� Ai

∆;B1, . . . , Bj , . . . , Bm −� Bj

Validity is expressed by a judgment of truth with zero truth assumptions. The intro-
duction rule for ��A amounts to internalizing a judgment of validity as a proposition
and the elimination rule turns “��A is true” into “A is valid at �”:

∆; · −� C

∆;Γ −�′ ��C

∆;Γ −�′ ��A ∆, A�; Γ −�′ C

∆;Γ −�′ C

The rules for other logical connectives are straightforward. For example, the elimina-
tion rule of implication is as follows.

∆;Γ −� A → B ∆;Γ −� A

∆;Γ −� B

Note that the levels of the judgments must be the same.
Keeping this in mind, we proceed to the formal definition of our calculus.

2.2 Syntax

We first assume the countably infinite set OVar of ordinary variables, ranged over by
x, y, z, and MVar of modal variables, ranged over by u and v. We also assume the
partially ordered set (L,�) of levels; elements of L are ranged over by �.

The types of λ�
s are simple types with the unit type, product types, sum types, and

modal types.

2.2.1 Definition [Types]: The set of types, ranged over by A, B, and C , is defined by
the following grammar:

A ::= unit | A → A | A × A | A + A | ��A

The precedence of type constructor is given by the decreasing order �� > × > + >
→ and the function type constructor is right associative. For example, A → ��B →
A×C stands for A → ((��B) → (A×C)) and ��A×��C +B → A for (((��A)×
(��C)) + B) → A.

2.2.2 Definition [Terms]: The set of terms, ranged over by M and N , is defined by
the grammar:

M ::= x | u | () | λx : A.M | M M | 〈M,M〉 | π1(M) | π2(M) | ι1(M)
| ι2(M) | (case M of ι1(x) ⇒ M | ι2(x) ⇒ M) | box� M

| let box� u = M in M
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We omit parentheses according to the usual convention and assume that application
is left associative. Also, bound variables and their scopes are defined in a customary
manner: λx : A.M bounds x in M ; case M of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2 bounds
x1 and x2 in N1 and N2, respectively; let box� u = M in N bounds u in N .

Terms are mostly those of the simply typed λ-calculus with unit, products, and
sums. We have two kinds of term variables as the logic has two kinds of assump-
tions: truth and validity. As we shall see in typing rules, box� M corresponds to an
application of the introduction rule for �� when viewed as a proof term, and can be
thought as a sealing operation where the sealed value is accessed at security level �.
Similarly, let box� u = M in N corresponds to an application of the elimination rule,
when viewed as a proof term, and can be thought as unsealing. Operationally, if M re-
duces to box� M0, then let box� u = M in N reduces to N in which M0 is substituted
for u.

Free variables are defined as usual except that there are two kinds of variables.
We write FMV(M) (FOV(M), resp.) for modal (ordinary, resp.) variables that occur
free in M . For example, FMV(〈ι2(z), λx : A.xu〉) = {u} and FOV(〈ι2(z), λx :
A.xu〉) = {z} and FMV(let box� u = x v in u y) = {v}.

We write [M/x] ([M/u], resp.) for the capture-avoiding substitution of M for the
ordinary variable x (the modal variable u, resp.).

2.3 Type System

As discussed above, the judgment form of the logic is A�1
1 , . . . , A�n

n ;B1, . . . , Bm

−� C . Accordingly, the type judgment of λ�
s is of the form ∆;Γ −� M : A, read as

“M is given type A at level � under modal context ∆ and ordinary context Γ.” A modal
context, which corresponds to A�1

1 , . . . , A�n
n , is a sequence of the form u ::� A where

modal variables in the sequence are pairwise distinct. Similarly, an ordinary context,
which corresponds to B1, . . . , Bm, is a sequence of the form x : B where variables
in the sequence are pairwise distinct. We often write ‘·’ for the empty modal/ordinary
context. When both contexts in a judgment are empty, they are simply omitted and
the judgment is written −� M : A. We write u ::� A ∈ ∆ when ∆ includes u ::� A.
Similarly for ordinary contexts.

The whole set of typing rules is given in Figure 1. We explain key rules in detail;
other rules are fairly standard (modulo two kinds contexts and the annotation of a
level).

The rule T-OVAR for ordinary variable reference is just as usual. On the other
hand, modal variables can be used only when the level of the variable is lower than
or equal to the current level (the rule T-MVAR). From the viewpoint of information
flow, a program at a lower level cannot refer to a variable of a higher security level,
preventing confidential information from flowing into irrelevant levels. It may first
appear that the rule T-MVAR is too strict because a term containing a (modal) variable
of high security as a free variable is regarded as confidential computation even if the
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variable is just discarded. However, with a certain programming style, we can remedy
it: (a core of) the SLam calculus can be encoded into λ�

s as we discuss in Section 4.
In this sense, λ�

s is as expressive as the SLam calculus.
The rule T-BOX introduces modal types.Since “��A is true” stands for “A is true

everywhere reachable from �,” the premise must be a judgment of validity, that is,
the ordinary context must be empty. Since the judgment does not depend on any
assumptions of a particular level, it holds at any level, hence �′. For weakening, any
ordinary context can be placed in the conclusion. With the terminology of information
flow, a sealed piece of code may be used at an arbitrary level above or equal to �, so it
cannot refer to (ordinary) variables available only at a particular security level.

The last rule T-LETBOX eliminates modal types. It turns “��A is true” into “A is
valid at �” and adds u ::� A to the modal context to deduce B. It might look odd that
� is not necessarily related to �′ at which M is unsealed. Actual access restriction is
enforced by T-MVAR and, if u is used in N (not under box� ), it should be the case
that � � �′.

2.3.1 Example: If � � �′, then the type judgment −�′ λx : ��A.let box� u = x in u :
��A → A can be derived. By ignoring levels, this type can be viewed as to a variant
of the axiom M.

2.3.2 Example: If �1 � �3 and �2 � �3, then

−� λx : ��1(A → B).let box�2 u = x in
λy : ��2A.let box�2 v = y in box�3 (u v)

: ��1(A → B) → ��2A → ��3B

is derivable. This type corresponds to a variant of the axiom K.

2.4 Operational Semantics

Operational semantics is given by the reduction relation of the form M −→ M′, read
as “M reduces to M′ in one step.” The computation rules are given as follows.

(λx : A.M1)M2 −→ [M2/x]M1

πi(〈M1,M2〉) −→ Mi

case ιi(M) of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2 −→ [M/xi]Ni

let box� u = box� M in N −→ [M/u]N

They can be applied at any point in a term, so we also need the obvious congruence
rules (if M1 −→ M ′

1, then M1 M2 −→ M ′
1 M2, and the like), which we omit here.

2.4.1 Example: Let M = (λx : ��A.let box� u = x in π2(u)) (box� 〈M1,M2〉).
Then, M reduces to M2 as follows:

M −→ [box� 〈M1,M2〉/x]let box� u = x in π2(u)
(= let box� u = box� 〈M1,M2〉 in π2(u))

−→ [〈M1,M2〉/u]π2(u) (= π2(〈M1,M2〉)) −→ M2
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x : A ∈ Γ
∆;Γ −� x : A

(T-OVAR)

u ::�
′
A ∈ ∆ �′ � �

∆;Γ −� u : A
(T-MVAR)

∆;Γ −� () : unit (T-UNIT)

∆;Γ, x : A −� M : B

∆;Γ −� λx : A.M : A → B
(T-ABS)

∆;Γ −� M : A → B ∆;Γ −� N : A

∆;Γ −� M N : B
(T-APP)

∆;Γ −� M : A ∆;Γ −� N : B

∆;Γ −� 〈M,N〉 : A × B
(T-PAIR)

∆;Γ −� M : A1 × A2 i ∈ {1, 2}
∆;Γ −� πi(M) : Ai

(T-PROJ)

∆;Γ −� M : Ai i ∈ {1, 2}
∆;Γ −� ιi(M) : A1 + A2

(T-INJ)

∆;Γ −� M : A1 + A2

∆;Γ, x1 : A1 −� N1 : B
∆;Γ, x2 : A2 −� N2 : B

∆;Γ −� case M of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2 : B
(T-CASE)

∆; · −�′ M : A

∆;Γ −� box�′ M : ��′A
(T-BOX)

∆;Γ −� M : ��′A ∆, u ::�
′
A; Γ −� N : B

∆;Γ −� let box�′ u = M in N : B
(T-LETBOX)

Figure 1: Typing Rules of λ�
s
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3 Properties of λ�
s

In this section, we show that λ�
s satisfies basic properties including subject reduction,

Church-Rosser and strong normalization. Then, we show that it also satisfies the non-
interference property, as expected.

3.1 Basic Properties

All the statements of the properties mentioned above are standard. Note that, in Subject
Reduction, not only is the type of a term preserved during reduction but also is the level
at which the type judgments are derived. They are proved by standard techniques.

3.1.1 Theorem [Subject Reduction]: If ∆;Γ −� M : A and M −→ N then ∆;Γ −�

N : A.

3.1.2 Theorem [Church-Rosser]: If M
∗−→ M1 and M

∗−→ M2, then there exists a
term N such that M1

∗−→ N and M2
∗−→ N .

3.1.3 Theorem [Strong normalization]: If ∆;Γ − M : A, then M is strongly nor-
malizing.

3.2 Noninterference

One of the most important correctness properties is noninterference, which intuitively
means that a program input at a high security level does not affect the program output at
a lower level. To state this property more formally, we require the following technical
definition.

3.2.1 Definition [Transparent ground types]: A type A is transparent ground type
at level � if and only if:

1. A = unit,

2. A = A1 × A2 and both A1 and A2 are transparent ground types at �,

3. A = A1 + A2 and both A1 and A2 are transparent ground types at �, or

4. A = ��′A0 and �′ � � and A0 is transparent ground type at �′.

Intuitively, a transparent ground type at � represents values of which it is effectively
possible to inspect equality.

Now, the noninterference property is stated as follows:

3.2.2 Theorem [Noninterference]: If u ::� A; · −�′ M : B and B is a transparent
ground type at �′ and � �� �′, then, there exists a unique normal form M′ (modulo
α-conversion) such that, for any N , if −� N : A, then [N/u]M ∗−→ M ′.
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In this statement, u serves as a high level input, whose information is not allowed
to flow into the level �′ (hence � �� �′). The condition on B expresses the fact that the
value of B can be inspected (or observed) at level �′. Thus, it cannot include function
types or modal types at a level irrelevant to �′.

This theorem can be proved by a very simple manner: it turns out that the modal
variable that stands for a high level input will disappear during reduction—this is
shown simply by inspecting the structure of normal forms (Theorem 3.2.4). Then,
Theorem 3.2.2 is obtained as an easy corollary. We sketch the proof below.

First, we introduce neutral terms which correspond to applications of the elimina-
tion rules.

3.2.3 Definition [Neutral terms]: A term is neutral if it is of the form x, u, M N ,
πi(M), case M of ι1(x1) ⇒ N1 | ι2(x2) ⇒ N2, or let box� u = M in N .

3.2.4 Theorem: If u ::� A; · −�′ M : B and M is a normal form and B is a transparent
ground type at �′ and u ∈ FMV(M), then � � �′.

Proof: By induction on the derivation of u ::� A; · −�′ M : B with case analysis on
the last rule used. �

Finally, we can prove Theorem 3.2.2.

Proof of Theorem 3.2.2: Let M ′ be a normal form such that M
∗−→ M ′. By Theo-

rem 3.1.1, u ::�
′
A; · −� M ′ : B. Then, by the assumption � �� �′ and (a contraposition

of) Theorem 3.2.4, u �∈ FMV(M ′), hence [N/u]M ′ = M ′. By using the fact that
M −→ M ′ implies [N/u]M −→ [N/u]M ′, we have [N/u]M ∗−→ M ′, which is a
normal form. By Theorems 3.1.2 and 3.1.3, any reduction sequence from [N/u]M
will end with M ′. �

4 Encoding the SLam Calculus

In this section, we show how (a pure fragment of) the SLam calculus [10] can be en-
coded into λ�

s . Recursive functions have been dropped because the target language λ�s
is not equipped with them. Also, we have dropped protect in the SLam calculus for
the following reasons: (1) the static semantics of protect, which raises the security
level of the type of the operand, can be simulated by application of a coercion function;
(2) the dynamic semantics of protect, which dynamically raises the security level
of a value, is not relevant to ensure noninterference—even if it was “nop,” noninterfer-
ence could be proved. (In fact, coercion functions used in our encoding are essentially
identity functions.) We first briefly review the definition of the SLam calculus and then
show the translation with its correctness theorems.
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4.1 Review of the SLam Calculus

Let L be a join semilattice of security levels, ranged over by �. The elements of L are
ordered by � and the binary join of �1 and �2 is written �1∨ �2. A type, more precisely
a secure type, in the SLam calculus is a simple type where every type constructor is
annotated with a security level, which signifies at which level the information on a
value of the type may be available.

4.1.1 Definition [SLam types]: The set of SLam types, ranged over by t, and the set
of SLam secure types, ranged over by s are defined as follows:

t ::= unit | s × s | s + s | s → s

s ::= (t, �)

When s = (t, �), we often write s • �′ for (t, � ∨ �′) and �s for �.

4.1.2 Definition [SLam expressions]: The set of expressions, ranged over by the
metavariable e, are formed by the typing rules in Figure 2.

An operational semantics of the SLam calculus is given by the following compu-
tation rules together with congruence rules, omitted for brevity.

(λx : s.e0)� e1 � [e1/x]e0

πi(〈e1, e2〉�) � ei

case ιi(e0)� of ι1(x1) ⇒ e1 | ι2(x2) ⇒ e2 � [e0/xi]ei

4.2 Translation from SLam to λ�
s

The translation from the SLam calculus to λ�
s is rather straightforward. We take L

as the partially ordered set of levels. Secure types are translated to (λ�s ) types by the
function |s|:

|unit| = unit, |s1ops2| = |s1|op|s2|, |(t, �)| = ��|t|

where op is ×, +, or →. For the sake of simplicity, we assume that all bound variable
names are different and there is a bijection from the set of SLam variables to the set
of modal variables. The modal variable corresponding to x is written ux below. Then,
type-directed translation rules for expressions are given in Figures 3 and 4.

As will be formally stated in Theorem 4.2.1, a SLam expression of type (t, �) will
be translated to a term typed at �. The translation follows the following patterns: (1)
when a subexpression is consumed by a given SLam operation (for example, e1 e2

consumes e1 but not e2), it is translated to the corresponding operation and the result
is immediately unsealed; and (2) when a subexpression is not really consumed by an
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Γ(x) = s

Γ − x : s

Γ − e : s s ≤ s′

Γ − e : s′
Γ − ()� : (unit, �)

Γ, x : s1 − e0 : s2

Γ − (λx : s1.e0)� : (s1 → s2, �)

Γ − e1 : (s2 → s0, �)
Γ − e2 : s2

Γ − e1 e2 : s0 • �

Γ − e1 : s1 Γ − e2 : s2

Γ − 〈e1, e2〉� : (s1 × s2, �)
Γ − e : (s1 × s2, �)
Γ − πi(e) : si • �

Γ − e : si

Γ − ιi(e)� : (s1 + s2, �)

Γ − e0 : (s1 + s2, �)
Γ, x1 : s1 − e1 : s Γ, x2 : s2 − e2 : s

Γ − case e0 of ι1(x1) ⇒ e1 | ι2(x2) ⇒ e2 : s • �

� � �′

(unit, �) ≤ (unit, �′)

� � �′ s′1 ≤ s1 s2 ≤ s′2
(s1 → s2, �) ≤ (s′1 → s′2, �′)

� � �′ s1 ≤ s′1 s2 ≤ s′2
(s1 × s2, �) ≤ (s′1 × s′2, �′)

� � �′ s1 ≤ s′1 s2 ≤ s′2
(s1 + s2, �) ≤ (s′1 + s′2, �′)

Figure 2: Typing rules of a core of the SLam calculus

Translation from subtyping to coercion: s1 ≤ s2 ↘ M

� � �′

(unit, �) ≤ (unit, �′) ↘
λx : ��unit.let box� ux = x in ux

� � �′ s′1 ≤ s1 ↘ M1 s2 ≤ s′2 ↘ M2

(s1 → s2, �) ≤ (s′1 → s′2, �
′) ↘

λx : |(s1 → s2, �)|.let box� ux = x in
λy : |s′1|.M2 (box�s2 (ux (box�s1 (M1 y))))

� � �′ s1 ≤ s′1 ↘ M1 s2 ≤ s′2 ↘ M2

(s1 × s2, �) ≤ (s′1 × s′2, �′) ↘
λx : |(s1 × s2, �)|.let box� ux = x in

〈box�s′
1
(M1 (π1(ux))), box�s′

2
(M2 (π2(ux)))〉

� � �′ s1 ≤ s′1 ↘ M1 s2 ≤ s′2 ↘ M2

(s1 + s2, �) ≤ (s′1 + s′2, �
′) ↘

λx : |(s1 + s2, �)|.let box� ux = x in
case ux of ι1(y) ⇒ ι1(box�s1 (M1 y)) | ι2(z) ⇒ ι2(box�s2 (M2 z))

Figure 3: Translation from SLam to λ�
s
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Translation of expressions: Γ − e : s ↘ M

Γ(x) = s

Γ − x : s ↘ ux

Γ − e : s ↘ N s ≤ s′ ↘ M

Γ − e : s′ ↘ M (box�s N)
Γ − ()� : (unit, �) ↘ ()

Γ, x : s − e0 : s0 ↘ M

Γ − (λx : s.e0)� : (s → s0, �) ↘
λx : |s|.let box� ux = x in box�s0 M

Γ − e1 : (s2 → s0, �) ↘ M1 Γ − e2 : s2 ↘ M2

u �∈ FMV(M1) ∪ FMV(M2)
Γ − e1 e2 : s0 • � ↘ let box�s0 u = M1 (box�s2 M2) in u

Γ − e1 : s1 ↘ M1

Γ − e2 : s2 ↘ M2

Γ − 〈e1, e2〉� : (s1 × s2, �) ↘
〈box�s1 M1, box�s2 M2〉

Γ − e : (s1 × s2, �) ↘ M
i ∈ {1, 2} u �∈ FMV(M)

Γ − πi(e) : si • � ↘
let box�si u = πi(M) in u

Γ − e : si ↘ M i ∈ {1, 2}
Γ − ιi(e)� : (s1 + s2, �) ↘ ιi(box�si M)

Γ − e0 : (s1 + s2, �) ↘ M0 Γ, x : s1 − e1 : s ↘ M1 Γ, y : s2 − e2 : s ↘ M2

Γ − case e0 of ι1(x) ⇒ e1 | ι2(y) ⇒ e2 : s • � ↘
case M0 of ι1(x) ⇒ let box�s1 ux = x in M1 | ι2(y) ⇒ let box�s2 uy = y in M2

Figure 4: Translation from SLam to λ�
s
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operation (for example, none of function application, pairing, and injection consume
their arguments), the subexpression is first sealed and passed to the operation. This
straightforward translation can introduce a lot of unsealing followed by sealing; devel-
oping an optimized translation may be of interesting.

As mentioned in Section 2, a term containing a (modal) variable of high security
as a free variable is regarded as confidential computation even if the variable is just
discarded. The translation patterns also show how to avoid such undesirable increase
of security levels. Unless a modal variable is really consumed, it can be passed to else-
where by putting in a box, making the security level of the whole expression unrelated
to that of the variable.

Correctness of the translation is given by Theorem 4.2.3. It requires auxiliary
theorems stating that translation preserves typing and semantics with the following
definitions.

Translation of SLam contexts to modal contexts is given as follows:

|x1 : (t1, �1), . . . , xn : (tn, �n)| = ux1 ::�1 |t1|, . . . , uxn ::�n |tn|

We write e ⇓ e′ when e
∗
� e′ and there is no e′′ such that e′ −→ e′′.

4.2.1 Theorem [Translation Preserves Typing]: If Γ − e : (t, �), then there exists
M such that Γ − e : (t, �) ↘ M and |Γ|; · −� M : |t|.

4.2.2 Theorem [Adequacy]: If − e : (t, �) ↘ M and t is ground, then e ⇓ e′ iff
M

∗−→ M ′ and − e′ : s ↘ M ′ for some s ≤ (t, �) and normal form M′.

4.2.3 Theorem [SLam Noninterference]: Let �1 and �2 be any two elements of L. If
�1 �� �2 and x : (t, �1) − e : ((unit, �2) + (unit, �2), �2), then for any e1 and e2 such
that − ei : (t, �1), [e1/x]e ⇓ v iff [e2/x]e ⇓ v.

Proof sketch: By Theorem 4.2.1, x : (t, �1) − e : ((unit, �2) + (unit, �2), �2) ↘ M
and ux ::�1 ; · − M : ��2(��2unit + ��2unit). Then, the conclusion is immediate from
Theorem 3.2.2. �

5 Related Work

Type-based Information Flow Analysis. As mentioned before, there have been a
lot of type-based techniques of information flow analysis for various kinds of lan-
guages [10, 1, 23, 19, 3, 25]. (See also Sabelfeld and Myers [24] for an excellent
survey of this area.) Among them, close to ours are of course ones for functional
languages [10, 1, 23]. It is interesting to see that even their core type systems and
semantics are slightly different from each other and that the proofs of noninterference
are also significantly different, accordingly. For example, Heintze and Riecke [10]
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and Abadi et al. [1] proved noninterference for variants of the SLam calculus, by us-
ing denotational techniques, while Pottier and Simonet [23] did it, by developing a
customized operational semantics that can express two executions with different high
security inputs at once. On the other hand, our noninterference proof is very simple,
and essentially based on the observation that high security inputs simply disappear dur-
ing reduction. Of course, this argument was possible as we have (1) full β-reduction,
where any subterms—even terms under lambda abstractions—can be reduced and (2)
nondeterministic reduction that allows to delay computation at a higher level.1 So,
we think it doesn’t directly extend to a language with side-effects. Nevertheless, we
believe it is worth noting that noninterference for a purely functional language is easy
to prove.

To perform precise analysis for the while language with (first-order) procedures,
Volpano and Smith [26] introduced procedures polymorphic with respect to security
levels, that is, procedures parameterized by variables ranging over security levels. Al-
though our calculus is not equipped with such a notion, it would be in principle pos-
sible to introduce the universal quantifier for possible worlds to our language. For
example, the type of a function that takes two integers of the same security level and
yields their sum might be written something like ∀n ∈ L.(�nint×�nint → �nint).

Barthe and Serpette [4] developed a type system for information flow analysis
(and binding time analysis) for FOb1≤: [2], an object calculus with a first-order type
system and subtyping, and proved noninterference. Their approach to proving nonin-
terference is very similar to ours: both proofs are entirely syntactic and use the fact
that a normal form at some level cannot contain higher-level variables. Our proof may
appear slightly more involved since we use Church-Rosser and Strong Normalization
properties, which are required only because we adopt full β-reduction and do not fix
the evaluation strategy. On the other hand, Barthe and Serpette assumed the normal
order for reduction; so, it always leads to a normal form (if any), making the proof
look slightly simpler.

Monadic Type Systems and Lax Logic. One of the closest related work is Abadi
et al.’s dependency core calculus (DCC) [1]. Its purpose is to give a unified account
for more general program analysis—dependency analysis, of which information flow
analysis is one instance. DCC, an extension of Moggi’s computational lambda cal-
culus [17], is equipped with monadic types, T�A, indexed by a predetermined lattice
element �.

We believe that similarity to our modal types ��A is not superficial. In fact, the
computational lambda calculus has been found to correspond to a modal logic called
lax logic [5, 9]. One standard interpretation of lax modality, usually written ©A, is
“A is true under some constraint,” and the elimination rule of lax modality is given as:

1Strong normalization and Church-Rosser guarantee that noninterference holds under any reduction
strategy, though.
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Γ − ©A Γ, A − ©B

Γ − ©B

It corresponds to the typing rule for monadic binding bind x = M in N by inter-
preting © as the monadic type constructor. Later, Pfenning and Davies [21] pointed
out that the lax modality © can be decomposed as “possibly necessary” ��. On the
other hand, our modal types ��A could be decomposed as @��A, where @�A would
mean “A is true at the world �.” In some sense, in λ�

s , it is made explicit at which
world �A holds, while, in lax logic and the original computational lambda calculus,
it is abstracted out by the possibility modality �. However, the typing rules of λ�s and
DCC are rather different. It is left for future work to figure out how they (do or do not)
correspond to each other.

Type Systems Based On Modal Logic. Recently, several typed calculi based on
proof systems of modal logic have been proposed for various purposes: staged com-
putation [7], binding-time analysis in partial evaluation [6], a formal account for the
notion of meta-variables [20], and distributed computation [18, 13]. Each calculus (in-
cluding λ�

s ) has slightly different modality, specialized to its purpose. To our knowl-
edge, our work is the first to point out the relevance of modal logic to security or
dependency analysis.

6 Conclusion

We have developed a typed lambda-calculus λ�
s to give a foundational account for

type-based information flow analysis. The calculus corresponds, by (a natural exten-
sion of) the Curry-Howard isomorphism, to a proof system of an intuitionistic modal
logic of local validity. The correspondence is based on the observation that security
levels can be interpreted as possible worlds, legal directions of information flow can
be as the reachability relation on possible worlds, and security types can be as proposi-
tions of validity. The calculus is shown to satisfy desirable properties including subject
reduction, Church-Rosser, strong normalization. Moreover, we have found the nonin-
terference property, a correctness property essential for information flow analysis, can
be proved in a very simple syntactic manner, without involving denotational semantics
or non-standard operational semantics. We also show that a purely functional core of
the SLam calculus can be encoded into λ�

s and that its noninterference can be proved
in terms of λ�

s .
We briefly discuss possible future work below.
As mentioned in the last section, we conjecture that DCC’s monadic types have

strong connection with our modal types, although the type system is rather different.
It is interesting work to investigate Curry-Howard isomorphism for DCC and study its
logical interpretation.
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We have studied a modal logic with validity as the only modality. It remains as an
open question whether there is any sensible interpretation of modal possibility [21] in
our context.

Recently, type-based information flow analysis for low-level languages such as the
Java Virtual Machine Language (JVML) has been studied [16]. Since a type system
for JVML can be interpreted as a variant of Gentzen’s sequent calculus [14], we think
it would be possible to apply our idea and develop a correspondence for low-level
languages.

It may be an interesting question to answer how general our overall approach to
foundations for type-based program analyses is. There have been a lot of type-based
program analyses that use non-standard type systems—non-standard in the sense that
types are decorated with information peculiar to the purpose of the analysis. It may
be possible to find yet another correspondence between type-based program analyses
and (modal) logic. Such work will be useful to deepen understanding of the essence
of program analyses, as our work have been so for information flow analysis.
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Typing Noninterference for Reactive Programs �

Ana Almeida Matos, Gérard Boudol and Ilaria Castellani

Abstract

We propose a type system to enforce the security property of noninterference
in a core reactive language, obtained by extending the imperative language of
Volpano, Smith and Irvine with reactive primitives manipulating broadcast sig-
nals and with a form of “scheduled” parallelism. Due to the particular nature of
reactive computations, the definition of noninterference has to be adapted. We
give a formulation of noninterference based on bisimulation. Our type system
is inspired by that introduced by Boudol and Castellani, and independently by
Smith, to cope with nontermination and time leaks in a language for parallel
programs with scheduling. We establish the soundness of this type system with
respect to our notion of noninterference.

1 Introduction

To be widely accepted and deployed, the mobile code technology has to provide for-
mal guarantees regarding the various security issues that it raises. For instance, for-
eign code should not be allowed to corrupt, or even simply to get knowledge of secret
data owned by its execution context. Similarly, a supposedly trusted code should be
checked for not disclosing private data to public knowledge. In [3] we have intro-
duced a core programming model for mobile code called ULM, advocating the use
of a locally synchronous programming style [1, 10] in a globally asynchronous com-
puting context. It is therefore natural to examine the security issues from the point
of view of this programming model. In this paper, we address some of these issues,
and more specifically the non-disclosure property, for a simplified version of the ULM
language. We recall the main features of the synchronous programming style, in its
control-oriented incarnation:

Broadcast signals Program components react according to the presence or absence of
signals, by computing and emitting signals that are broadcast to all components
of a given “synchronous area”.

�Research partially funded by the EU IST FET Project MIKADO, by the french ACI Project CRISS,
and by the PhD scholarship POSI/SFRH/BD/7100/2001.

205



Suspension Program components may be in a suspended state, because they are wait-
ing for a signal which is absent at the moment where they get the control.

Preemption There are means to abort the execution of a program component, depend-
ing on the presence or absence of a signal.

Instants Instants are successive periods of the execution of a program, where the
signals are consistently seen as present or absent by all components.

The so-called reactive variant of the synchronous programming style, designed by
Boussinot, has been implemented in a number of languages and used for various ap-
plications, see [8, 7]. This differs from the synchronous language ESTEREL [2], for
instance in the way absence of signals is dealt with: in reactive programming, the ab-
sence of a signal can only be determined at the end of the current instant, and reaction
is postponed to the next instant. In this way, the causal paradoxes that arise in some
ESTEREL programs can be avoided, making reactive programming well suited for
systems where concurrent components may be dynamically added or removed, as it is
the case with mobile code.

We consider here a core reactive language, which is a subset of ULM that extends
the sequential language of [18] with reactive primitives and with an operator of alter-
nating parallel composition (incorporating a fixed form of scheduling). As expected,
these new constructs add expressive power to the language and induce new forms of
security leaks. Moreover, the two-level nature of reactive computations, which evolve
both within instants and across instants, introduces new subtleties in the definition of
noninterference. We give a formulation of noninterference based on bisimulation, as
is now standard [15, 14, 16, 4]. We define a type system to enforce this property of
noninterference, along the lines of that proposed by Boudol and Castellani [5], and
independently by Smith [16], for a language for parallel programs with scheduling. In
this approach, types impose constraints on the relation between the security levels of
tested and written variables and of received and emitted signals.

Let us briefly recall the intuition about noninterference: in a system with multiple
security levels, information should only be allowed to flow from lower to higher (more
secure) levels [9]. As usual, we assume security levels to form a lattice. However, in
most of our examples, we shall use only two security levels, low (public, L) and high
(secret, H). Security levels are attributed to variables and signals, using subscripts to
specify them (eg. xH is a variable of high level). In a sequential imperative language,
an insecure flow of information, or interference, occurs when the initial values of high
variables influence the final value of low variables. The simplest case of insecure
flow is that of an assignment of the value of a high variable to a low variable, as in
yL := xH . It is called explicit (insecure) flow. More subtle kinds of flow, called
implicit flows, may be induced by the flow of control. An example is the program
if xH = 0 then yL := 0 else nil, where at the end of execution the value of yL
may give information about xH .
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Other programs may be considered as secure or not depending on the context in
which they might appear. For instance, the program

(while xH �= 0 do nil) ; yL := 0 (1)

may be considered safe in a sequential setting (since whenever it terminates it produces
the same value 0 for yL), whereas it becomes critical in the presence of parallelism or
scheduling (as explained for instance in [4, 5]). When moving to a reactive setting we
must reconsider the security of such programs in the new contexts.

In the ULM model we consider two kinds of parallel composition: first, there is
the globally asynchronous composition of “reactive machines”. This is similar to the
parallel composition usually considered in the literature (see for instance [15, 5, 16]),
except that it is quite natural to assume that there is no specific scheduling at this level.
We do not consider this global composition here, and we expect it could be dealt with
in a standard compositional manner. Then, in a locally synchronous area, that is within
a reactive machine, parallel composition is quite different: like in the implementation
of reactive programming [7], we assume a deterministic cooperative scheduling dis-
cipline on threads. It is well-known that scheduling induces new possibilities of flow
(see [15, 14] for instance), and this is indeed the case with the sequentialisation of
threads that we adopt. Consequently, programs such as (1) can be dangerous in a re-
active setting. Similarly, we should question whether the reactive counterparts of the
above programs pose problems. In fact they do, as we shall see in Section 3.1.

Another problem we are faced with when addressing the security of reactive pro-
grams is their ability to suspend while waiting for an absent signal, thus giving rise to
a special event called instant change. One of the effects of an instant change is to reset
all signals to “absent”. With the constructs of the language we may write (for any se-
curity level) a program pause, whose behaviour is to suspend for the current instant,
and terminate at the beginning of the next instant (see Section 2.2). This allows us to
write the following program:

emit aL ; if xH = 0 then nil else pause (2)

Depending on the value of xH , this program may either terminate within an instant,
in which case aL remains present, or suspend and change instant, in which case aL
is erased. However, since instant changes are not statically predictable in general, we
do not consider as observable the change in the status of low signals that occurs in the
transition from one instant to the next. Consequently, we consider (2) as safe. These
considerations will lead us to adapt the definition of noninterference. We will then be
able to prove that our type system is sound for this notion of noninterference.

The rest of the paper is organized as follows. In Section 2 we introduce the lan-
guage and its operational semantics. Section 3 presents the type system and some
properties of typed programs, including subject reduction. We then define noninter-
ference as a bisimulation relation and prove the soundness of our type system with
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respect to it. Most proofs are omitted in this extended abstract. They may be found in
the full paper [6].

2 The language

2.1 Syntax

We consider two infinite and disjoint sets of variables and signals, V ar and Sig,
ranged over by x, y, z and a, b, c respectively. We then let Names be the union V ar∪
Sig, ranged over by n,m. The set Exp of expressions includes booleans and naturals
with the usual operations, but no signals. For convenience we have chosen to present
the type system only in Section 3.1. However types, or more precisely security levels,
ranged over by δ, θ, σ, already appear in the syntax of the language. Security levels
constitute what we call simple types, and are used to type expressions and declared
signals. In Section 3 we will see how more complex types for variables, signals and
programs may be built from simple types.

The language of processes P,Q ∈ Proc is defined by:

P ::= x := e | let x : δ = e in P | if e then P else Q |
while e do P | P ; Q | nil |

emit a | local a : δ in P | do P watching a |
when a do P | (P � Q) |

Note the use of brackets to make the precedence of � unambiguous. The construct
let x : δ = e in Q binds free occurrences of variable x in Q, whereas the construct
local a : δ in Q binds free occurrences of signal a in Q. The free variables and
signals of a program P , noted fv(P ) and fs(P ) respectively, are defined in the usual
way.

2.2 Operational Semantics

Configurations C are quadruples 〈Γ, S,E, P 〉 composed of a type-environment Γ, a
variable-store S, a signal-environment E and a program P . The type-environment
is a mapping from names to the appropriate types. We denote its update by {x :
δ var}Γ or {a : δ sig}Γ, where δ var and δ sig denote types for variables and signals
respectively (formally introduced in Section 3.1). A variable-store is a mapping from
variables to values. By abuse of language we denote by S(e) the atomic evaluation of
the expression e under S, which we assume to always terminate and to produce no side
effects. We denote by {x �→ S(e)}S the update or extension of S with the value of e
for the variable x, depending on whether the variable is present or not in the domain
of S. The signal-environment is the set of signals which are considered to be present.
We restrict our attention to well-formed configurations, satisfying fv(P ) ⊆ dom(S)

208



(WHEN-SUS1)
a /∈ E

(E,when a do P )‡
(WHEN-SUS2)

(E,P )‡
(E,when a do P )‡

(WATCH-SUS)
(E,P )‡

(E,do P watching a)‡

(SEQ-SUS)
(E,P )‡

(E,P ; Q)‡
(PAR-SUS)

(E,P )‡ (E,Q)‡
(E,P � Q)‡

Figure 1: Suspension predicate

and dom(S) ∪ E ⊆ dom(Γ). We will generally use the word memory to refer to the
pair 〈variable-store, signal-environment〉.

A distinguishing feature of reactive programs is their ability to suspend while wait-
ing for a signal. The suspension predicate, which applies to pairs of programs and
signal-environments, is defined inductively by the rules in Figure 1. Suspension is in-
troduced by the construct when a do P , in case signal a is absent. The suspension of
a program P is propagated to certain contexts, namely processes of the form P ; Q,
do P watching a, when a do P and P � Q, which we call suspendable processes.
We extend suspension to configurations by letting 〈Γ, S,E, P 〉‡ if 〈E,P 〉‡.

There are two forms of transitions between configurations: simple moves, denoted
by the arrow C → C′, and instant changes, denoted by C ↪→C′. These are collectively
referred to as steps, and is denoted by C �−→ C′. The reflexive and transitive closure
of these transition relations are denoted with a ‘∗’ as usual. An instant is a sequence
of moves leading to termination or suspension.

2.2.1 Moves

The operational rules for imperative and reactive constructs are given in Figure 2.
The functions newv(N) and news(N) are injective functions on finite sets of names
which return a fresh name not in N , respectively a variable and a signal. They are used
in order to guarantee determinism in the language. The notation {n/m}P stands for
substitution (name-capture avoiding) of m by n in P .

The imperative rules are as usual, where termination is dealt with by reduction
to ‘nil’. Some comments on the reactive rules are in order. Signal emission adds
a signal to the signal-environment. The local signal declaration is standard. The
watching construct allows the execution of its body until an instant change occurs;
the execution will then resume or not at the next instant depending on the presence
of the signal (as explained below). As for the when construct, execution of its body
depends on the presence of the signal; the body suspends if the signal is absent. Al-
ternating parallel composition implements a co-routine mechanism. It executes its left
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(ASSIGN-OP)
〈Γ, S,E, x := e〉 → 〈Γ, {x �→ S(e)}S,E,nil〉

(SEQ-OP1)
〈Γ, S,E,nil ; Q〉 → 〈Γ, S,E,Q〉

(SEQ-OP2)
〈Γ, S,E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S,E, P ; Q〉 → 〈Γ′, S′, E′, P ′ ; Q〉
(LET-OP)

y = newv(dom(Γ))

〈Γ, S,E,let x : δ = e in P 〉 → 〈{y : δ var}Γ, {y �→ S(e)}S,E, {y/x}P 〉
(COND-OP1)

S(e) = true

〈Γ, S,E,if e then P else Q〉 → 〈Γ, S,E, P 〉
(COND-OP2)

S(e) = false

〈Γ, S,E,if e then P else Q〉 → 〈Γ, S,E,Q〉
(WHILE-OP1)

S(e) = true

〈Γ, S,E,while e do P 〉 → 〈Γ, S,E, P ; while e do P 〉
(WHILE-OP2)

S(e) = false

〈Γ, S,E,while e do P 〉 → 〈Γ, S,E,nil〉
(EMIT-OP)
〈Γ, S,E,emit a〉 → 〈Γ, S, {a} ∪ E,nil〉

(LOCAL-OP)
b = news(dom(Γ))

〈Γ, S,E,local a : δ in P 〉 → 〈{b : δ sig}Γ, S,E, {b/a}P 〉
(WATCH-OP1)
〈Γ, S,E,do nil watching a〉 → 〈Γ, S,E,nil〉

(WATCH-OP2)
〈Γ, S,E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S,E,do P watching a〉 → 〈Γ′, S′, E′,do P ′ watching a〉

210



(WHEN-OP1)
a ∈ E

〈Γ, S,E,when a do nil〉 → 〈Γ, S,E,nil〉
(WHEN-OP2)

a ∈ E 〈Γ, S,E, P 〉 → 〈Γ′, S′, E′, P ′〉
〈Γ, S,E,when a do P 〉 → 〈Γ′, S′, E′,when a do P ′〉
(PAR-OP1)
〈Γ, S,E,nil � Q〉 → 〈Γ, S,E,Q〉

(PAR-OP2)
〈Γ, S,E, P 〉 → 〈Γ′, S′, E′, P ′〉

〈Γ, S,E, P � Q〉 → 〈Γ′, S′, E′, P ′ � Q〉
(PAR-OP3)

〈E,P 〉‡ ¬〈E,Q〉‡
〈Γ, S,E, P � Q〉 → 〈Γ, S,E,Q � P 〉

Figure 2: Operational semantics of moves

component until termination or suspension, and then gives control to its right compo-
nent, provided this is not already suspended.

Example 1 (Alternating parallel composition) In this example three threads are
queuing for execution in an empty signal-environment (left column). Underbraces in-
dicate suspension. The emission of signal a by the third process unblocks the first of the
suspended processes, enabling them to execute one by one and then reach termination.

{} ((when a do emit b) � (when b do emit c)︸ ︷︷ ︸) � emit a

→ {} emit a � ((when a do emit b) � (when b do emit c))
→� {a} (when a do emit b) � (when b do emit c)
→� {a, b} when b do emit c
→� {a, b, c} nil

We have seen that suspension of a thread may be lifted during an instant upon emission
of the signal by another thread in the pool. This is no longer possible in a program in
which all threads are suspended. When this situation is reached, an instant change
occurs.

2.2.2 Instant changes

Suspension of a configuration marks the end of an instant. At this point, all signals
are reset to absent (the new signal-environment is the empty set) and all the suspended
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(INSTANT-OP)
〈E,P 〉‡

〈Γ, S,E, P 〉 ↪→ 〈Γ, S, ∅, �P �E〉

�do P watching a�E
def=




nil if a ∈ E

do �P �E watching a otherwise

�P ; Q�E
def=�P �E ; Q

�when a do P �E
def=




when a do �P �E if a ∈ E

when a do P otherwise

�P � Q�E
def=�P �E � �Q�E

Figure 3: Operational semantics of instant changes

subprocesses of the form do P watching a whose watched signal is present are
killed. Indeed, the watching construct provides a way to recover from the deadlock
situation. The semantics of instant changes is defined in Figure 3. The function �P �E
is meant to be applied to suspended processes (see Figure 1) and therefore is only
defined for them.

Instant changes are programmable; we hinted in the Introduction the possibility of
encoding a primitive that enforces suspension of a thread until instant change. This
primitive, which we call pause, is defined as follows.

Example 2 (pause) Here the local declaration of signal a ensures that the signal
cannot be emitted outside the scope of its declaration, and therefore that the program
will suspend. At this point, the presence of b is checked, and since it has been emit-
ted, the subprogram (when a do nil), where a is replaced by a fresh variable a′, is
aborted (i.e. turned into nil) at the beginning of the next instant.

{} | local a : δ in (local b : θ in (emit b ; do (when a do nil) watching b))

→� {} emit b ; do (when a′ do nil) watching b′

→� {b} do (when a′ do nil︸ ︷︷ ︸) watching b′

︸ ︷︷ ︸
↪→ {} nil

The following is a program where an instant change breaks a causality cycle:

emit a ; ((when b do emit c) � (do (when c do emit b) watching a) ; emit b)
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Here the whole program suspends after the emission of a. Then, since a is present, the
body of the watching construct is killed and a new instant starts, during which b is
emitted, thus unblocking the other thread and allowing c to be emitted.

2.2.3 Execution paths

A computation of a configuration has the form:

〈Γ, S,E, P 〉 →� 〈Γ1, S1, E1, P1〉 ↪→ 〈Γ1, S1, ∅, �P1�E1
〉 →� 〈Γ2, S2, E2, P2〉 ↪→ . . .

One can check that every configuration is able to perform a step if and only if its
program is different from nil. The form of this step, simple move or instant change,
depends on whether P is suspended or not. Moreover, the following result establishes
the uniqueness of this step.

Theorem 2.1 (Determinism) Any configuration C = 〈Γ, S,E, P 〉 is in exactly one
of three states: terminated, if P = nil; suspended, if 〈E,P 〉‡, in which case ∃!C′ :
C ↪→ C ′; active, in which case ∃!C′ : C → C ′.

3 Noninterference

3.1 Type System

We now introduce our type system, whose role is to rule out insecure programs. In the
Introduction we illustrated the notion of implicit flow in sequential programs. Reactive
constructs should also forbid “low writes” after “high tests”, as in
when aH do emit bL. To see this, consider the program

emit cL ; (do (when aH do emit bL) watching cL) (3)

Whether aH is present or not this program always terminates (in one or two instants re-
spectively), emitting bL only if aH is present. Also the more subtle program (1) has its
reactive counterpart (when aH do nil) ; emit bL. Again, this could be viewed as
safe when run in isolation. However, when composed with other threads, this program
can be source of interferences as suspension can be lifted by the emission of signal
aH . Consider for instance the program γ � (α � β) (which is the reactive analogue of
the PIN example of [15, 5]), where

γ : if PINH = 0 then emit aH else emit bH

α : when aH do nil ; emit cL ; emit bH

β : when bH do nil ; emit dL ; emit aH

If PINH = 0, no suspension occurs: α is executed before β, and cL is emitted before
dL. If PINH �= 0, α is initially suspended and β is executed first, emitting dL and then
unblocking α. In this case cL is emitted after dL.
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Note that imperative constructs with high tests, followed by “low writes” (as in the
imperative program (1) of the Introduction) remain problematic in a reactive setting,
for we can write the program γ′ � (α′ � β′):

γ′ : if PINH = 0 then xH := 0 else xH := 1
α′ : (while xH = 0 do pause ; rL := 0 ; xH := 0)
β′ : (while xH = 1 do pause ; rL := 1 ; xH := 1)

Reactive concurrency introduces new leaks that are not exhibited with the usual
asynchronous concurrency.
Consider the program (γ′′ � α′′) � β′′, running in two different environments, E1 =
{aH , zH} and E2 = {zH}:

γ′′ : (pause ; xL := 1)
α′′ : (do (when aH do nil) watching zH � when bL do xL := 0)

β′′ : (nil ; pause ; emit bL)

The threads γ′′ and α′′ are running in parallel, containing different low assignments on
xL. Notice that while γ′′ starts by suspending itself, the thread α′′ suspends if and only
if signal aH is absent. Therefore, only in an environment where aH is present, will γ′′

and α′′ start by switching positions. The nil component in β′′ (although technically
redundant) stresses that this thread gains control before suspension, thus ensuring that
the first thing that happens after the change of instant is the emission of signal bL.
What remains to be done is the two assignments to the low variable xL, but the order
in which they will happen depends in the order of appearance of the continuations of
γ′′ and α′′ (which as we’ve seen depends on the the presence of the high signal aH).
This example suggests that it is possible to make the order of execution of neighboring
threads depend on high signals. The tree of threads can then be seen as the body of a
conditional, where any high test is its potential guard. This motivates the introduction
of some extra conditions in the typing of reactive concurrency, similar to those used
for conditionals in [5, 16].

Let us now present our type system. As we mentioned in Section 2, expressions
will be typed with simple types, which are just security levels δ, θ, σ. As usual, these
are assumed to form a lattice (T ,≤), where the order relation ≤ stands for “less secret
than” and ∧,∨ denote meet and join. Starting from simple types we build variable
types of the form δ var and signal types of the form δ sig. Program types will have the
form (θ, σ) cmd, as in [5, 16]. Here the first component θ represents a lower bound on
the level of written variables and emitted signals, while the second component σ is an
upper bound on the level of tested variables and signals.

Our type system is presented in Figure 4. It is analogous to the one in [5, 16],
apart from the new restrictions on parallel composition. The types for the when and
watching commands are similar to those for the while command, since their se-
mantics also consists of the execution of a process under a guard. As regards reactive
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(NIL) Γ � nil : (θ, σ) cmd

(ASSIGN)
Γ � e : θ Γ(x) = θ var

Γ � x := e : (θ, σ) cmd

(LET)
Γ � e : δ {x : δ var}Γ � P : (θ, σ) cmd

Γ � let x : δ = e in P : (θ, σ) cmd

(SEQ)
Γ � Q1 : (θ1, σ1) cmd Γ � Q2 : (θ2, σ2) cmd σ1 ≤ θ2

Γ � Q1 ; Q2 : (θ1 ∧ θ2, σ1 ∨ σ2) cmd

(COND)
Γ � e : δ Γ � P : (θ, σ) cmd Γ � Q : (θ, σ) cmd δ ≤ θ

Γ � if e then P else Q : (θ, δ ∨ σ) cmd

(WHILE)
Γ � e : δ Γ � P : (θ, σ) cmd δ ∨ σ ≤ θ

Γ � while e do P : (θ, δ ∨ σ) cmd

(EMIT)
Γ(a) = θ sig

Γ � emit a : (θ, σ) cmd

(LOCAL)
{a : δ sig}Γ � P : (θ, σ) cmd

Γ � local a : δ in P : (θ, σ) cmd

(WATCH)
Γ(a) = δ sig Γ � P : (θ, σ) cmd δ ≤ θ

Γ � do P watching a : (θ, δ ∨ σ) cmd

(WHEN)
Γ(a) = δ sig Γ � P : (θ, σ) cmd δ ≤ θ

Γ � when a do P : (θ, δ ∨ σ) cmd

(PAR)
Γ � P : (θ1, σ1) cmd Γ � Q : (θ2, σ2) cmd σ1 ≤ θ2 σ2 ≤ θ1

Γ � P � Q : (θ1 ∧ θ2, σ1 ∨ σ2) cmd

(SUB)
Γ � P : (θ, σ) cmd θ ≥ θ′ σ ≤ σ′

Γ � P : (θ′, σ′) cmd

(EXPR)
∀xi ∈ fv(e).δ ≥ θi where Γ(xi) = θi var

Γ � e : δ

Figure 4: Typing Rules
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parallel composition, the side conditions express the fact that any high test is a po-
tential guard to the order of execution of concurrent threads. It forbids a thread from
performing assignments and emissions at levels that are not higher than or equal to
those of the tested variables and signals of parallel threads.

One may notice that these side conditions restrict the compositionality of the type
system and introduce some overhead (two comparisons of security levels) when adding
new threads in the system. This is the price we pay for allowing loops with high
guards such as while xH = 0 do nil (which are rejected by previous type systems,
as [15, 14]) in the context of a co-routine mechanism. However, it might be worth
examining if this restriction could be lifted to some extent by means of techniques
proposed for other concurrent languages ([11, 12]).

3.2 Properties of typed programs

It is easy to see from the semantic rules that computation may affect a type-environ-
ment only by extending it with fresh names. Our first result states that types are pre-
served along execution.

Theorem 3.1 (Subject Reduction) If Γ � P : (θ, σ) cmd and
〈Γ, S,E, P 〉 �−→ 〈Γ′, S′, E′, P ′〉 then Γ′ � P ′ : (θ, σ) cmd.

Our next result ensures that program types have the intended properties. We use the
generic term “guard” for either a tested variable or a tested signal.

Proposition 3.2 (Guard Safety and Confinement)

1. If Γ � P : (θ, σ) cmd then every guard in P has type δ ≤ σ.

2. If Γ � P : (θ, σ) cmd then every variable assigned to in P and every signal
emitted in P has security level δ (that is type δ var or δ sig, respectively) with
θ ≤ δ.

We now introduce some terminology that will be useful to define our notion of
indistinguishability. We use L to designate a downward-closed set of security levels,
that is a set L ⊆ T satisfying θ ∈ L & σ ≤ θ ⇒ σ ∈ L. The low memory is the
portion of the variable-store and signal-environment to which the type-environment
associates “low security levels” (i.e. security levels in L). Two memories are said to
be low-equal if their low parts coincide:

Definition 3.1 (L,Γ-equality of Memories and Configurations) 〈S,E〉=Γ
L〈R,F 〉

def⇔ ∀x.Γ(x) = θ var & θ ∈ L ⇒ S(x) = R(x) and ∀a.Γ(a) = θ sig & θ ∈
L ⇒ a ∈ E ⇔ a ∈ F . Two configurations are said to be low-equal when they have
low-equal memories.
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There is a class of programs for which the security property is trivial to establish
because of their inability to change low memory. As usual, we will refer to these as
high programs. Here we distinguish two classes of high programs based on a syntactic,
respectively semantic, analysis:

Definition 3.2 (High Reactive Programs)

1. Syntactically high programs HΓ,L
syn is inductively defined by: P ∈ HΓ,L

syn if

• P = (x := e), and Γ(x) = θ var ⇒ θ /∈ L.

• P = (emit a), and Γ(x) = θ sig ⇒ θ /∈ L.

• P = let x : δ = e in Q, and Q ∈ HΓ∪{x:δ var},L
syn , and

• P = local a : δ in Q, and Q ∈ HΓ∪{a:δ sig},L
syn , and

• P = (Q1 ; Q2), P = (if e then Q1 else Q2), P = (while e do Q1),
P = (when a do Q1), P = (do Q1 watching a), or P = (Q1 � Q2),
where Qi ∈ HΓ,L

syn for i = 1, 2.

2. Semantically high programs HΓ,L
sem is coinductively defined by P ∈ HΓ,L

sem implies:

• ∀S,E, 〈Γ, S,E, P 〉 → 〈Γ′, S′, E′, P ′〉 implies 〈S,E〉 =Γ
L 〈S′, E′〉 and P ′ ∈

HΓ′,L
sem , and

• ∀S,E, 〈Γ, S,E, P 〉 ↪→ 〈Γ′, S′, E′, P ′〉 implies P ′ ∈ HΓ′,L
sem

Note that P = let x : δ = e in Q (as well as P = local a : δ in Q) is considered
syntactically high even if δ /∈ L, provided Q is syntactically high in the extended typ-
ing environment. It may be shown that both properties are preserved by execution. As
argued in the Introduction, we do not consider as relevant the initialization of the low
signal environment that is induced by instant changes. This is reflected by the absence
of the low equality condition after instant changes in Definition 3.2.2 (recall that the
variable-store S is not modified during an instant change). Since instant changes are
not statically predictable, this assumption allows us to deduce, from the syntactic prop-
erty of being a high program, the corresponding behavioural property. In other words,
the set of syntactically high programs is a subset of the semantically high ones, that is
HΓ,L

syn ⊆ HΓ,L
sem . An example of a semantically high program that is not syntactically

high is if true then nil else yL := 0.
The key result for proving noninterference is the following theorem, whose proof

is quite elaborate and therefore omitted here (it uses the notions of L-boundedness
and L-guardedness as in [5] and some intermediate results). This result states that
typed programs which immediately fork because of a high test, are syntactically high.
Therefore, we are sure that the only changes in low memory occurring beyond such a
fork occur at instant changes, and do not involve variables.

Theorem 3.3 (Forking programs) Let P be typable in Γ, 〈S,E〉 =Γ
L 〈R,F 〉,

〈Γ, S,E,P 〉 �−→ 〈Γ1, S1, E1, P1〉, 〈Γ, R, F, P 〉 �−→ 〈Γ2, R2, F2, P2〉,
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and 〈S1, E1〉 �=Γ1∩Γ2
L 〈R2, F2〉 or 〈Γ1, P1〉 �= 〈Γ2, P2〉 or 〈E,P 〉‡ iff ¬〈F,P 〉‡. Then

P ∈ HΓ,L
syn . (1)

This is quite a strong result, for it says that if there is any difference in the first step of
two computations of a typable program under low-equal memories, then the program
code contains no low-assignments or emissions. The intuition is that such a difference
reflects the passage of a high test, and our type system guarantees that no changes
in low memory will follow. Since the type system is based on a syntactical analysis,
the result uses the syntactic notion of high program. For an example of a forking
program which becomes syntactically high (after one step of computation) see (2) in
the Introduction.

3.3 Security notion and soundness of the type system

In this section we define reactive bisimulation, and prove our noninterference result
with respect to it. The two-level nature of reactive computations, together with the
asymmetry in signal removal and emission, poses some challenges in the definition of
noninterference. However, these subtleties can be factored out through the notion of
high program.

Definition 3.3 (L-Bisimulation equivalence ( ≈L )) The equivalence ≈L is the
largest symmetric relation R such that C1RC2, where C1 = 〈Γ1, S1, E1, P1〉 and
C2 = 〈Γ2, S2, E2, P2〉, imply:

• C1 =Γ1∩Γ2
L C2, and

• either

a. Pi ∈ HΓi,L
sem for i = 1, 2, or

b. C1 �−→ C ′
1 implies ∃C′

2 such that C2 �−→� C ′
2 and C′

1RC ′
2

We can now formalize the notion of secure program in the usual way:

Definition 3.4 (Γ-Secure Programs) P is secure in the typing context Γ if for any
downward-closed set L of security levels and for any S1, E1, S2, E2 such that
〈S1, E1〉=Γ

L〈S2, E2〉 then 〈Γ, S1, E1, P 〉 ≈L 〈Γ, S2, E2, P 〉.

Finally, we are in position to prove that every typable program is secure:

Theorem 3.4 (Noninterference) If P is typable in Γ then P is Γ-secure.

Proof 3.4 For any L, define the relation SL on configurations C1 = 〈Γ1, S1, E1, P1〉
and C2 = 〈Γ2, S2, E2, P2〉, such that C1 SL C2 if and only if:

1Note that the case where 〈S1, E1〉�=Γ
L 〈R2, F2〉 attends the case where only one of the computations

performs an instant change and ∃aL ∈ E ∪ F .
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• Pi is typable in Γi for i = 1, 2, and

• C1 =Γ1∩Γ2
L C2, and

• either

i. Pi ∈ HΓi,L
syn for i = 1, 2, or

ii. 〈Γ1, P1〉 = 〈Γ2, P2〉.

Note first that if P is typable in Γ and 〈S1, E1〉 =Γ
L 〈S2, E2〉, then

〈Γ, S1, E1, P 〉 SL 〈Γ, S2, E2, P 〉 by clause ii. Next we prove that SL ⊆ ≈L . Suppose
that C1 SL C2. Then we have C1 =Γ1∩Γ2

L C2 by hypothesis, and either:

1. Both Pi ∈ HΓi,L
syn for i = 1, 2 by clause i. Since HΓi,L

syn ⊆ HΓi,L
sem then Pi ∈ HΓi,L

sem .

2. 〈Γ1, P1〉 = 〈Γ2, P2〉 by clause ii. We may assume that Pi /∈ HΓi,L
syn , since oth-

erwise we would fall into the previous point. If C1 �−→ C ′
1 = 〈Γ′

1, S
′
1, E

′
1, P

′
1〉,

then P1 �= nil. Since P1 = P2, also P2 �= nil and by Theorem 2.1 ∃!C′
2

such that C2 �−→ C ′
2 = 〈Γ′

2, S
′
2, E

′
2, P

′
2〉. By Theorem 3.3, we conclude that

C ′
1 =Γ′

1∩Γ′
2

L C ′
2 and 〈Γ′

1, P
′
1〉 = 〈Γ′

2, P
′
2〉. Hence, C ′

1 SL C ′
2 by clause ii.

Let us now return to the program P = if xH = 0 then nil else pause, so
that we can understand the subtleties in this apparently straightforward definition of
security. As can be seen from the definition of bisimulation, this program is accepted
as secure for the reason that it is high. Let us argue why such programs do not pose
security problems. Although we have not pursued this question formally here, our
motivation stems from the following reasoning. Consider the program P � Q, where
Q would be an observer which we assume to be confined to the lowest level (and
therefore typable, although the composition need not be). When control is given to
Q, he is not able to know whether this is due to the suspension or to the termination
of P . In particular, if Q starts by suspending itself, an instant change will occur in
both cases. Unable to distinguish the two possible execution paths that P might have
taken, Q cannot perform different actions accordingly. For similar reasons we do not
consider necessary to require the synchronization of instant changes for matching two
computations of a program.

4 Conclusion and related work

In this paper we have addressed the question of noninterference for reactive programs.
We have presented a type system guaranteeing noninterference in a core imperative
reactive language. We are currently studying a call-by-value language for mobility
built around a reactive core, called ULM [3]. We intend to adapt to this language the
techniques we have developed here.
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As has been observed, reactive programs obey a fixed scheduling policy, which is
enforced syntactically using the parallel construct �. Other approaches to noninterfer-
ence in the presence of scheduling include the probabilistic one, proposed for instance
in [17] and [14]. In these papers scheduling is introduced at the semantic level (adding
probabilities to the transitions), and security is formalized through a notion of prob-
abilistic noninterference. It should be noted that, unlike [5], which allows to express
different scheduling policies, and [14] which accounts for an arbitrary scheduler (sat-
isfying some reasonable properties), here a fixed deterministic scheduling is in use.
Indeed, the novelty of our work resides mainly in addressing the question of noninter-
ference in a reactive scenario. The work [13] examines the impact of synchronization
on information flow, and uses it as a means to study time leaks without explicitly in-
troducing a scheduler. However the analogy cannot be pushed very far since [13] has
no notion of instant (and thus no way of recovering from deadlocks) and uses asyn-
chronous parallel composition.
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Abstract

KDLM is a model of information flow control for distributed programming
languages, introducing a distributed notion of selective declassification. KDLM
uses type-level notions of both principals and policies to model security policies
incorporating access control and information flow control, with run-time repre-
sentatives based on cryptographic keys. This article addresses the question of
how this control is enforced when programs cross address spaces and networks.
An object calculus is introduced that extends KDLM. This uses a notion of lo-
cally opaque principal and key names in objects to transmit and enforce restric-
tions across address spaces, with key equality used as a form of runtime type
discrimination to reveal “opaque” principal names at the receiver.

1 Introduction

Language-based security is becoming an increasingly important aspect of computer
security. Large amounts of data are being processed by computer programs and there
is a need for control and accountability in the way these programs handle the infor-
mation they glean from the data. The computer security community has focussed on
access control mechanisms for databases of sensitive data. The programming language
community has focussed on information flow control: making sure that sharing of data
is controlled in some manner to ensure that it does not leak in undesirable ways. The
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programming language community has focussed on information flow control because
language technology such as type systems can be fruitfully applied to this problem
[25].

The Decentralized Label Model (DLM) is a model of information flow control that
was introduced by Myers and Liskov [20]. This model avoids one undesirable aspect
of classical information flow control, the need for some centrally defined lattice of
information levels, by implicitly defining a lattice based on access control. It also in-
troduced selective declassification, allowing a principal to relax its own access control
and in this way relax information flow control. This relies critically on the notion of
the principal for the currently executing code.

More recently the authors proposed the Key-based Decentralized Label Model
(KDLM) as a model that combines information flow control and application-based
cryptography for secure network programming [6]. The argument for this approach is
the usual end-to-end argument in system design: it is ultimately unrealistic to expect
a single one-size-fits-all solution to network security in the runtime. The application
must be able to build its own network security stack for any approach to scale, yet the
type system must prevent the application from violating the information flow guaran-
tees in the type system while establishing the network security. KDLM combined ideas
from DLM and type-based cryptographic APIs [10]. In particular KDLM introduced
the notion of key names, type level entities representing encryption and signing keys,
as well as principals as in DLM. A particular motivation for KDLM was distributed
declassification.

A question that is posed by KDLM is, what is the nature of principal names and
key names in programs that may cross address spaces? All modelling for security
purposes is done in the type system, with any runtime checks (beyond the static type-
based checking) based on keys. We can certainly formulate examples with principals
such as Alice and Bob, but these merely refer to compile-time type names within an
address space. How do two separate programs come to agreement on the identities of
their principals?

In this article we extend KDLM with an object calculus, motivated by its ultimate
application in an object-oriented programming language. We call this language Jed-
dak, it extends Java. Since principals (and key names) must be modelled as type-level
entities, objects carry type-level fields via an adaptation of the form of generics that
have been added to Java and are part of JDK 1.5 [4, 5, 27]. In this approach, the names
of keys and principals are treated as abstract data types for transmission of data, with
key equality used as a form of runtime type discrimination to reveal “opaque” principal
names at the receiver.

In Sect. 2 we explain with some examples how our approach can be used to support
key distribution while enforcing access control across address spaces. In Sect. 3 we
provide a formal type system. Finally Sect. 4 considers related work and conclusions.
Due to space considerations, several details are omitted from this extended abstract.
They are available as a technical report in a longer version of the paper [7].
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2 Key Distribution

The Jeddak type system models notions of key-based access control. So it includes
notions of principal names and policy names that are analogous to types. Whereas
the latter may be loosely interpreted as sets of values, the former represent abstract
modelling entities whose runtime representatives are actual keys. The motivation for
this approach is that much access control can be checked at compile-time. This in turn
enables lightweight access control checking that facilitates a fine-grained audit trail for
checking accountability.

However this compile-time checking cannot be extended across a distributed sys-
tem, where values cross process address spaces. An analogy may be made here with
RMI programming. Code executing within an address space is fully type-checked. Dy-
namic typing is used to ensure the type-safety of values that are transmitted between
address spaces. Unmarshalling ensures that values are well-formed, and checked
downcasting ensures that values have the application-specific types required at receiv-
ing sites.

Jeddak includes analogous mechanisms for “hiding” access information at a send-
ing site and “exposing” that access information at the receiving site. The exposure
operation requires runtime checking, but based on key identity rather than checked
downcasting. We illustrate this by showing how keys with limited distribution may be
shared between processes in a safe manner.

Types for values include labelled types, of the form

{K1, . . . ,Kn}T.

The type T is a type in the normal sense. The set {K1, . . . ,Kn} is a label. In DLM,
a label is a set of security policies. In KDLM, a label is a set of policy names, i.e.,
names for security policies. This extra level of indirection is motivated by mechanisms
for distributed declassification, as explained in [6]. A policy is essentially an access
control list, of the form

[P : {P1, . . . ,Pk}]
where P,P1, . . . ,Pk are principal names. This policy is controlled by the principal P.
This notion of control of a policy by a principal is useful for reclassification purposes:
a principal can allow information controlled by one policy to “flow” (via assignment)
to a variable controlled by a different policy, provided that principal controls both
policies. The policy itself restricts access to a variable to the principals {P1, . . . ,Pk}.
A policy may be either to restrict “read” rights (to control secrecy) or to restrict “write”
rights (to control integrity) on a variable. Since access to a variable is controlled
by a set of such policies, access to that variable is restricted to the principals in the
intersection of the policies making up the label.

For example if we have

K1 specifies policy [Joe:{Joe,Mary,Sam}]
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K2 specifies policy [Mary:{Mary,Sue,Sam}]
{K1,K2}int x;

Then the variable x is only accessible to the principals Mary and Sam.
Policy names only exist at compile-time, for modelling the security policies of the

program. At run-time policy names may be represented by run-time witnesses, given
by public-private key pairs. For a secrecy policy name, such a pair corresponds to a
public encryption key and its corresponding private decryption key. For an integrity
policy name, such a pair corresponds to a public authentication key and its corre-
sponding signing key. A policy name that has an associated key pair representing it at
run-time is declared as an “actual” policy name (as opposed to a “virtual” policy name
that is used only for modelling purposes at compile-time). Consider the following
example:

spolicy MyPolicy [ThisPrin:{Mary,Sue}];
pubkey〈MyPolicy〉 myPublicKey;
{MyPolicy}privkey〈MyPolicy〉 myPrivateKey;

This example declares a policy names, MyPolicy, and two keys, myPublicKey
and myPrivateKey. The keyword spolicy identifies this policy name as a secrecy
policy name; dually the language has integrity policy names, identified by the keyword
ipolicy. The policy MyPolicy is controlled by the principal for the currently exe-
cuting code, identified by the keyword ThisPrin. We assume as in the Java security
model that code is signed by a principal. The policy MyPolicy has a (unique) associ-
ated public-private key pair. Two variables are declared as part of an actual policy name
declaration, and these variables are initialized with the public and private parts of the
associated key pair. The parameterized types pubkey〈 〉 and privkey〈 〉 denote the
types of encryption and decryption keys, respectively (where the policy name specifies
a secrecy policy). These types are parameterized by the associated policy name. So the
public encryption key for the policy name MyPolicy has type pubkey〈MyPolicy〉.

The decryption key has type privkey〈MyPolicy〉. It must also have a label that
is consistent with the policy of the associated policy name. The policy of the policy
name MyPolicy restricts read access to variables to the principals Mary and Sue (and
implicitly ThisPrin). If data with this access restriction is subsequently encrypted
for transmission over a network, we must ensure that the private decryption key is not
distributed to principals other than Mary, Sue and ThisPrin.

Now we have an apparent problem with actual policy names. Since such policy
names can only be declared locally in a program, never at top level, how can we
ever return a result whose type involves actual policy names? Consider for example
returning a newly generated public-private key pair as the result of a method. To do
this, we must return not only the key pair, but also the key name that they are associated
with. We have so far talked of methods that take policy names as inputs, similarly to
type parameters. Now we must allow methods to return policy names as outputs1.

1For the reader cognizant with type theory, input policy names are universally quantified while output
policy names are existentially quantified [17].
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The following example defines a class for objects that contain public-private key
pairs. Each such object has a publicKey field and a privateKey field. The class
abstracts over the policy name that these fields share, and the principal and principal
set in the policy for the key name, and the private policy name that specifies access
restrictions on the private key:

class KeyPair 〈prin Owner,
prinSet Objects,
spolicy K [Owner:Objects] 〉 {

pubkey〈K〉 publicKey;
{K}privkey〈K〉 privateKey;
KeyPair (pubkey〈K〉 pub, {K}privkey〈K〉 priv) auth Owner {

this.publicKey = pub;
this.privateKey = priv;

}
}

An instantiation of this class must include instantiations for all of the type-level
parameters. We extend the positional Java syntax for instantiation with a field-based
syntax that is useful for what follows, so an example instantiation is:

new KeyPair〈Owner=O,Objects=Os,K=K〉
(publicKey,privateKey)

for some O, Os and K, and some public and private keys publicKey and privateKey,
respectively. The type of the resulting object is:

KeyPair〈Owner=O,Objects=Os,K=K〉
Now there is a problem with this type. Suppose a new policy name is generated

as part of the generation of a new pair, in a local context, and this object is to be
returned from this context. But this return is not possible because the surrounding
context must already know the name of the newly generated policy name K, which is
impossible. Therefore Jeddak adopts a refinement of the JDK 1.5 notion of raw types:
we allow some of the type parameters in a generic instantiation to be hidden. This
partial hiding is the motivation for the field-based syntax for generic instantiation. We
have the subtyping

KeyPair〈Owner=O,Objects=Os,K=K〉 ≤ KeyPair〈Owner=O,Objects=Os〉
So the identity of the locally generated policy name is hidden, but the access re-

strictions are still visible in the type of the resulting object. In the following example,
a nullary method newPair generates a new key pair, as part of declaring a new local
(actual) policy name, and returns the result in a KeyPair object:

KeyPair〈Owner,Objects〉 newPair
〈prin Owner, prinSet Objects〉 () auth Owner {

spolicy K [Owner:{Objects}];
pubkey〈K〉 publicKey;
{K}decKey〈K〉 privateKey;
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return new KeyPair 〈Owner=Owner,Objects=Objects,K=K〉
(publicKey, privateKey);

}
Now we can say:

KeyPair〈ThisPrin,{Mary,Sue}〉 x =
newPair 〈ThisPrin,{Mary,Sue}〉();

KeyPair〈ThisPrin,{Mary,Sue}〉 y =
newPair 〈ThisPrin,{Mary,Sue}〉();

Now we have the danger that the keys in x and y may be considered interchange-
able, since x and y have the same types. This is because we have “hidden” the policy
names for the keys of x and y. In Jeddak the hidden types are considered to be local
abstract types, that can actually be referred to as fields of the object. So we have the
typings:

x.publicKey ∈ pubkey〈x.K〉
y.publicKey ∈ pubkey〈y.K〉

x.privateKey ∈ {x.K}privkey〈x.K〉
So the policy names for x and y are distinguished (x.K and y.K, respectively).

The encryption and decryption keys cannot be referred to independently of the policy
name.

If a public key must be transmitted, it must be bundled up in another object that
has a copy of the policy name:

class PubKey 〈prin Owner,
prinSet Objects,
spolicy K [Owner:Objects] 〉

pubkey〈K〉 publicKey;
PubKey (pubkey〈K〉 pub) auth Owner {

this.publicKey = pub;
}

}
Then we can make a copy of the public key for distribution as follows:

PubKey〈ThisPrin,{Mary,Sue}〉 z =
new PubKey 〈Owner=ThisPrin,Objects={Mary,Sue},K=x.K〉

(x.publicKey);

The typing of this is subtle. We have the following subtyping rule:

PubKey〈Owner=ThisPrin,Objects={Mary,Sue},K=x.K〉 ≤
PubKey〈Owner=ThisPrin,Objects={Mary,Sue}〉.
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The first type reveals that the K type field of the PubKey object is actually an alias
for x.K. This is reflected by the type equality K=x.K in the type of the object. Such
a type cannot escape the scope of the variable x. On the other hand, the second type
does not reveal this alias. This type is less informative, but an object with this type
can escape the scope of x. So the general strategy for initializing an object with type
fields is to first give it the very precise type resulting from its instantiation, then use
subtyping to “hide” the bindings of the type fields.

For example, assuming a default nullary constructor for the above clause, the above
code can be elaborated (say for bytecode generation) as:

PubKey 〈Owner=ThisPrin,Objects={Mary,Sue},K=x.K〉 temp =
new PubKey 〈Owner=ThisPrin,Objects={Mary,Sue},K=x.K〉 ();

temp.init (x.publicKey);
PubKey〈Owner=ThisPrin,Objects={Mary,Sue}〉 z = temp;

The argument type of temp.init is pubkey〈temp.K〉, but the type of temp also
exports the type equality K=x.K, so we have temp.K=x.K. It is only because of this
type equality that the constructor application is able to type check, since the argument
has type pubkey〈x.K〉. So equality constraints between policy names are a crucial
component of ensuring that copy constructors type-check.

An object of type

KeyPair〈Owner=ThisPrin,Objects={Mary,Sue}〉
still cannot be transmitted to another address space, since the principal names
ThisPrin, Mary and Sue only make sense within an address space. We can certainly
elide this type to

KeyPair〈〉
This type has no free variables in it, and therefore it can be transmitted across

address spaces. However there is then the problem that the resulting object is useless
at the receiving site. Because the principals in the policy are locally abstract, there is
no way to relate them to principals at the receiving site, and therefore no way to allow
principals at the receiving site to access the private parts of the object according to the
policy. Because the owner of the policy and the principals allowed read access by the
policy, are completely abstract, no principal can ever access the key.

We need a way of hiding some of the principal identities in an object type, trans-
mitting that object to another address space, then safely re-exposing the principal iden-
tities at the receiving site. To make this exposure safe, it must be based on checking
the identity of authentication keys that identify principals. The following class accom-
plishes this:

class DistKeyPair 〈prin Owner,
prinSet Objects,
prin Reader ∈ Objects,
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spolicy K [Owner:Objects]〉 {
final pubkey〈Reader〉 rdrKey;
pubkey〈K〉 publicKey;
KeyPair (pubkey〈Reader〉 rdr,

pubkey〈K〉 pub,
{K}privkey〈K〉 priv) {

this.rdrKey = rdr;
this.publicKey = pub;
this.privateKey = priv;

}
}

The generator of the key pair creates an object of this type and elides its type
to DistKeyPair〈〉. This key is then transmitted to another process. The receiving
process uses the rdrKey field to justify exposing the identity of the reader principal
name. If the rdrKey field is equal to ThisPrin, then the local principal name Reader
can be exposed to ThisPrin at the receiving site. Although the set of allowed readers
Objects is still opaque, the set constraint Objects⊇{Reader} justifies allowing the
receiving process to access the key. This checked exposure requires a new construct
in Jeddak, the keyassert statement that asserts an equality between keys to justify
an equality between policy names. If the key assertion succeeds, then the executing
process is allowed to access the private key in the received object, using the reflected
equality between key names and the inclusion constraint in the object type. This is
summarized in Fig. 1.

3 Type System

We now provide a more detailed description of the type system. The syntax of types
and kinds is provided in Fig. 2. The system of arities or kinds organizes the well-
formed types, principal names and policy names. Besides the kind of types (Type)
and principal names (Prin), there are two kinds for policy names: encryption (secrecy)
policy names SPolicy(P : P) and signing (integrity) policy names IPolicy(P : P). This
kind identifies the creator of the policy (P) and the principals who may have access to
the private part of the public-private key pair for that policy ({P}).

The types then consist of key types, indexed by policy names, classes, and opaque
types resulting from accessing type fields in objects. The latter type has the form x.t
or a.t where x is a program variable and a is an object identity. This restriction on
the form of such opaque types only permits a limited dependency of types on values,
maintaining the phase distinction between values and types. A class type has the form
C〈t = OT〉 where each OT is either null � or a type definition T . The former denotes
a type in the instantiation of a class that has been made opaque, the latter a type whose
instantiation is revealed in the object type.

Kinds and types depend on each other, resulting in a dependent kind system. The
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// Server side:
Object req = reqCh.readObject();
PubIKey kx = (PubIKey)req;

spolicy [ThisPrin:kx.Owner] Kshare;
pubkey〈Kshare〉 ksPub;
privkey〈Kshare〉{Kshare} ksPriv;

DistKeyPair reply =
new DistKeyPair〈...,Reader=kx.K〉
(kx.publicKey,ksPub,ksPriv);

replyCh.writeObject(reply);

// Client side:
PubIKey req = new PubIKey 〈...,K=ThisPrin〉 (thisPrin);
reqCh.writeObject(req);

Object reply = replyCh.readObject();
DistKeyPair ky = (DistKeyPair)reply;
keyassert ky.rdrKey==thisPrin;
// Now we know: ky.Reader=ThisPrin
// So we know: ThisPrin∈ky.Objects
... ky.privateKey ...

Figure 1: Enforcing Access Restrictions Across Address Spaces
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A ∈ Arity, Kind ::= Prin Principal

| SPolicy(P : P) Secrecy policy name

| IPolicy(P : P) Integrity policy name

| Type Type

K,P,T ∈ Policy, Prin, Type ::= k, p, t Variable, name

| x.t, a.t Type field

| PrivKey(K) Private key type

| PubKey(K) Public key type

| C〈t = OT〉 Class

OT ∈ Optional Type ::= T | �
L ∈ Label ::= {K1, . . . ,Km}

LT ∈ Labelled type ::= [T]L1,L2

Figure 2: Syntax of Kinds and Types

formation rules for kinds and types must therefore be formulated in a mutually recur-
sive fashion, and these formation rules are intertwined with the rules for environment
formation in the type system. An environment is a sequence of pairs, binding (vari-
ables or names) to (kinds or types). We have several forms of environments:

TE ∈ Type Env ::= ε | (t : A) | TE1,TE2

VE ∈ Value Env ::= ε | (x : LT) | (a : LT) | VE1,VE2

CE ∈ Class Env ::= /0 | {C �→ Cl} | CE1 ∪CE2

EE ∈ Constraint Env ::= /0 | {K1 = K2} | EE1 ∪EE2

The sequence concatenation operation (,) is assumed to be associative with ε (empty
sequence) as its unit. The type environment TE binds type, principal and policy names
to their kinds. The value environment VE binds variables, keys and object identifiers
to their types. The class environment maps from a class name to the definition of
that class. Since this environment is invariant throughout both the static and dynamic
semantics, we leave it implicit in the semantic rules. Finally the constraint environ-
ment EE records hypothetical equalities between policy names, based on runtime key
equality checks. This latter environment is only necessary because of the keyassert
construct.

The type environment TE is used in the definition of a metafunction that, given a
label (set of policy names), computes the set of principals that is defined by that label

232



in that type environment:

PRINSTE;VE( /0) = /0
PRINSTE;VE(L1 ∪L2) = PRINSTE;VE(L1)∩PRINSTE;VE(L2)

PRINSTE;VE({k}) = {P}
if ∃TE1,TE2. TE = (TE1,k : SPolicy(P : P),TE2)

An equivalent definition can be given for the set of principals allowed “write” access
according to integrity labels.

The formation rules for environments and kinds are omitted for lack of space. The
formation rules for (labelled) types are also omitted. These rules check the obvious
well-formedness conditions, e.g., that in an encryption key PubKey(K), the argument
K denotes a policy name with an encryption policy name kind. These rules also check
label constraints that are placed on public and private key types by the kinds of the
corresponding key names.

The syntax of values, expressions and processes is provided in Fig. 3. The type
system for expressions in general uses judgements of the form

TE;VE;EE � e ∈P [T]L1,L2

to check that the expression (code) e is well-formed with annotated type [T]L1,L2 (se-
crecy label L1 and integrity label L2), under the assumption that it will be evaluated
(executed) under the authority of the principal P, in the corresponding type, value and
constraint environments TE, VE and EE, respectively.

Aliasing of type fields in objects, reflected by type sharing constraints in object
interfaces, is a fundamentally important part of our mechanism for sharing keys, since
policy names are locally opaque in objects. Consider for example:

PubKey〈K = �〉 x; // k is local opaque key name
PubKey〈K = x.K〉 x; // by (Val Obj Self)
PubKey〈K = x.K〉 y = x;
pubkey〈x.K〉 z = e ? x.publicKey : y.publicKey;

Allowing either x or y to be assigned to z is allowed because of the type sharing con-
straint in the types of z and y.

Because of this treatment of type sharing, parameterized types are handled differ-
ently from GJ [4]. Whereas the latter allows class extensions of the form:

class C1〈t〉 extends C2〈T〉 {. . .},
we restrict the forms of such extensions to

class C1〈t2, t1 : A2,A1〉 extends C2〈t2 = t2〉 {. . .}.
In other words, the extending class can only add type parameters to the extended class,
and the first t2 type parameters are aliases for the type parameters to the extended class.
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This is necessary because of our treatment of type equality, and particularly the (VAL
OBJ SELF) rule for allowing an object to refer to its own identity in the definition of
its type exports. To see why the restriction on class extensions is necessary, consider
the following example:

class C1〈t1 : Type,t2 : Type〉 extends C2〈t1 = t2, t2 = t1〉 {. . .}
C1〈t1 = T1,t2 = T2〉 x;
C1〈t1 = x.t1,t2 = x.t2〉 x; // by (Val Obj Self)
C2〈t1 = x.t2,t2 = x.t1〉 x; // by (Val Subsumption)
C2〈t1 = x.t1,t2 = x.t2〉 x; // by (Val Obj Self)

From this it is necessary to conclude that x.t1 = x.t2 and x.t2 = x.t1, which in general
will not be true.

The type rules for expressions are provided in Fig. 4. In the (VAL ACCESS) and
(VAL INVOKE) rules for field access and method invocation, respectively, the defini-
tions of the type parameters t are relativized to the object itself (x.t if the object is
referenced through the variable x, for example). This gives the field or method the
most general type possible, with other equivalent types derivable using type equality
and the type definitions t = T exported in the object interface.

The (VAL ACCESS), (VAL INVOKE) and (VAL KEY ASSERT) rules all involve
accessing a value, so any result from the ensuing computation carries with it the re-
strictions on the label for the value. This is the point of the merge that is done on the
labelled type of the result, incorporating the restrictions from the value’s labels into
the result.

The (VAL OBJ SELF) rule allows any object’s type to be redefined to relativize the
identity of its type fields, some of which may be opaque, to the reference to the object
itself. For example the t field of an object referenced by variable x can be relativized
to have the definition x.t, reflecting the identity of the type that is relative to x.

The (VAL SUBSUMPTION) rule in Fig. 4 allows any value to have its type to be
subsumed to some other type. This includes strengthening the secrecy restrictions and
weakening the integrity restrictions in the outermost labels, as well as various forms of
type equality and subtyping. There are two sources of type equality hypotheses. One
is equations in the constraint environment EE, added by keyassert. The other source
of type equality hypotheses is in type definitions exported in object interfaces.

4 Conclusions

The motivation for this work has been the need for proper programming abstractions
for developing applications that must manage some or all of the task of securing their
communication in a network environment. Abadi [1] considers a type system for en-
suring that secrecy is preserved in security protocols implemented in that type system.
Gordon and Jeffrey [11, 12] have developed a type-based approach to verifying au-
thentication protocols. Abadi and Blanchet [2, 3] pursue an approach to analyzing
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security protocols, initially for secrecy properties but later generalizing it to integrity
properties. All of these works are focused on verifying secrecy and integrity properties
of security protocols. As such the type systems that they use are far more sophisticated
than the average programmer will use, while at the same time they give very strong
guarantees of secrecy and integrity. The focus of our work is not protocol verifica-
tion, but building accountable systems: engineering a system where accesses can be
logged, but doing it in such a way that the performance of the system is not killed by
the demands of credentials checking. So for example we make no attempt to cope with
replay attacks.

Other work on security in programming languages has focused on ensuring safety
properties of untrusted code [22, 21, 18] and preventing unwanted security flows in
programs [8, 19, 28, 24]. Sabelfeld and Myers [25] provide an excellent overview of
work in language-based information-flow security. Pottier and Conchon [24] have de-
veloped an interesting approach to encoding information flows in the lambda-calculus,
allowing non-interference to be checked in an operational manner, and Pottier [23] has
extended this to the pi-calculus. That approach can be applied to the object calculus
introduced in the current article. In the presence of declassification, it is a well-known
problem to define what safety guarantees are provided by information flow control
[25, 29].

We have not had space to consider declassification in this account, particularly the
notion of distributed declassification introduced by KDLM. It appears that the notion
of robust declassification can be adapted to the framework of KDLM; we intend to
report on this in a subsequent paper. A fuller report on Jeddak, including applications
and an implementation, are also a topic of ongoing research.

The current article borrows heavily from work on type systems for module lan-
guages [14, 13, 15, 16, 26, 9]. In effect objects in our object calculus are first-class
modules, with interface inclusion based on the inheritance hierarchy. However mod-
ule languages do not normally consider re-exposing a type field that has been made
opaque, as we do with keyassert. Also of course module languages do not normally
enforce access control and information flow control. The semantics of module lan-
guages are normally functional; our object-calculus based semantics appears to be
novel.
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e ∈ Expression ::= w,x,y,z Variable

| a,b,c,n
Name(Object

id,Key)

| newKey〈k : A〉(a+ : LT1,a− : LT2){e} New policy

name

| new [C〈t = T〉]L1,L2(e) Create object

| v.x
Variable

access

| v.x(e)
Method

invocation

| (LT x = e1; e2) Local variable

| upcastL1,L2
e

Upcast on

labels

| (keyassert e1 == e2 in e; else e′)
Assert key

equality

| v Value

v ∈ Value ::= x | 〈〈−59〈a〉〉−59〉L1,L2
P,()

K ∈ Constructor ::= C(LT2 x2,LT1 x1){super(x2); this.x1 = x1;}
M ∈ Method ::= LT f (LT x){return e;}

Cl ∈ Class ::= class C〈t2, t1 : A2,A1〉 extends C2〈t2 = t2〉 {LT x; M K}

Figure 3: Syntax of Expressions and Classes

Figure 4: Formation Rules for Expressions
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abadi@cs.ucsc.edu

Passwords and other weak secrets sometimes serve as cryptographic keys in secu-
rity protocols and elsewhere (e.g., [3, 9, 10, 12]). The use of weak secrets is particularly
delicate because of the possibility of off-line guessing attacks. (In such an attack, data
that depends on a weak secret may help in checking many guesses of the value of the
weak secret.)

Addressing this difficulty, much recent research explores the design and analysis
of systems that rely on weak secrets. Some of the methods developed are based on
computational approaches to cryptography where the attacks are characterized in terms
of their run-time complexity and probability of success (e.g., [2, 7]). Other methods are
symbolic; they include abstract, formal accounts of off-line attacks and often benefit
from tool support (e.g., [4–6, 8, 11]). This talk will report on some recent progress in
this direction.

In parallel, another line of recent research aims to establish relations between com-
putational and symbolic views of cryptography (e.g., [1, 13]). Intuitively, the symbolic
approaches are typically based on the useful fiction that strong cryptographic keys are
essentially unguessable; as long as the keys are strong (and under some non-trivial hy-
potheses) this fiction can be justified on computational grounds. This talk will discuss
how to justify the symbolic treatment of weak secrets.

The talk is partly based on published work with Phil Rogaway and on current work
with Bruno Blanchet, Cédric Fournet, and Bogdan Warinschi.
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Preface to WOLFASI

The Workshop on Logical Foundations of an Adaptive Security Infrastructure was
intended to address basic logical questions (formalization, specification, verification)
deriving from futuristic scenarios such as the following:

A distributed computer system, for which information security is a high priority,
operates in a semi-autonomous mode. During a period of critical operation, the system
detects an intrusion attempt in some nodes, along with a power glitch at other nodes,
and a report about increase in a certain type of threat. This information is collected,
analyzed, and various responses are executed: dealing with the perceived intrusion,
rerouting network traffic around suspect nodes, adjusting the power allocation, adjust-
ing the cryptographic strength of certain message authentication functions, etc. This
set of executed responses was chosen to best achieve the desired result, within the
confines of the security policy, as currently re-evaluated, at the appropriate time.

It was felt that the field of adaptive security is sufficiently well defined, important,
and of current interest to warrant a special session of its own in the framework of FCS.

I want to thank Philip Scott (LICS Workshops Chair) and Mika Hirvensalo (ICALP
Workshops Chair) for their help. I especially want to thank Andrei Sabelfeld (FCS
Workshop Chair) for his very generous and gracious assistance. Finally, I want to thank
the members of the WOLFASI Program Committee, listed below, for their interest and
hard work.

Leo Marcus
WOLFASI Program Chair

249



WOLFASI Program Committee

John Baldwin, Chicago
Elisa Bertino, Milan
David Chess, IBM
Grit Denker, SRI
David Evans, Virginia
Wei Fan, IBM
Elena Ferrari, Insubria
Christopher Geib, Honeywell
Joe Halpern, Cornell
Sushil Jajodia, George Mason
Alan Jeffrey, De Paul
Angelos Keromytis, Columbia
Wenke Lee, Georgia Tech
Janos Makowsky, Technion
Tal Malkin, Columbia
Fabio Massacci, Trento

John McLean, NRL
Stephan Merz, INRIA Lorraine
Jonathan Millen, SRI
Carlo Montangero, Pisa
Alan Mycroft, Cambridge
Dusko Pavlovic, Kestrel
Paolo Perlasca, Milan
S. Raj Rajagopalan, Telecordia
Peter Reiher, UCLA
Michel de Rougemont, LRI
Vitaly Shmatikov, SRI
Alexander Shnitko, Novosibirsk
Luca Viganò, ETH
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Introduction to Logical Foundations of an Adaptive
Security Infrastructure�

Leo Marcus
The Aerospace Corporation

Los Angeles
marcus@aero.org

Abstract

We give an introduction to questions relating to the logical underpinnings of
an adaptive security infrastructure.

1 Introduction

The goals of this paper are to introduce the Adaptive Security Infrastructure concept,
discuss issues of assurance and logical formalization, and state some tentative defini-
tions and theorems.

The term “adaptive security” is intended to indicate that security policies and
mechanisms can change in some automated or semi-automated fashion in response
to events. Of course, adaptation is a matter of degree; all security architectures and
devices are adaptive to some degree.

The need (or “use”; of course, as in many such technological “advances”, some-
times it is a case of “invention is the mother of necessity” instead of the other way
round) for (more adaptive) adaptive security stems from two considerations: short
term and long term:

1. standard “static” security architectures do not cope well with rapidly changing
security environments, including physical parameters, threats, attacks, policies,
and mission goals.

2. At the other end of the spectrum, systems designed for extended many-decade
life cannot predict and handle all future threats and attacks by ab initio built-in
non-flexible mechanisms.

�This paper is intended as an introduction to WOLFASI, the Workshop on Logical Foundations of an
Adaptive Security Infrastructure, held in conjunction with FCS’04, LICS’04, and ICALP’04, July 12-13,
2004, in Turku, Finland. As such, it is hereby declared to be exempt from some traditional requirements
of professional papers, for example, to present actual results.
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Appropriate adaptive architectures and mechanisms should be chosen according to
which aspects of the short-term or long-term need are being addressed.

The term “infrastructure” was added on to “adaptive security”, obtaining Adaptive
Security Infrastructure (ASI), in order to indicate the approach that sees adaptive secu-
rity as an integral, fundamental, functional component underlying any system, rather
than an ill- (or nil-) structured collection of security devices.

While this need is become increasingly recognized – one could even say that over
the last few years there has been a paradigm shift toward adaptivity – systems are still
being specified, designed, and built without a good method for architecting system-
wide adaptive security mechanisms.

Much work is currently being focused on detailed aspects of the related fields of
intrusion detection, sensor networks, architectures, and security policies. Much less
work is devoted towards putting together those pieces1. In particular, there does not
appear to be a currently accepted good method for gaining confidence that the mech-
anisms to be employed will work together to deliver what, and only what, is needed.
The hard part is “only” to decide what is wrong (security-wise) with the current state
of affairs, what to do about it, and how to do that, with the resources available. Without
a system-wide perspective, mechanisms can interfere with each other, be counterpro-
ductive, and create new vulnerabilities. Indeed, without the assurance that comes from
rigorous specification leading to an enhanced likelihood of real verification, the cure
may be worse than the disease.

Perhaps reflecting the author’s personal bias, the first step toward true assurance
requires some formalization of an ASI that could, eventually lead to the verification
that proposed adaptive security mechanisms will perform as hoped (specified).

Enough about the need for adaptive security and formalization. In any case, we
hope to show that there are some interesting logical questions relating to ASIs that
have not really been addressed until now2. It is a hope of this workshop to help remedy
that.

2 Components of an ASI

In order to be able to satisfy the stated goals, i.e., to coordinate detection of security-
relevant input, security policy, user input, analysis, and then be able to formulate and
execute a response, if needed, a natural approach is to isolate the three conceptual
components of sensor, analysis, and response.

Taking this approach to the extreme, one can imagine a system which is constantly
monitoring, analyzing, and responding, in order to maintain security invariants or to

1Over the past few years I have accumulated approximately 600 research papers on relevant topics.
The bibliography section lists some of them.

2There are certainly connections with the related fields of “collaborative enterprises”, “self-healing
systems”, “auto-adaptive systems”, “reconfigurable systems,” and the like.
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evolve the system to satisfy new security properties, taking into account current se-
curity policy, severity of environmental effects, temporal and geographic aspects of
attacks and responses3.

The skeptical reader may be wondering how we can hope to prove anything about
such a complicated system, when we can barely prove the most rudimentary security
properties of the most rudimentary devices and mechanisms4? The answer is hier-
archy! In other words, assuming the building blocks (protocols, algorithms, devices,
interfaces) work as advertised, how do they function together? What properties need to
be defined in order to even formulate theorems? What properties must components and
interfaces have in order that their cooperative effect satisfies some desired property?

3 Formalization: Principles and Issues

What kind of “formalization” are we interested in? Some vague basic principles:

1. Use a mathematical logical framework

2. Abstract from realistic scenarios

3. Don’t be concerned with usability or current technology (of course, at a deeper
level, we recognize that current technology has an undeniable, if unmeasurable,
influence on our imagination)

4. Long term goal should be a common, uniform, inter-interpretable semantics to
allow rigorous specifications and verifications of architectures, properties, and
capabilities that can connect policy, detection, analysis, and response.

The basic assumption:

• ASI exists in a temporal and spatial world. If we accept the temporal and dis-
tributed nature of the whole system in its full generality we get arbitrary archi-
tectural structures (patterns of connectivity, e.g. generalized networks) existing
within the system and the ASI, and these structures may be dynamically chang-
ing. Any aspect of policy, specification, detection, analysis, or response can be
considered in a version relativized to any definable structure. We call this the
Pervasive Hierarchy Assumption (PHA).

The following research issues may appear to be rather grandiose in scope. Of
course, they are, but part of the fun is to break them up into smaller bite-size, or at
least meal-size, chunks.

3It is tempting at this point to jump straight to modeling biological defenses, immune systems, etc.
But we prefer a more logical framework.

4If the skeptical reader would really say that, he or she is obviously not aware of some very good “his-
torical” work in proving security properties of “evaluated products,” or more recently security properties
of protocols. Nevertheless, the point that we are far away from proving properties of an ASI is correct.
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1. What are the appropriate semantics of a dynamic, adaptive security policy, and
how should that be specified?

2. How should we take into account the global-local nature of all components of
an ASI according to the PHA?

3. How should we specify the ”security-relevant resources” available so that at any
time the analyzer can choose an appropriate response?

4. How do we specify the capabilities of responses (including trade-offs?)

5. How should we unify the temporal-spatial reasoning aspects?

6. What are the decidability or complexity issues in such a system?

7. What is the role of ”approximate security”?

3.1 Research Issues: Spatial

1. Specification of hierarchical architectures

2. Central (local) and distributed (global) detection, analysis, and response coordi-
nation

3. Smooth transition between hierarchies

4. Testability of policy satisfaction

5. Enforceability of response

3.2 Research Issues: Temporal

1. Duration of response

2. Synchronization

3. Relative speeds of changing environment, detection, analysis, communication,
response

4. Incorporation of time in policy

5. Acknowledgments, success reports
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4 Adaptive Security Policy

The goal for specifying adaptive security is twofold: to provide an umbrella guide for
deciding if future events, actions, or responses are to be permitted under current policy;
and to allow new security goals to be stated, in order to initiate system responses to
enforce that policy, if necessary.

For example, we want to be able to reason about policy change within the context
of larger policy or policy hierarchy5. We want to be able to test, prove, and implement
security policies. We also want to be able to analyze combinations of security policies,
for example, if the union of two security contains a contradiction.

We have used the term “security policy” without definition until now, which is
dangerous since it might mean a lot of different things to different people, or to the
same person at different times (as in the case of the author.) But what we mean here
and now can be stated intuitively as follows:

• a security policy is (a specification of) what is allowed.

More precisely, in purely semantic terms, a security policy is a set of computer
systems, namely those computer systems that satisfy that policy. Thus, if a com-
puter system is identified with a set of computation sequences (the set of its permitted
computation sequences), then a security policy is a family of sets of computation se-
quences. It is hard to get more general than that6. The general definition can be
refined a bit by defining a primitive security policy to be a set of computations (so ,
e.g. “non-interference” or “non-deducibility” are not primitive), and an enforceable
security policy to be a primitive policy that can be monitored.

Exactly which of these security policies are “static” and which are adaptive (or
dynamic, if you prefer), is not a question with an objective answer.

However, as an example of a simple adaptive policy consider the following:

• System initially satisfies policy P1

• At the first occurrence of condition C, system switches to policy P2.

So this immediately raises the issue: what does satisfying a policy P in an interval
(from one time/event t1 to another time/event t2) mean?

Answer?: non-contradicting the policy, i.e., that there is some continuation of the
computation, or in the case of non-primitive policies, some enlargement of the set of
computations (within some larger context of admissible computations), that explicitly
satisfies the policy.

5As a simple example, a structured policy hierarchy can specify the system policy with regard to the
security/performance tradeoff. At certain times confidentiality may be more important, and at others,
availability.

6This generality appears to dilute totally the use of the word “security” in ASI. Security is certainly
the motivation, and source of examples, but there may not be a technical (logical) reason to limit these
considerations to the conventional security concerns of confidentiality, integrity, availability, etc.
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If we represent the above situation by 〈P1;C → P2〉 then we can easily generalize
the notation to, for example:

1. 〈P ;C1 → P1, C2 → P2, . . . , Cn → Pn〉 Branching Policies

2. 〈P ;C1 → 〈P1;C2 → P2〉〉 Compound Policies

with the obvious intended meanings.

4.1 Incremental Policy

An incremental policy change is when we know what aspect we want to change, but
don’t know or don’t care about the rest of the policy as expressed in its complete
system-wide specification. For example, changing one user’s access rights could/
should be expressible as an increment affecting only that user. This raises the question
of dependencies among policies that may appear to be local: perhaps the change to one
user’s access rights, via some admissible interaction with other users, changes those
other users’ rights as well.

An increment can be a “weakening” (allowing more computations) represented by
set union of the previous policy with the new policy, or a “strengthening” (allowing
fewer computations) represented by set intersection of the previous policy with the
new policy.

A policy increment can be indicated by: 〈P ;C → (+P1 − P2)〉, where P1, P2

are themselves policies, meaning: strengthen by P1 and then weaken by P2. Such an
increment could be complex combination of strengthenings and weakenings.

4.2 Local Policy

Let H be a hierarchy description, A an ASI specification (as opposed to an individual
instantiation), and P a policy.

Intuitively, we want

• P is local with respect to H in A

to mean something like

• the satisfaction of P in A is dependent only on the satisfaction of some (perhaps
other, “test”) policy in all subsystems satisfying H.

In certain situations we may want to define locality differently, by playing with the
quantifiers and saying

1. “For all instantiations of A there is a test policy for P such that ...” or

2. “There is a test policy for P such that for all instantiations of A ...” or

3. “... in some subsystems satisfying H”
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5 Specification, Derivation, and Verification of Response

One of the more challenging questions is how to specify and reason about responses,
their relation to resources, and their capabilities. As examples, in current 2004 tech-
nology, some kinds of (defensive) responses that would be appropriate for certain
security-relevant tasks include, in random order:

1. allocate resources (e.g. power; turning devices on or off)

2. adjust routing (including or excluding nodes)

3. change access rights

4. change crypto algorithms, keys, protocols

5. change sensor networks

6. change auditing

7. change strength of authentication

8. adjust intrusion detection system settings (altering the false positive/negative
ratio)

9. install patches

10. destroy data or devices

11. install new hardware or software

In the general formal context of an ASI we can define a “response” to be simply a
distributed program/algorithm running concurrently with the ongoing ASI and system
operation. Of course, intuitively, common responses have more specific properties,
like changing the state and terminating.

In order to incorporate responses into a formal framework, we need to

1. Specify and evaluate responsive resources

• including communication channels, if needed

• and including current (and projected) strength and location

2. Coordinate response with analysis

3. Plan appropriate action in time and space; consider temporary and local “fixes”
while long-term global solution-response is being worked on
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6 Detection and Analysis

The detection and analysis components are very closely related.
Typical detection data and mechanisms currently employed include:

1. intrusion detection methods of various kinds (e.g. signature and anomaly)

2. network statistics

3. system usage statistics

4. insider threat statistics

5. electronic background data

Who knows what other kinds of environmental information may be useful in the
future? In coordinating this information lessons from the field of sensor networks
are very relevant here. Obviously, the possible connection between the nature of data
collected, the nature of the policy implemented, and the nature of the analysis engine,
and how these connections themselves can be made adaptive, is a wide open question.

7 Other Topics

Other issues that could easily be relevant to the formalization of an ASI are

1. Approximate security, that is:

• How to specify achievable security goals

• Allow statistical properties in security policies

2. Game-theoretic view, that is:

• Consider adaptive security to be a game between the environment and the
ASI

• The goal is to (assume minimal restriction on the environment and) design
the ASI so the adversary (environment) does not have a winning strategy

8 Future Theorem

A typical theorem to be proved in some distant future verification of an ASI could look
like:

Theorem:

1. For any system S implementing the specification S
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2. for any ASI A implementing the specification A

3. for any adaptive security policy P of type P

4. for any environment E satisfying conditions E:

S + A satisfies P in E.

The ASI architect’s problem: Given E, P, and S, find A, as above. As E gets
more “realistic”, P has to get weaker in order for there to be any hope of finding an
appropriate A. This weakening can be in the temporal axis (allow for longer “lapse”
of security) or the approximation axis (allow for less rigorous security conditions.)
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Abstract

In recent years emphasis in providing formal information security has moved
from tasks oriented towards construction of “ideal” security model to tasks ori-
ented towards integral solutions of special security problems of complex infor-
mation systems. One of the axioms for this approach became the statement that
“uncertainty (and insecurity) exists, cannot be eliminated and must be mitigated”
in such kinds of systems. One of the possible ways to settle this matter is by using
the concept of adaptation applied appropriately. This paper is intended to high-
light general problems and methods of their solutions concerning the adaptive
security concept in complex information systems.

Keywords: complex information system, adaptive security, security modeling

“Water shapes its course according to the nature of
the ground over which it flows; the soldier works out
his victory in relation to the foe whom he is facing“

Sun Tzu. “On the art of war”

1 Introduction

A wide range of modern information systems works in open dynamic environments
which impede usage of traditional formal modeling (e.g. HRU, Bell-LaPadulla mod-
els) to reason about their security properties. However an approach to separate solu-
tions of specific security problems (e.g. virus detection, intrusion detection, certificate
management, etc.) is also shown to be inconsistent in providing adequate protection
over time [6, 25].

One of the possible approaches to the problem of providing integral security in
such information systems is to develop a common framework based on continuous
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adaptation and evolution depending on changing external and internal conditions. De-
spite a number of research projects being initiated in recent years to address related
problems, there is still no consistent approach to the subject.

This paper is intended to outline a possible vision on the place of adaptation in the
broad field of information security, to propose a formalization of such concepts, and
to discuss some important issues related to the subject. The concepts provided in this
work are results of formal research rather than practical modeling experience.

As related to the subject defined in the WOLFASI call [26] the main goal of the
paper presented is to discuss general issues connected to the formal definition of Adap-
tive Security Infrastructure (ASI). Also it partially addresses topics from the WOL-
FASI call such as composite and hierarchical nature of components of ASI, temporal
reasoning about its dynamic behavior, and complexity issues of such systems.

The paper is organized in the following matter. Section 2 briefly outlines common
practical and theoretical issues of providing integral security in complex information
systems which contribute to the adaptive security conception. Section 3 discusses gen-
eral aspects of modeling of adaptive security systems with some motivating samples
included to illustrate its correspondence with specific security problems. In Section 4
we highlight some important issues connected with implementation of such models in
practice.

2 Technical problems of providing integral security

In practice it is unlikely to reach certain level of protection of complex information
systems using only local solutions. Modern information security standards [13, 14]
explicitly address this issue requiring integral set of methods to be applied in real-
world security systems (integral security approach). For example as stated in [14] this
must include administrative, procedural and technical means. And in [13] there are in
particular such obligatory requirements for secure information systems as self-testing,
fault-tolerance and active audit.

In order to illustrate current demand for the adaptive approaches to the information
security, it is required to identify general security problems in modern complex infor-
mation systems. This section is devoted to the description of such problems, primarily
connected with technical issues both in theory and practice. Although the list of issues
highlighted is not claimed to be thorough, it allows us to make some conclusions about
some general tasks for which the adaptive security concept is proposed.

2.1 Practical issues

Dynamical nature of specific security threats There are a lot of open questions
in the field of information security (e.g. formal verification, computational aspects
and others); yet, they differ significantly in priorities when considering real world
implementations.
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Though there are a lot of threats to the information security, still for the last decade
on the top of the list of practical problems remains protection from computer viruses
and hacker attacks [24, 28]. The typical solution to these problems is as follows: to
acquire specialized hardware and software tools for prevention of viruses and hacker
threats, and then begin the process of continuous update and upgrade of these systems.
Unfortunately this approach implies the explicit presence of unavoidable side effects
in its behavior and the lack of formalized and proved conclusions about efficiency and
security of such systems (mostly because of uncertainty in internal and external con-
dition, including appearing of new kinds of viruses and attacks, unpredictable system
loading, etc.).

Another source of information security threats is internal infrastructure. Though
there are a lot of achievements both in practical implementation of formally secure and
reliable information systems, the dynamic and open architectures are still significantly
vulnerable to malicious users, configuration mistakes, etc.

Obstacles, problems and demands Today there is a lot of work in progress in re-
search and development of intellectual or automatic security tools and solutions in-
tended to address problems stated above [1, 8-10, 15, 25]. However their real-world
implementations still have no wide-spread usage, and most importantly there is no
generally recognized vision on the subject of providing dynamic security in complex
information systems across researchers and implementers.

Therefore it is very topical to develop common foundations for such issues, and
one of the possible approaches there is an assumption for future complex secure infor-
mation systems to be based on some meta-model or formal infrastructure intended to
link and coordinate all the dynamic components within the unified environment with
common set of goals and restrictions.

However, today there are many obstacles to the practical implementations of this
approach in real-world systems. Some of such obstacles which contribute significantly
to the adaptive security conception are listed below:

- Explicit complication of the overall information infrastructure which is already
very complex in installation and maintenance;

- Typical priority of tactical tasks in the field of information security as compared
with strategical tasks, absence of common goals for overall information security;

- Insufficient knowledge about possibilities and limitations of available security
tools and methods, disregard to synergetic aspects of the subject;

- Incomplete or inadequate information about threats and their reasons and in par-
ticular about real goals, methods and tools used by trespassers.

These obstacles in turn lead to the following typical problems:
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- Inefficient and inadequate usage of available security methods and tools;

- Scattering of resources when trying to solve a lot of special security problems at
the same time;

- Practically guarantied vulnerability of security system with explicit aftereffect.

Listed issues require efficient solutions intended to keep and evolve current achieve-
ments of the real-world information security which results in high demand for the
adaptive security tools and methods.

2.2 Theoretical issues

Related work In recent years a body of research was initiated intended to develop
solutions for the problem of providing dynamic security in complex information sys-
tems (e.g. [4, 15, 25]). One of the important questions in this field is the development
and analysis of adaptive functions for the wide range of information security tasks.
Therefore, the problem of formal modeling and correct implementation of such adap-
tive systems arises.

First of all, this task is explicitly cross-disciplinary in nature which leads to the
following complications: (1) a coordination of heterogeneous fields of knowledge (i.e.
definitions, axioms, assumptions, methods, etc.) is required, (2) implicit dependences
on the achievements of the “base” theories is present. Secondly, the rapid development
of the subject impedes the activities oriented towards the common systematization of
the basic information security theoretical matters (e.g. definition of atomic information
security element, security level, etc.).

Though a lot of work has been done in related directions a solid foundation for
further research and development in the field of adaptive security is still required.
Currently, several possible frameworks and models are being proposed for this purpose
(e.g. [18, 22, 26]).

Our approach The approach to the formal task of providing adaptive information
security described in this work implies usage of Control Theory and Dynamical Sys-
tems Theory notions for the description of specific security functions (e.g. control
object and subject, feedback, iterative adaptive algorithms, etc.). It is neither an al-
ternative access control model, nor agent-based model, but rather a general formaliza-
tion of the miscellaneous adaptive security processes in complex information systems
(e.g. adaptive encryption, adaptive intrusion detection, adaptive self-testing and self-
configuration, etc.).
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3 Adaptive security modeling

3.1 Framework for adaptive security

This work is based on the ideas similar to those described in [2, 18, 27]. It uses notion
“framework” as a set of common definitions and assumptions about adaptive security
modeling. Concepts and definitions used for formalization follow the works related to
Control Theory such as [7, 19].

3.1.1 Background and definitions

Common adaptive model Complex Information System (CIS) is defined as a set of
intercommunicating objects with following properties:

- Every object performs some type of information processing;

- Comprehensive mathematical model of the whole information system in un-
known;

- Internal and external influences on the objects cannot be fully determinated.

CIS objects are characterized by a set of control parameters and by their internal
states.

According to [18, 22, 26] a common model of adaptive security is defined as fol-
lows (Figure 1): CIS include Control Objects (CO) and Control Device (CD, oper-
ating as controlling object) which consists of Detector Device (DD, collecting data
from Control Object and environment), Analyzer Device (AD, processing general CIS
requirements and data from Detector Device) and Responder Device (RD, providing
resulting control action).

Figure 1: General model of adaptive CIS
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In the general case the adaptive security model could include hierarchy of Control
Devices and Control Objects with structured set of goals and restrictions. This means
that specific CIS treated as adaptive model could appear as a Control Object itself at a
higher level of decomposition.

Control Object in context of information security For the means of adaptive secu-
rity framework we consider following decomposition of basic tools and methods used
in information security technical processes (Figure 2):

- Requirements to CIS security – goals, rules, and restrictions which specify over-
all security limitations and originate from outside the system;

- Theoretical methods of providing information security in CIS – formal security
models, cryptography, security protocols, etc. which operate with abstract defi-
nition of information;

- Practical tools of providing information security in CIS – firewalls, anti-virus
systems, proxy servers, etc. which operate with practical definition of informa-
tion.

Figure 2: Control object for adaptive security model

Concerning this decomposition practical security tools are considered as Control
Object in adaptive security model with control parameters defined respectively.

However the majority of security threats are caused by application components of
CIS. Therefore in general case every individual CIS component should be considered
as security-related and dynamically assigned specific level of importance concerning
current security issues. Respectively any CIS component could be used in adaptive
security processes.
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Types of adaptive models Hence, adaptive security model could have large variety
of properties two distinct types could be singled out as follows.

Optimal adaptive security model: has global goals with formal definition as cal-
culated functions; full controllability; local self-organization is limited, global self-
organization is extended; the model of the system is already identified; adaptation
mostly preventive (stochastic, before environment influences); control is optimal.

Simplified adaptive security model: has only local goals expressed as constraints;
partial controllability; local self-organization is extended, global self-organization is
limited; the model of the system require continuous identification; adaptation mostly
compensatory (algorithmic, after environment influences); redundant control.

Due to the practical and theoretical obstacles discussed in Paragraph 2 for the
majority of present-day CIS only simplified model of adaptive security could be suffi-
ciently implemented. However the optimal adaptive model should be considered as a
desired state for further evolutions of such system.

Contribution to cyber-warfare models As stated in recently proposed cyber-warfare
models (e.g. [1, 5, 11, 12, 20, 23]) the general task of providing information security
for specific CIS implies the presence of defender and attacker. In the adaptive secu-
rity framework the attacker could be interpreted as other CIS, its elements or common
information environment as a whole. In order to contribute to the cyber-warfare mod-
els mentioned possible axiomatic premises about relations of the subjects in adaptive
security framework in first approach could include as follows:

- Attacker and defender have some conflicting goals;

- Attacker and defender are limited in resources used to reach their goals;

- Attacker and defender in general case have compound structure;

- Attacker and defender have external and internal priorities concerning their goals,
resources and structure;

- Attacker and defender have undetermined options in interactions.

3.2 Mathematical formalization of adaptive security

The process of adaptation is illustrated on Figure 1. According to [19] in general case a
task of adaptation is considered as a problem of optimal control of specified object F .
State S of the object and its influence on the environment Y depends on influences X
of the environment and set of adaptable factors U = (u1, u2, ..., ur) : Y = S(X,U).
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Goals Z of the adaptive control are defined by specific constraints on the state S of the
object. In the general case such constraints can be represented as follows:

S(X,U) ∈



H(U) = (h1(U), h2(U), ..., hp(U)) ≥ 0;
G(U) = (g1(U), g2(U), ..., gs(U)) = 0;
Q(U) = (q1(U), q2(U), ..., ql(U)) → min,

(∗)

where

hi(U) = Mx(h∗
i (Y )) = Mx(h∗

i (F (X,U))), i = 1, ..., p;
gj(U) = Mx(g∗j (Y )) = Mx(g∗j (F (X,U))), j = 1, ..., s;
qk(U) = Mx(q∗k(Y )) = Mx(q∗k(F (X,U))), k = 1, ..., l;

and Mx(·) =
∫

(·)p(X)dX– function for average-out by X, where p(X) – frequency
distribution of the states X of the environment.

The goal of adaptation is the solution of the problem (∗), and since from the com-
plex systems perspective, there is not adequate information on the mathematical model
of the object F and frequency distribution p(X) of the states of the environment,
it is necessary to develop and apply special adaptive algorithms. Such algorithms
would be intended to solve the problem (∗) observing only values of the functions
h∗

i (·), g∗j (·), q∗k(·) (i = 1, ..., p; j = 1, ..., s; k = 1, ..., l) at the specific moments of
time.

UN+1 = ϕ(−−−→UN,W ,
−−−−→
H∗

N,W ,
−−−−→
G∗

N,W ,
−−−→
Q∗

N,W ),

where ϕ – recurrent algorithm of the adaptation, W – size of memory of the algorithm,
and

−−−→
UN,W ,

−−−→
H∗

N,W ,
−−−→
G∗

N,W ,
−−−→
Q∗

N,W – adoptable parameters vector and vectors of the
values of the criterion function measured from N − W till Nmoments of time. Such
algorithms could be developed both for discrete and continuous time.

An approach for more precise definition of the adaptation problem in the context
of the information security using notion of security modes proposed as follows.

Let M1,M2, ...,Mk be alternative security modes specifying security parameters
for class Ω = {Tj} of the information tasks in CIS. Any mode Mi characterized by
vector of security-related control parameters: Mi = Mi(�U ). Let also q = q(T,M)
be a criterion function intended for the estimation of specific characteristics (e.g. ef-
ficiency, adequacy) of distinct security modes applied for specified information tasks
Tj ∈ Ω : qi,j = q(Tj ,Mi).

The necessity of usage of adaptation arises when the specified criterion function
can be calculated only a posteriori. Correspondingly the goal is to select an efficient
security mode minimizing following integral criteria for the current flow of the infor-
mation tasks using only observations of its values:

Q(M) =
∫

q(T,M)p(T )dT
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Graphical interpretation of adaptive security processes
Let Z∗ be admitted region of adaptable factors, Z– admitted region of system

states, U – current value of adaptable factors, ϕ(U) – adaptable function, X– current
environment influence and S(X,U) – current state of the system. In this notion com-
mon graphical interpretation of allowable adaptive security processes is illustrated on
Figure 3 and Figure 4.

Figure 3: Process of adaptation in the adoptable factors space

Figure 4: Process of adaptation in the system states space

3.3 Motivating samples of adaptive security modeling

The necessity of adaptation for specific information security functions has been recog-
nized for a variety of tasks. Furthermore miscellaneous solutions are being proposed
and implemented, e.g. for encryption adaptation in open architectures [21], for intru-
sion detection performance adaptation [16], for security policy adaptive transitions [3]
and others. However these solutions primarily address the adaptation problem in con-
nection to the specific security function, rather than considering it as a global property
of complex information systems.
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This paragraph includes two simplified examples intended to illustrate how the
general adaptive model proposed above could be used for specific tasks of information
security.

3.3.1 Adaptive self-scanning and searching vulnerabilities

Task description. CIS with high requirements on reliability should continuously per-
form self-scanning and searching vulnerabilities activities. However particular tests
could require considerable time and computational power, decreasing availability of
certain components of CIS and increasing risks of Denial of Service (DoS) attacks.
The task of adaptation is to select optimal sequence of tests and components to be
tested depending on specified priorities and current state of CIS.

General problems. (1) initial specification of test priorities and estimation of their
complexity; (2) development of adaptive algorithm of selection of optimal sequence
of tests at any period of time; (3) measurement of current components loading, com-
putation of criterion function.

Task formalization. Let CIS = {O1, O2, ..., On} be complex information system,
where Oi – individual components. Let T1, T2, ..., Tm be set of tests for self-scanning
and searching vulnerabilities, CP (Tj) – computational requirements of tests, P (Tj) –
specified priorities of tests, and Pcrit – critical value for the test priority. Let R(Oi) be
value for maximum computational power of specific component and W (Oi) – its cur-
rent computational load. In general case R(Oi) values should be periodically revised.
It is required to determine optimal sequence of tests in order to minimize decrease of
availability of CIS components.

The solution could be formulated as a task of searching the maximum of the fol-
lowing function:

ϕ(Oi, Tj) =

{
R(Oi)−W (Oi)−CP (Tj)

CP (Tj)
, when P (Tj) < Pcrit;

1, when P (Tj) ≥ Pcrit.

at any given time, since an optimal sequence of tests could not be predetermined be-
cause of unknown dynamic load of CIS components.

Considering the significant number of CIS components and the complexity of
W (Oi) computations, optimized adaptive algorithms could be used for the solution of
the problem (e.g. algorithms descibed in [7, 19]).

3.3.2 Adaptive security policies with intrusion detection

Task description. Components of CIS are controlled by several OS installed on dif-
ferent computers, the intrusion detection system is used on the security perimeter. In
the event of an intrusion attempt, the detection sequence of security states transitions
is developed depending on the current functional load and active security policy.
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General problems. (1) initial estimation for the security level of different security
policies (e.g. “basic”, “medium”, “strict”); (2) development of adaptive algorithm of
changing security states (e.g. selection of optimal security policy and effective time of
its usage).

Task formalization. Let CIS = {O1, O2, ..., On} be complex information system,
where Oi – individual components. Let P1, P2, ..., Pm be different security policies
and T – effective time of security policy usage. Let EV = {ev1, ev2, ..., evk} be secu-
rity events (e.g. “attack of type1”, “attack of type2”, “security policy expired”, etc.). It
is required to determine adequate state of the system S(ti) = SE(ev(ti), P (ti+1)) =
{P (ti), T (P (ti))} at any moment of time ti depending on security events and cur-
rently used security policy P (ti−1)

Considering adaptive nature of attacks on the CIS it is logical to apply adaptive
algorithm for the selection of the security policy and time of its efficient usage corre-
spondingly to current security situation. In particular case of simply ordered security
policies the first control parameter could be adapted as follows:

P (ti+1) =

{
Strengthen(P (ti)), when ev(ti) ∈ {”attack registered”}
Weaken(P (ti)), when ev(ti) ∈ {”time elapsed”}

where Strengthen(Pj) = Pj+1, Weaken(Pj) = Pj−1 – operators of the security
policy transitions.

The second control parameter could be adapted stochastically: T (P (ti)) = Tmin+
ξ · Tadd, where Tmin – minimum acceptable time of new security policy usage (e.g.
depending on the restricted response time of the system administrator, etc.), Tadd – de-
fined additional time of new security policy usage, ξ – uniformly distributed stochastic
variable.

Such approach could be developed with specific adaptive algorithm chosen for
particular tasks of prevention and decreasing risk of DoS attacks on CIS.

Though the samples described could be developed and used separately for the
specific information security tasks, the most common purpose of the adaptive security
model is to propose a common approach to the problem of adaptation of dynamic
information security functions in the CIS.

4 Adaptive security implementation

Though the work presented is primarily research-oriented, the adaptive security con-
cept itself is tightly linked with practice. This paragraph is intended to outline some
basic questions connected to the implementation issues of the adaptive functions in
information security systems which require further consideration. Additional infor-
mation on the topic and some approaches to the stated problems could be found in
related works (e.g. [3, 16, 21]).
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4.1 Practical functions of adaptive security

Though the general idea of adaptive security promises a lot of advantages there is still
a lack of reasonable implementations.

Concerning the model described the currently operating CIS could use the ele-
ments of adaptation to efficiently solve practical security tasks by implementing com-
mon adaptive infrastructure or by using specific methods and algorithms. Some possi-
ble purposes of adaptive security are listed below.

Functional tasks of adaptive security system:

- Internal audit and searching of potential vulnerabilities;

- Automatic maintenance and control for update and upgrade activities;

- Formal optimization of security functions;

- Preventive and reactive actions depending on the current state of system and
environment.

General tasks of adaptive security system:

- Identification of the CIS model;

- Optimization of control functions.

4.2 Complexity of adaptive security

As stated above in a majority of present-day CIS adaptive security model could be
implemented only in simplified version. The most common complications for the task
are as follows:

- Complexity of correct definition of goals and restrictions on the security of CIS
as a whole and/or its components;

- Problems of occasional or continuous identification of the object controlled (the
model of CIS as a whole and/or its components);

- Task of development of adaptation algorithms with small response time (in order
to provide adequate reaction on the external and internal influences).

These complications could be solved using following well-known approaches:

- Using initial redundancy in limitations on CIS and on security tools and meth-
ods used with following optimization of resource usage and information flows
(which helps to simplify common formalization of goals and requirements for
CIS, partially compensate lack of information about common model of CIS and
disregard about synergetic aspects of components interactions);
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- Processing only top-level analytical information, storing only selective histor-
ical data related to information security events (could be used for the task of
identification, to accelerate decision-making process and to lower complexity of
adaptive algorithms);

- Using stochastic and specially optimized adaptive algorithms designed for the
search of local extremum (could be used to reduce response time, to compen-
sate lack of information about common model of CIS, and also could emulate
preventive effect by using stochastic behavior which reduces risk of abuse of
adaptive system reactions by attacker).

Redundancy. The task of reliability control in CIS by using redundancy is well-
known and has been thoroughly explored. This approach show itself from the good
side in practical systems. Component duplicating, constraints of the kind “every-
thing is restricted by default” could be examined in a certain way and defined for
specific practical systems. However theoretical aspects about efficiency of such ap-
proach should be examined more precisely.

Analytical data. This task is more complicated and requires additional work in
reasoning about importance of components of CIS and their adaptable factors. It ap-
parently is not easily formalized in the general case, and requires significant theoretical
research. The complexity of this task depends on application area and falls into stage
of initial development of the adaptive model and stage of continuous improvement and
adjustment of the model.

Special adaptive algorithms. This task has been thoroughly explored in Control
Theory and number of efficient approaches to the problem had been developed. Sup-
posing correct implementation of those results the efforts on this stage of the devel-
opment of adaptive security model could be relatively small because of presence of
optimal stochastic and gradient methods (e.g. [7, 19]), which could be efficiently used
as the solution of the problem of local extremum search in the limited period of time.

4.3 Correctness of adaptive security

To solve the problem of adaptive security formal correctness verification in the specific
CIS it is required to assess adequacy and realizability of the models and methods listed
above.

One of the possible approaches to such assessment consists in statistical evaluating
of the properties of chosen adaptive algorithms, including study of their deviation from
specified goals of adaptation and their robustness.

This approach is being explored, but at the moment there is not enough informa-
tion to make general conclusion and to formulate theoretical results on the usage of
statistical methods in assessment of correctness of adaptive security systems.
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5 Conclusions

Though it is very attractive to develop all-sufficient, reliable adaptive model of com-
plex information security system, the practical and theoretical progress in this direc-
tion is still far from the desired goal. It also should be mentioned that adversaries are
unconstrained with “the rules” of local theories and often use unexplored and unfor-
malized power of human brain to reach their goals. Therefore today real security can
not be built solely on the theoretical results or special solutions – the general control
and management from the humans are still essential. Taking this into consideration the
research and development activities in the field of adaptive security modeling could be
basically regarded as an intention to create auxiliary but powerful tools for the creative
process of providing integral security in real complex information systems.

Formal aspects of such process mentioned in the work presented require a con-
tinuous feedback from practical information security experts in order to improve and
refine general approaches and models. Then, having basic conceptions defined, fur-
ther research in the field of adaptive security could be primarily oriented on formal
verification of such models and on issues connected to their efficient implementation.
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Abstract

One of the key requirements of an Adaptive Security Infrastructure (ASI) is
the ability of formally reasoning about the specified security policies. In this
paper, we contribute to this issue by focusing on one of the most relevant kind
of security policies, i.e., access control policies. Several access control frame-
works have been proposed so far in the literature, based on different formalisms.
However, what has not yet so far extensively explored is the comparison of the
expressive power of such frameworks. We believe that this is a key issue since
such analysis can be the basis for choosing the framework that better fits the se-
curity needs of a given domain. This analysis is particular relevant for complex
and distributed environments, like the ones in which the ASI paradigm may be
usefully applied. The aim of this paper is thus to make a step in this direction by
comparing the expressive power of three well known frameworks with respect to
the set of access control models they are able to express.

Keywords: Access control framework, access control policies, access control model,
analysis, logic programming

1 Introduction

Adaptive Security Infrastructures provide functionalities to collect information about
the security environment, such as, for instance, security threats, and to analyze such
data for proposing and executing specific compensating actions. Clearly, executed
actions must agree with the security policies in place in the considered environment.
Therefore, a key requirement in such a dynamic system is that of providing a frame-
work for the representation, analysis, and usage of security policies. Security policies
can be of many different types according to the different aspects they regulate in an
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environment, and can be expressed by using different formalisms. Moreover, security
policies can also be dynamic in that they may change according to the actions and the
properties of the environment in which they are used. In this context, an important
issue is the ability of formally representing the semantics of such policies in order to
be able to formally answer specific questions regarding security. For instance, it is
important to formally state which actions are in accordance with the specified policy,
and which actions should be prevented because they violate the security policy. Ad-
ditionally, in distributed environments, like the ones in which ASIs may be usefully
applied, many advanced applications have articulated security requirements that can-
not be adequately supported by a single-policy mechanism. Thus, what is required is
a multi-policy system, that is, a system in which many different security policies can
coexist. Such systems are very flexible in that they give the Security Administrator
(SA) the possibility of selecting the policies the better fits the security requirements of
the considered domain.

In this paper, we mainly focus on one of the most important class of security poli-
cies, i.e., access control policies. Access control policies are enforced by an access
control mechanism, which is in charge of managing authorization rules and, based
on these rules, regulating accesses by subjects to the protected objects. Different ap-
proaches can be adopted to realize a multi-policy access control mechanism. A first
option is to use different access control models, each of which is able to represent
a single policy. However, this solution has the drawback that different models must
coexist within the same system and this can cause non trivial interoperability issues.
An alternative promising solution is to base the system on a general access control
framework allowing the specification and enforcement of different access control poli-
cies. Additionally, in such multi-policy scenarios, we believe that the availability of a
framework able to represent in a uniform way heterogeneous access control policies is
a useful instrument for the SA in performing security analysis, identifying strategies,
and producing compensating actions. In particular, such a framework can be useful
when a modification of the access control requirements determines an update of the
enforced access control policies or when we need to represent in a uniform way the
heterogeneity of the security policies and formalism used to express them. For in-
stance, in order to response to a crisis involving different countries, such as military
or humanitarian crisis, a fundamental key issue is the ability to collect and share in-
formation according to the different security policies enforced by each country. In this
respect it is important to coordinate the access to the available information so that the
different access control policies be not violated. Additionally, another relevant issue is
the ability to dynamically change in a more restrictive way the specific access control
policies.

Various general access control frameworks have been so far proposed [1, 6, 2].
Each framework provides a formalism, by which access control policies can be speci-
fied, and a semantics, by which authorizations can be computed. Different frameworks
are usually based on different formalisms and different computational semantics, thus
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supporting the representation of different sets of policies. An important point, which
has not been extensively explored so far, is the comparison of the expressive power of
the proposed frameworks. For database languages, the issue of expressive power has
been widely explored and has resulted in several formal results. Most of them have
been proposed in the context of deductive query languages and concern query contain-
ment and equivalence [7, 9]. On the other hand, no similar theory has been developed
for access control languages. The development of such a theory is very relevant since
it allows one to determine which is the most expressive framework and thus to select
the framework that could become the core component of any multi-policy access con-
trol system. The aim of this paper is thus to give a contribution in this direction by
comparing the expressive power of three well known frameworks.

The frameworks we consider for the analysis are the Jajodia et al. framework [6],
the NIST framework [2], and the Bertino et al. framework [1], also called LAMP
(LogicAl Multi-Policy) framework. We focus our comparison on these three frame-
works because they are the most comprehensive among the ones proposed so far and
have been shown to be able to model a variety of access control policies. The Jajodia
et al. [6] framework is based on a logical formalism and has been conceived to express
traditional discretionary and role-based access control models. It supports policy spec-
ification by means of stratified Datalog programs. Based on the operational semantics
for stratified programs, each program generates a single set of authorizations. The
NIST framework [2] is a general framework for modeling role-based access control
(RBAC) policies. RBAC has been proved to be policy neutral, being able to express
both discretionary and mandatory policies. Finally, the LAMP framework [1] is a logi-
cal framework designed with the aim of providing the representation of heterogeneous
policies, either discretionary, mandatory, or role-based. Each policy is represented by
means of a Datalog program with negation, and authorization bases are computed by
using the stable model semantics of logic programs [4]. In particular, in this paper we
formally prove than LAMP is more expressive than the other two frameworks.

The remainder of this paper is organized as follows. Sections 2, 3, and 4 briefly
present the frameworks [1, 6, 2] we are going to compare, whereas the comparison,
with respect to the expressive power is then proposed in Section 5. Finally, Section 6
presents some conclusions and outlines future work.

2 The LAMP (LogicAl MultiPolicy) framework

The LAMP framework [1] has been developed with the goal of being as general as pos-
sible. It is based on a set of primitive “building blocks” upon which all other necessary
concepts can be constructed: based on the access control model to be represented, only
the building blocks needed to represent the model are selected and composed together.
LAMP can express discretionary, mandatory, and role-based policies. It supports both
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positive and negative, direct and propagated authorizations,1 as well as the possibility
of expressing user-defined constraints over the set of access authorizations.

The framework supports the representation of four basic components - subjects,
objects, privileges, and sessions - and the representation of arbitrary authorization
rules. Additionally, the framework supports the specification of constraints on basic
components. Each basic component is characterized by a variable number of attributes
which model properties that are relevant in the specification of access control policies.

LAMP relies on a logical formalism, based on C-Datalog [5], an object-oriented
extension of Datalog. C-Datalog supports both classical object-oriented concepts, such
as classes, objects, inheritance, used to model basic components, as well as typical
logic-based concepts, such as deductive rules, used to represent authorization and con-
straint rules.

A key feature of LAMP is the distinction between the notion of Access Con-
trol Model Schema (ACMS for short) and Access Control Model Instance (ACMI for
short). Informally, an ACMS defines the structural components over which the model
is based, whereas an ACMI provides information concerning the component instances,
that is, the actual subjects, objects, privileges, sessions, and the authorization and con-
straint rules used to instantiate the model. The components supported by LAMP are
the following:
• Domain component (DC). Domain classes represent the structure of basic com-

ponents of the LAMP framework (subjects, objects, privileges, and sessions),
whereas domain instances, i.e., sets of facts, represent the actual subjects, ob-
jects, privileges, and sessions.

• Domain structure component (DSC). Domain structure information represents
relationships existing among the basic components.

• Authorization component (AC). Authorization component contains authorization
rules.

• Propagation component (PC). Propagation component consists of rules, called
propagation rules, by which additional authorizations can be derived, starting
from authorization rules and domain information.

• Constraint component (CC). The constraint component is composed of derived
relation rules able to express static and dynamic constraints on the basic com-
ponents.

LAMP provides a set of predicates for expressing authorization rules and con-
straints. Among them ErrorC is used to define constraint rules, Authd is used to define
direct authorizations, Authp is used to define propagated authorizations, and Auth to
refer indiscriminately to direct and propagated authorizations, when no distinctions are

1A positive authorization establishes that a subject is authorized to exercise a given privilege on a
given object, whereas a negative authorization establishes that a subject is denied to access a given object
under a given privilege. Direct authorizations represent authorizations explicitly specified by the Security
Administrator (SA), whereas propagated authorizations represent authorizations that are generated due
to the activation of propagation rules.
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needed.
An Access Control Model Instance is a C-Datalog Program constructed over an

ACMS, satisfying specific conditions. This program contains definitions (sets of facts
and rules) for all the components presented above. The following example presents an
ACMS and ACMI according to which an access control model is modeled into LAMP.

subject(self : subject, name : string) user(self : user)
role(self : role) object(self : object, name : string)
privilege(self : privilege, name : string) session(self : session,name : string)
Scheme∗1(user) = (self : user, name : string) Scheme∗1(role) = (self : role, name : string)
user(self : #1, name : Dan) object(self : #4, name : o1)
privilege(self : #7, name : R)
user(self : #2, name : Bob) object(self : #5, name : o2)
privilege(self : #8, name : X)
user(self : #3, name : Jill) object(self : #6, name : o3)
privilege(self : #9, name : W )
role(self : #10, name : r1) session(self : #13, name : sDan)
P lay(U : #1(Dan), R : #10(r1))
role(self : #11, name : r2) session(self : #14, name : sBob)
P lay(U : #2(Bob), R : #11(r2))
role(self : #12, name : r3) session(self : #15, name : sJill)
P lay(U : #3(Jill), R : #12(r3))
subject(self : #1, name : Dan) subject(self : #2, name : Bob)
subject(self : #3, name : Jill)
subject(self : #10, name : r1) subject(self : #11, name : r2)
subject(self : #12, name : r3)
LessR(R1 : #11(r2), R2 : #10(r1)) LessR(R1 : #12(r3), R2 : #10(r1))
ActiveRole(U : #1(Dan), S : #13(sDan), R : #10(r1))
ActiveRole(U : #2(Bob), S : #14(sBob), R : #11(r2))
ActiveRole(U : #3(Jill), S : #15(sJill), R : #12(r3))
Authd(O : #4(o1), S : #10(r1), P : #7(R), G : #SA, ε : +)
Authd(O : #4(o1), S : #10(r1), P : #9(W ), G : #SA, ε : +)
Authd(O : #5(o2), S : #11(r2), P : #7(R), G : #SA, ε : +)
Authd(O : #6(o3), S : #12(r3), P : #9(W ), G : #SA, ε : +)

1 : InLessR(R1 : X, R2 : Y )← LessR(R1 : X, R2 : Y )
2 : InLessR(R1 : X, R2 : Y )← LessR(R1 : X, R2 : Z), InLessR(R1 : Z, R2 : Y )
3 : UserP lay(U : X, R : Y )← P lay(U : X, R : Y )
4 : UserP lay(U : X, R : Y )← P lay(U : X, R : Z), InLessR(R1 : Y, R2 : Z)
5 : Authp(O : X1, S : X2, P : X3, G : X4, ε : +, O′ : X5, S′ : X6, P ′ : X7)← Authp(O : X1, S : X8,

P : X3, G : X4, ε : +, O′ : X5, S′ : X6, P ′ : X7), InLessR(R1 : X8, R2 : X2)
6 : Authp(O : X1, S : X2, P : X3, G : X4, ε : X5, O′ : X6, S′ : X7, P ′ : X8)← Authp(O : X1, S : X9,

P : X3, G : X4, ε : X5, O′ : X6, S′ : X7, P ′ : X8), UserP lay(U : X2, R : X9),
ActiveRole(U : X2, S : X10, R : X9)

7 : Authp(O : X1, S : X2, P : X3, G : X4, ε : X5, O′ : X1, S′ : X2, P ′ : X3)← Authd(O : X1, S : X2,
P : X3, G : X4, ε : X5)

8 : Auth(O : X1, S : X2, P : X3, G : X4, ε : X5)← Authp(O : X1, S : X2, P : X3, G : X4, ε : X5,
O′ : X6, S′ : X7, P ′ : X8)

Figure 1: Example of LAMP usage

Example 1 Suppose you want to model a role-based access control model into LAMP.
Assume to consider three users (Dan, Bob, and Jill), three objects (o1, o2, and o3),
three privileges (read (R), execute (X), and write (W )), three roles (r1, r2, and r3),
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and three sessions (sDan, sBob, and sJill), one for each user, such that: i) the role
hierarchy is captured by the following partial ordered relationships: r2 < r1 and
r3 < r1; ii) authorizations involving lower roles in hierarchy are propagated upwards
along the hierarchy; iii) r1, r2, and r3 are the roles that Dan, Bob, and Jill can
respectively play and have activated; in their own sessions; iv) role r1 is authorized
to exercise privileges R and W on o1; v) role r2 is authorized to exercise privilege R
on o2, whereas role r3 is authorized to exercise privilege W on o3.

Figure 1 presents the ACMI that models the scenario described above. The mean-
ing of the rules presented in Figure 1 is the following: i) the rules 1 and 2 capture
the direct and indirect relationships in the role hierarchy; ii) the rules 3 and 4 specify
the roles that a user is directly (rule 3) or indirectly (rule 4) authorized to play, due
to the role hierarchy; iii) rule 5 propagates an authorization for a given role to roles
that are at an upper level in the hierarchy, whereas rule 6 propagates authorizations
from each role to users that are authorized to play that role and have activated it; iv)
finally, the rules 7 and 8 are used to distinguish between direct and propagated au-
thorizations supported by LAMP framework: rule 7 allows authorizations that are not
derived through propagation to be used through propagation, whereas rule 8 allow one
to refer indiscriminately to the whole set of (direct and propagated) authorizations. �

An important issue in LAMP, as well as in other framework, concerns the man-
agement of conflicts arising because of the possible presence of both a negative and
a positive authorization for the same subject, object, and privilege. Conflicts require
suitable conflict resolution policies to determine whether an access should be autho-
rized or not. In this respect, LAMP provides a parametric conflict resolution policy
that, for each conflict, specifies how the conflict has to be solved, by choosing whether
the positive or the negative authorization should prevail. The exact conflict resolution
policy depends on the access control model being modeled. Moreover, since LAMP
does not impose any restriction on the type of negation that can be used, the semantics
which is used is an extension of classical stable model semantics supporting a paramet-
ric conflict resolution policy. According to such semantics, each ACMI is associated
with a set of (consistent) stable models, each representing a set of authorizations that
can be possibly assigned to subjects according to the specified rules. The proposed
semantics does not make any assumption on the set of authorizations to be selected,
that may depend on the access control model being represented and can be chosen by
the Security Administrator (SA).

3 Jajodia et al. framework

In the Jajodia et al. framework [6] access control models are represented by stratified
logic programs [8], constructed over a given logical language. This language supports
the specification of positive and negative authorizations, authorization propagation,
conflict resolution, and constraints on authorizations. Each logic program represents a
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Atom Meaning

cando(o,s,a) represents a potential positive or negative (depending on the sign of a ∈ SA) autho-
rization for subject s ∈ AS on object o ∈ AO explicitly inserted by the SA

dercando(o,s,a) represents derived potential positive or negative authorization a ∈ SA for subject
s ∈ AS on object o ∈ AO

do(o,s,a) represents allowed or denied accesses of type a ∈ A for subject s ∈ AS on object
o ∈ AO

done(o,u,r,a,n) represents an allowed access at time n ∈ N according to access mode a ∈ A for user
u ∈ U having a role r ∈ R active on object o ∈ O

overAO(o1, o2, s,a) needed in the definition of some of the overriding policies
overAS (s1, o, s2,a) needed in the definition of some of the overriding policies
error captures an error due to the violation of some integrity constraints

in(e1, e2, e3) represents indirect membership of elements belonging to either AOH or ASH:
e1, e2 ∈ AO ∪ AS, e3 = AOH or e3 = ASH

dirin(e1, e2, e3) represents direct membership of elements belonging to either AOH or ASH: if
e1, e2 ∈ AO, e3 = AOH , if e1, e2 ∈ AS, e3 = ASH

isuser(s) returns true if s ∈ AS is a user
isgroup(s) returns true if s ∈ AS is a group
isrole(s) returns true if s ∈ AS is a role
owner(o,u) represents the ownership of an object o ∈ O ∪ T by a user u ∈ U

Table 1: Jajodia et al. predicates and their meaning

set of authorizations entailed by a specific access control model. The basic elements
used to represent a model are: Obj, a set of objects; T , a set of types (named groups
of objects); U , a set of users; G, a set of groups, R, a set of roles (named groups of
privileges); A, a set of authorization modes; SA = {+a,−a | a ∈ A}, a set of signed
authorization modes; Rel, a set of unary, binary or n-ary relationships defined over the
elements presented above. Elements in Rel represent application domain predicates
capturing some relevant relationships for the considered application (the last part of
Table 1 shows some examples of Rel predicates). Objects, types, users, groups, and
roles 2 are assumed to be hierarchically organized, according to the following basic
hierarchies: Object-Type (OTH), User-Group (UGH), and Role (RH). Since an autho-
rization subject AS can be a user, a group or a role, whereas an authorization object
AO can be an object, a type or a role, the basic hierarchies are composed together to
define two additional hierarchies, the Authorization Subject Hierarchy (ASH) (com-
bining together the User-Group and the Role hierarchy) and the Authorization Object
Hierarchy (AOH) (combining together the Object-Type and the Role hierarchy).

An access control model in the Jajodia et al. framework corresponds to a a tuple
(OTH,UGH,RH,A,
Rel), called Data System DS. An authorization is a triple (o, s, 〈sign〉a), where o
is an authorization object, s is an authorization subject, and 〈sign〉a ∈ SA is a signed
authorization mode.

Logic programs are constructed upon a logical language, called Authorization

2Jajodia et al. assumes that each user can activate at most one role at time.
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Specification Language (ASL). An Authorization Specification AS is then defined as
a set of stratified rules satisfying some syntactic restrictions [6] that limit the set of
predicates that can appear in their bodies. The resulting program is locally stratified,
thus it admits just one stable model. Authorizations are specified through predicates
cando, dercando, and do. Predicate cando represents explicit authorizations,
predicate dercando represents derived authorizations whereas predicate do is used
to solve conflicts. Authorizations may propagate along the AOH and the ASH hier-
archies according to the specified dercando, overAS , and overAO rules.

Since both positive and negative authorizations are allowed, conflicts may arise
among the computed set of authorizations. To solve this problem, do rules are used.
In some sense, do rules represent a specific conflict resolution policy. The policy is
applied at the end of the derivation process, differently from LAMP, where the conflict
resolution function is used during authorization computation.

Obj = {o1, o2, o3} T = ∅ U = {Dan, Bob, Jill} G = ∅
R = {r1, r2, r3} A = {R, X, W} SA = {+R, +X, +W,−R,−X,−W} Rel = ∅
OTH = (Obj, ∅,≤T ) ∀x, y ∈ Obj : y ≤T x⇒ y = x objects are flat
UGH = (U, ∅,≤UG) ∀x, y ∈ U : y ≤UG x⇒ y = x users are flat

RH = (∅, R,≤R) x ≤R y iff

�
x ∈ {r1, r2} & y = r1
x ∈ {r1, r3} & y = r1

r2 and r3 are specializations of r1

ASH = (U, R,≤AS) x ≤AS y iff

�
x, y ∈ U & x ≤UG y
x, y ∈ R & x ≤R y

AOH = (Obj, R,≤AO) x ≤AO y iff

�
x, y ∈ Obj & x ≤OT y
x, y ∈ R & y ≤R x

1 : cando(o1, r1, +R)← 2 : cando(o1, r1, +W )← 3 : cando(o2, r2, +R)←
4 : cando(o3, r3, +W )← 5 : cando(r1, Dan, activate) ← 6 : cando(r2, Bob, activate) ←
7 : cando(r3, Jill, activate) ←
8 : dercando(o, s, +a)← cando(o, s′, +a)& in(s′, s, ASH)
9 : do(o, s, +a)← dercando(o, s, +a)
10 : do(o, s, +a)← ¬do(o, s,−a)

Figure 2: Example of Jajodia et al. usage

Example 2 Consider the scenario illustrated in Example 1 and suppose you want to
model it by using the Jajodia et al. framework. Figure 2 presents the needed basic
components. The meaning of the rules presented in Figure 2 is the following: i) rules
1 and 2 authorize role r1 to exercise privileges R and W on o1; ii) rule 3 authorizes
role r2 to exercise privilege R on o2, whereas rule 4 authorizes role r3 to exercise
privilege W on o3, iii) rules 5, 6, and 7 specify that roles r1, r2, and r3 have been
respectively activated by Dan, Bob, and Jill; iv) rule 8 propagates positive autho-
rizations according to the ASH hierarchy; vi) rule 9 allows the computation of the
allowed accesses for subjects on objects according to the authorizations generated in
the system; vii) finally, rule 10 is used to guarantee that, for every possible access
request (o,s,+a), exactly one fact between do(o,s,+a) and do(o,s,-a) will
hold. �
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4 The NIST RBAC framework

NIST is a general framework for modeling RBAC models proposed by Sandhu et
al. [2]. It is defined by four levels of increasing complexity such that each level adds
to the previous one new features. These levels are described in the following.

Flat RBAC. Flat RBAC is the base level, able to capture the basic classical features
of an RBAC model: users acquire permissions from roles; a user can be assigned to
many roles and a role can refer to many users (the same holds for the relation existing
between permissions and roles); users can simultaneously exercise permissions deriv-
ing from different roles. Additionally, Flat RBAC supports user-role review, that is, it
must be possible to determine which roles are assigned to a specific user and which
are the users authorized to play a specific role.
Hierarchical RBAC. Hierarchical RBAC adds to Flat RBAC the support for role hier-
archies. Two different interpretations of role hierarchies are provided: the inheritance
and the activation one. In the first case, the activation of a role ri implies the acti-
vations of all roles rj that are less powerful than ri, and thus the inheritance of their
permissions, whereas, in the second case, junior roles must be explicitly activated.
Constrained RBAC. Constrained RBAC adds to Hierarchical RBAC the support for
separation of duty (SOD) constraints. Separation of duty is the ability to state which
roles cannot be simultaneously assigned to the same user (static SOD) or which roles
cannot be activated together by the same user (dynamic SOD).
Symmetric RBAC. Symmetric RBAC adds to Constrained RBAC the support for per-
mission-role review. This is the ability to determine which are the roles to which a
particular permission is assigned as well as which are the permissions assigned to a
particular role.

The basic components of the NIST framework can be formally defined as follows:
• Sets U , R, P , and S, which represent, respectively, the sets of users, roles,

permissions, and sessions. Each permission is a pair (a, o) and models a specific
access mode a on object o. We thus denote with A and O the sets of access
modes and objects, respectively. Thus, P ⊆ A × O. Moreover, let p ∈ P be
a permission, we denote with pa and po the access mode and the object in p,
respectively.

• X ⊆ U × R and Y ⊆ P × R represent, respectively, the user-role and the
permission-role assignments. Let x ∈ X, we denote with xu and xr the user
and role specified in x. Similarly, let y ∈ Y , we denote with yp and yr the
permission and role specified in y.

• H ⊆ R × R represents the role hierarchy; ∀ri, rj ∈ R, 〈ri, rj〉 ∈ H , if rj

precedes ri in the role hierarchy (according to a role dominance relationship ≤).
• user : S → U is a function that maps each session onto a single user.
• roles : S → 2R is a function that maps each session onto a set of roles de-
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fined as follows: ∀s ∈ S, roles(s) ⊆ {ri ∈ R|〈ri, rj〉 ∈ H,x ∈ X,xu =
user(s), xr = rj}; session s has the following permissions:

⋃
ri∈roles(s){p ∈

P |〈rk, ri〉 ∈ H, y ∈ Y , yp = p, yr = rk}.
• C represents the set of specified constraints.

U = {Dan, Bob, Jill} P = {p1 ≡ (R, o1), p2 ≡ (W, o1), p3 ≡ (R, o2), p4 ≡ (W, o3)}
O = {o1, o2, o3} X = {〈Dan, r1〉, 〈Bob, r2〉, 〈Jill, r3〉}
R = {r1, r2, r3} Y = {〈p1, r1〉, 〈p2, r1〉, 〈p3, r2〉, 〈p4, r3〉}
A = {R, X, W} H = {〈r2, r1〉, 〈r3, r1〉, 〈r1, r1〉, 〈r2, r2〉, 〈r3, r3〉}
S = {sDan, sBob, sJill} C = ∅
user(Dan) = sDan roles(sDan) = {r1, r2, r3}
user(Bob) = sBob roles(sBob) = {r2}
user(Jill) = sJill roles(sJill) = {r3}

Figure 3: Example of NIST usage

Example 3 Consider the scenario illustrated in Example 1. Figure 3 presents its rep-
resentation according to the NIST framework. �

5 Comparative analysis

In the following, the LAMP framework is compared with the Jajodia et. al and NIST
frameworks. We show that LAMP has a higher expressive power with respect to the
other two frameworks. By expressive power of a framework, we mean the range of
access control models the framework is able to represent.

5.1 Jajodia vs LAMP

In the following, we show how the general framework proposed by Jajodia et al. [6]
can be represented by LAMP and how the converse is not true. In order to show that
the Jajodia et. al framework can be represented by LAMP, we just show that for each
authorization specification AS expressed in the Jajodia et. al framework, there exists
an access control model instance I over an ACMS S in LAMP that entails the same
set of authorizations.

subject(self : subject) object(self : object, name : string, own : user)
group(self : group,name : string) role(self : role, name : string)
privilege(self : privilege, name : string) user(self : user, name : string)

Figure 4: Schema for Jajodia et. al classes
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In LAMP, the Access Control Model Schema is used to define the structural com-
ponents over which the model is built. In the following we present the ACMS needed
to model the Jajodia et al. framework.
Access Control Model Schema. S consists of the following components:

1. B = K ∪R, such that:
(a) K = Kbuilt in ∪Kbasic, where Kbuilt in = {⊥, int, string} and Kbasic =
{subject, user, group,
object, role, privilege};

(b) R = Rdomain ∪ Rauth ∪ Rconstraint ∪ Ruser def , where Rdomain =
{SubG, InSubG,Belong, UserIn, LessR, InLessR,P lay, UserP lay,
PartOf, InPartOf}, Rauth = {Authd, Authp, Auth}, Rconstraint =
{ErrorC}, and Ruser def = {CanDo,DerCanDo,Done, P layG,
GroupP lay, overAO, overAS , ActiveOneRole};

2. function Scheme for the elements in Kbasic, Rdomain ∪ Rauth, and Ruser def ,
presented in Figure 4, and in the second column of Table 2;

3. function ISA representing class-subclass organization, defined as follows:
ISA(user) = ISA(group) = ISA(role) = {subject}, for all the other
classes c, ISA(c) = ∅.

4. set A, containing the special name “self” and the attribute names appearing in
Figure 4; in particular, the ownership of an object by a user is modeled by using
an attribute owner associated with objects;

5. Z containing oid’s for the elements of K.
Based on the previous schema, the ACMI is constructed as follows; in the construction
of the ACMI we have considered the correspondence between Jajodia et al. and LAMP
predicates shown in Table 2.
Access Control Model Instance. Given an authorization specification AS over a
Data System DS = (OTH,UGH,RH,A,Rel), we construct an instance I over S
as follows:

1. DC: we insert: i) a fact: object(self : #i, name : o, owner : u), for each
o ∈ Obj ∪ T , such that owner(o, u) holds in AS, ii) a fact: privilege(self :
#i, name : p), for each p ∈ A, iii) a fact: user(self : #i, name : u), for
each u ∈ U , iv) a fact: group(self : #i, name : g), for each g ∈ G, v) a
fact: role(self : #i, name : r), for each r ∈ R, where #i ∈ Z denotes the
unique identifier of each object i. Since “user”, “group”, and “role” are sub-
classes of “subject”, the following sets of inherited elements {subject(self :
#i)|∃ user(self : #i, name : u) ∈ DC}∪{subject(self : #j)|∃ group(self :
#j, name : g) ∈ DC} ∪ {subject(self : #k)|∃ role(self : #k, name : r) ∈
DC} hold.

2. DSC: predicates in Rdomain are defined as follows:
• for each dirin(e1, e2, e3) ∈ AS, we insert in I: i) the fact Belong(U :

e1, G : e2), if e1 ∈ U , e2 ∈ G, and e3 = ASH; ii) the fact SubG(G1 :
e1, G2 : e2), if e1, e2 ∈ G, and e3 = ASH; iii) the fact LessR(R1 :
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Jajodia et al. atom Schema of equivalent LAMP atom Equivalent LAMP atom

cando(o’,s’,a), s′ ∈ U ∪G ∪
R, o′ ∈ Obj ∪ T

CanDo(O:object,S:subject,P:privilege,
ε:string)

CanDo(O:o’,S:s’,P:p’,ε:k),
a ≡ kp′

cando(o’,s’,activate), o′ ∈ R,
s′ ∈ U

Play(U:user,R:role) Play(U:s’,R:o’)

cando(o’,s’,activate), o′ ∈ R,
s′ ∈ G

PlayG(G:group, R:role) PlayG(G:s’,R:o’)

dercando(o’,s’,a), s′ ∈ U ∪
G ∪ R, o′ ∈ Obj ∪ T

DerCanDo(O:object,S:subject,P:privi-
lege, ε:string)

DerCanDo(O:o’,S:s’,P:p’,ε:k),
a ≡ kp′

do(o’,s’,a), s′ ∈ U ∪ G ∪ R,
o′ ∈ Obj ∪ T

Authd(O:object,S:subject,P:privi-
lege,G:subject, ε:string)

Authd(O:o’,S:s’,P:p’,G:u’,ε:k),
a ≡ kp′

done(o’,u’,r’,a’,n’),
o′ ∈ Obj ∪ T

Done(O:object,U:user,R:role,P:privilege,T:in-
teger)

Done(O:o’,U:u’,R:r’,P:a’,T:n’)

overAO(o’, o”, s’,a), s′ ∈
U ∪G∪R, o′, o′′ ∈ Obj ∪ T

OverAO(O1:object, O2:object,S:sub-
ject, P:privilege, ε:string)

OverAO(O1:o’, O2:o”,S:s’,
P:p’, ε:k), a ≡ kp′

overAS(s’, o’, s”,a), s′ ∈ U∪
G ∪ R, o′ ∈ Obj ∪ T

OverAS(S1:subject, O:object,S2 :sub-
ject, P:privilege, ε:string)

OverAS(S1:s’, O:o’,S2:s”,
P:p’, ε:k), a ≡ kp′

error() ErrorC() ErrorC()

dirin(e′1, e′2, e′3), e′1 ∈ U ,
e′2 ∈ G, e′3 = ASH

Belong(U:user,G:group) Belong(U : e′1,G : e′2)

dirin(e′1, e′2, e′3), e′1, e′2 ∈
G, e′3 = ASH

SubG(G1:group,G2 :group) SubG(G1 : e′1,G2 : e′2)

dirin(e′1, e′2, e′3), e′1, e′2 ∈
R, e′3 = ASH

LessR(R1:role,R2 :role) LessR(R1 : e′2,R2 : e′1)

dirin(e′1, e′2, e′3),
e′3 = AOH and either
e′1 ∈ Obj and e′2 ∈ T , or
e1, e2 ∈ T

PartOf(O1:object,O2 :object) PartOf(O1 : e′1,O2 : e′2)

in(e′1, e′2, e′3), e′1 ∈ U , e′2 ∈
G, e′3 = ASH

UserIn(S:subject,G:group) UserIn(S : e′1,G : e′2)

in(e′1, e′2, e′3), e′1, e′2 ∈ G,
e′3 = ASH

InSubG(G1:group,G2 :group) InSubG(G1 : e′1,G2 : e′2)

in(e′1, e′2, e′3), e′1, e′2 ∈ R,
e′3 = ASH

InLessR(R1:role,R2 :role) InLessR(R1 : e′1,R2 : e′2)

in(e′1, e′2, e′3), e′1 ∈ Obj,
e′2 ∈ T , e′3 = AOH

InPartOf(O1:object,O2 :object) InPartOf(O1 : e′1,O2 : e′2)

isuser(s’) attribute (name:string) of class name sub-
ject

attribute (name:s’) of subject s’

owner(o’,u’) attribute (own:user) of class name object attribute (own:u’) of object o’

if user u′ ∈ U has activated
role r′ ∈ R during its session

ActiveOneRole(U : user, R : role) ActiveOneRole(U : u′, R : r′)

Table 2: Correspondence between atoms

e2, R2 : e1), if e1, e2 ∈ R, and e3 = ASH; iv) the fact PartOf(G1 :
e1, G2 : e2), if e3 = AOH and either e1 ∈ Obj and e2 ∈ T , or e1, e2 ∈ T .

• for each role r ∈ R and for each user u ∈ U that is explicitly authorized
to play role r, we insert in I the fact: Play(U : u,R : r).

• we insert in DSC also the rules defining predicates UserIn, InSubG,
InLessR,InPartOf , and UserP lay:

– UserIn(U : X, G : Y )← Belong(U : X, G : Y ),
UserIn(U : X, G : Y )← Belong(U : X, G : Z), InSubG(G1 : Z, G2 : Y ),
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– InSubG(G1 : X, G2 : Y )← SubG(G1 : X, G2 : Y ),
InSubG(G1 : X, G2 : Y )← SubG(G1 : X, G2 : Z), InSubG(G1 : Z, G2 : Y ),

– InLessR(R1 : X, R2 : Y )← LessR(R1 : X, R2 : Y ),
InLessR(R1 : X, R2 : Y ) ← LessR(R1 : X, R2 : Z), InLessR(R1 : Z, R2 :

Y ),
– InPartOf(O1 : X, O2 : Y )← PartOf(O1 : X, O2 : Y ),

InPartOf(O1 : X, O2 : Y ) ← PartOf(O1 : X, O2 : Z), InPartOf(O1 :

Z, O2 : Y ),
– UserP lay(U : X, R : Y )← P lay(U : X, R : Y ),

UserP lay(U : X, R : Y )← P lay(U : X, R : Z), InLessR(R1 : Y, R2 : Z);
note that previous rules represent the transitive closure of predicates Belong,
SubG, LessR, PartOf , and Play, respectively.

3. AC: predicates in Ruser def are defined as follows:
• for each user u ∈ U having an activated role r ∈ R, we insert in I the fact:

ActiveOneRole(U : u,R : r);
• predicate CanDo is defined by the same rules defining predicate cando in

AS, by replacing each predicate with the corresponding predicate shown
in Table 2; the only exception concerns cando atoms having a role as
object. In this case, we use either Play or PlayG atoms, depending on
the type of the cando subject (user or group) that is authorized to play
that role;

• the following rules represent the transitive closure of the GroupP lay pred-
icate:

– GroupP lay(G : X, R : Y )← P layG(G : X, R : Y ),
GroupP lay(G : X, R : Y ) ← P layG(G : X, R : Z), InLessR(R1 : Y, R2 :

Z);
• predicate DerCanDo is defined by the same rules defining predicate der-
cando in AS, by replacing each predicate with the corresponding predi-
cate shown in Table 2.

• predicates OverAO and OverAS are defined by the same rules defining
predicates overAO and overAS in AS, by replacing each predicate with
the corresponding predicate shown in Table 2.

• for each done(o, u, r, a, n) ∈ AC , we insert in I the fact Done(O : o, U :
u,R : r, P : a, T : n);

• predicate Authd is defined as predicate do in AS, by replacing each pred-
icate with the corresponding predicate shown in Table 2.

4. PC: No definition for predicate Authp is required, since propagation rules are
included in the definition of predicates CanDo and DerCanDo; the only ex-
ception is represented by the following rule needed to define predicate Auth:
Authp(O : X1, S : X2, P : X3, G : X4, ε : X5, O

′ : X1, S
′ : X2, P

′ : X3) ←
Authd(O : X1, S : X2, P : X3, G : X4, ε : X5). Predicate Auth is defined by
the following rule: Auth(O : X1, S : X2, P : X3, G : X4, ε : X5) ← Authp(O :
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X1, S : X2, P : X3, G : X4, ε : X5, O
′ : X6, S

′ : X7, P
′ : X8).

5. CC: predicate ErrorC is defined by the same rules defining predicate error
in AS, by replacing each predicate with the corresponding predicate shown in
Table 2.

The following theorem states that the Jajodia et al. framework is representable in the
LAMP framework.

Theorem 1 All the access control models that can be represented by the Jajodia et al.
framework are representable by the LAMP framework.

Proof sketch. Any access control model that can be represented by the Jajodia et al.
framework corresponds to a specific authorization specification AS. It is easy to prove
that, given an authorization specification AS, if I is the ACMI constructed as above,
the following conditions hold: I) facts that hold for predicate do in AS coincide with
facts that hold for predicate Auth in D(I),3; II) facts that hold for predicate error in
AS coincide with facts that hold for predicate ErrorC in D(I).

By construction : i) the domains over which variables in AS range correspond to
the domain over which variables in D(I) range; ii) the definition of predicates dirin
and in in AS corresponds to the definition of predicates Belong, SubG, LessR,
PartOf , and of rules specifying their transitive closure in D(I); iii) the definition of
predicates isuser, owner in AS corresponds to the definition of class names subject
and object in D(I). Thus, AS and D(I) generate the same facts for predicates cando,
dercando, and done, since in the two programs these predicates are defined in the
same way, by using equivalent predicates. Moreover, in D(I) Auth is equivalent to
predicate Authd, whose definition coincides with that of predicate do in AS, as shown
in Table 2. So, the first initial condition has been proved. With a similar reasoning,
it follows that facts that hold for predicate error in AS coincide with facts that hold
for predicate ErrorC in D(I). Concluding, all the access control models that can be
represented inside the Jajodia et. al. framework can also be represented in LAMP. �

By contrast, the converse is not true as stated by the following theorem.

Theorem 2 The set of the access control models that can be represented by LAMP is
greater than the one representable by the Jajodia et al. framework.

Proof sketch. The logical language for specifying authorization rules proposed by
Jajodia et al. [6] allows one to write locally stratified logic program generating a unique
set of authorizations (only one stable model). By contrast, LAMP is based on a more
general formalism: each program can generate more than one set of authorizations
(one for each stable model of the program). Thus, LAMP allows a multiplicity of
models to be associated with a given program. Each of these models represents a

3Given an ACMI I, we denote with D(I) the corresponding Datalog-like program.
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set of consistent authorizations that can be possibly assigned to subjects. This aspect
is crucial every time that we are interested in modeling an access control model that
supports authorization rules able to generate different sets of consistent authorizations.
�

5.2 NIST vs LAMP

In the following, we show how the NIST framework [2], can be represented by the
LAMP framework and how the converse is not true. In order to show that the NIST
framework can be represented by the LAMP framework, we have to show that for each
access control model represented according to one of the NIST levels, there exists an
ACMI I over an ACMS S that entails the same set of authorizations, as stated by the
following theorem.

Theorem 3 All the access control models that can be represented by the four NIST
levels are representable by the LAMP framework.

Proof sketch. In [1] we have shown that the first two NIST levels are representable
by the LAMP framework. Since LAMP supports the representation of arbitrary in-
tegrity constraints, static and dynamic separation of duty can be modeled by specific
constraint rules as conditions on roles, users, sessions, user-role and permissions-role
assignments. All these conditions can be directly represented in Datalog, thus they can
be represented as constraint rules in an ACMI. Moreover, since the ACMI correspond-
ing to a Constrained RBAC does not contain negation, it has a single stable model.
Thus, permission-role review can be performed by directly inspecting the authoriza-
tion base by executing a specific query over the ACMI. Concluding, any instance of
Constrained and Symmetric RBAC can be modeled in LAMP. �

By contrast, the converse is not true as stated by the following theorem.

Theorem 4 The set of the access control models that can be represented by LAMP is
greater than the one representable by the NIST framework.

Proof sketch. The main differences between NIST and LAMP can be summarized as
follows: i) RBAC is able to propagate authorizations only for subjects whereas LAMP
supports propagation also along object and privilege hierarchies (multiple vs. single
propagation); ii) RBAC can specify only a limited form of constraints on subjects and
roles, whereas LAMP constraint rules can express a broader set of constraints, also
due to the fact that user-defined predicates are allowed in constraint rule bodies (user-
defined and constrained rules vs. separation of duty). In the following, based on the
previous considerations, we prove the theorem by showing an example of constraint
that can be represented in LAMP but not in NIST. The constraint we consider states
that a user is denied to activate two roles r1 and r2 inside a session when at least two
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other users have already activated such roles. This constraint represents a sort of ”con-
ditioned separation of duty”. It depends on information that dynamically changes (the
existence of a couple of users, which one is Bob, having activated r1 and r2 inside
their sessions). In particular, the activation of this constraint depends on the behaviour
of a specific user: only if Bob has activated both roles, we limit the possibility to
activate such roles just to another user, otherwise there is no limit to the number of
users that can do it. This constraint cannot be represented in NIST. In fact in the last
proposed NIST RBAC standard, [3] dynamic separation of duty (DSD) constraints are
defined as collections of pairs (rs, n), such that each rs represents a role set, whereas
n is a natural number ≥ 2. The meaning of a DSD constraint (rs, n), is that no sub-
ject may activate n or more roles among those contained in the set rs. According to
this syntax, there is no way to express a conditioned separation of duty, like the one
above expressed, which depends on specific values of subject and/or object attributes.
On the other hand, the constraint presented above can be represented in LAMP by the
following constraint rule:

ErrorC ← ActiveRole(U : X1, S : Y1, R : r1), ActiveRole(U : X1, S : Y1, R : r2),
UserP lay(U : X1, R : r1), UserP lay(U : X1, R : r2), ActiveRole(U : Bob, S : Y2,
R : r1), ActiveRole(U : Bob, S : Y2, R : r2),
UserP lay(U : Bob, R : r1), UserP lay(U : Bob, R : r2), ActiveRole(U : X2,
S : Y3, R : r1), ActiveRole(U : X2, S : Y3, R : r2), UserP lay(U : X2, R : r1),
UserP lay(U : X2, R : r2), X1 �= X2, X1 �= Bob, X2 �= Bob,
Y1 �= Y2, Y1 �= Y3, Y2 �= Y3. �

6 Conclusions

In an Adaptive Security Infrastructure, an important issue consists in the formal rep-
resentation and analysis of security policies. In this paper, we made a step towards
this direction, by focusing on access control policies. Since in the literature several
frameworks have been proposed for policy specification, in this paper we investigated
the expressive power of three different access control frameworks, namely, the LAMP
framework [1], the Jajodia et al. framework [6], and the NIST one [2]. From the
presented results, it follows that LAMP subsumes the other frameworks, that is, all
the models that can be modeled in Jajodia et al. and the NIST frameworks can be
modeled in LAMP but the converse is not true. Given a distributed system based on
ASI, our analysis will help in the selection of a specific logical framework for such an
environment. Moreover, it represents a first step towards the development of a formal
theory for comparing and analysing access control model frameworks. Future work
concerns the comparison of the presented frameworks according to other dimensions,
for example the mapping complexity, that is, the computational complexity of repre-
senting a certain access control model inside the framework, the spatial complexity,
that is, the amount of information used by a framework to model a certain policy, and
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the temporal complexity, that is, the complexity of querying the authorization base
according to the computational semantics supported by the framework. Additionally,
we plan to develop a set of tools for specifying and analyzing access control policies
under ASI using LAMP as core-system. A prototype is currently being developed at
the University of Milano.
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Abstract

We discuss an approach to the logic specification of an Adaptive Security
Infrastructure and, within it, of a specific adaptive policy, namely a routing one.
Our proposal is based on previous work on logic based specification of secure
mobile systems. The approach builds on Mobadtl, a model for communication
and mobility that has been formalized in the ∆DSTL(x) spatial-temporal logic.

1 Introduction

A lot of research is underway to develop infrastructures, programming languages and
methodologies for the specification, implementation and verification of secure net-
working applications. In particular, interest is growing for adaptive security, where
the security policies are not fixed, but vary in response to analysis of the sensed state
of the distributed environment. Many sophisticated capabilities of intrusion detection,
data mining, self-reconfiguring systems, policy management etc. are being developed,
but there is no agreement yet on a unifying logical view of the general aspects of adap-
tive security systems. For example, it is not known how to prove (or even specify)
capabilities or deduce rigorously the appropriate responses to security-relevant inputs.
Also, issues arising from considering how an infrastructure for adaptive security (ASI)
could be specified, designed, and verified are still wide open.

This paper will present tentative answers to some of the related questions, namely,

• How should the semantics of a dynamic security policy be specified, one that can
deal with potential future security questions and facilitate proof that a candidate
response is in fact consistent with current policy?

• How should we take into account the global-local (or distributed-centralized or
hierarchical) nature of all components of an ASI?

• How should we specify the ”security-relevant resources” available so that at any
time the analyzer can choose an appropriate response?
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• How should we unify the temporal-spatial reasoning aspects?

Our answers are based on previous work on logic based specification of secure mobile
systems [8]. The approach builds on Mobadtl , a model for communication and mobil-
ity [18] that has been formalized in the ∆DSTL(x) spatial-temporal logic [15, 14, 12].
The most important characteristics of the logic are the following ones:

• thanks to novel Kripke models, it has enough expressive power to reason on the
behavior of systems where communication is fully asynchronous, and it permits
to exploit local theories smoothly in the proofs of distributed properties;

• it permits to name the components of a distributed system and to causally relate
properties which might hold in distinguished components;

• it uses only a subset of linear time temporal logic, with a limited number of
operators à la Unity;

• it has a primitive operator, ∆, to specify events;

• it supports a structured form of refinement that permits to build generic models
and then specialize them in separate chunks;

• it has a semi-automatic proof support, the Mobadtl Reasoning Kit MaRK [9],
built on top of Isabelle [16].

In Mobadtl , the network infrastructure consists of a net of elaboration nodes called
neighborhoods. A neighborhood is a bounded environment where computational en-
tities live. The net of neighborhoods is populated by elaboration units called agents.
Agents communicate remotely and can move from one neighborhood to another. Each
neighborhood is associated with one particular stationary entity called guardian.

Each guardian monitors its neighborhood limiting the resources the agents can
use, intercepting messages and agents and deciding which of them can enter or leave
the neighborhood they control. Guardians also provide the routing facilities needed
to forward messages and to handle moving agents. Since there is one guardian per
neighborhood and guardians do not move, we can identify a neighborhood with its
guardian.

In this paper we present only the Mobadtl communication features, for space rea-
sons. The ones regarding mobility follow the same philosophy and are described in
previous work (e.g. [18, 9]).

Communications are based on fully asynchronous message passing and occur un-
der to the mediation and control of the guardians, at least those at the ending points of
a message exchange.

The net of neighborhoods is flat, i.e. neighborhoods are not nested. This does
not imply a loss of generality, since routing policies can be specified to describe more
structured topologies, e.g. one where a neighborhood plays the role of firewall for a
set of neighborhoods.
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Figure 1: The Mobadtl model: two neighborhoods with their guardians and communi-
cating agents.

There is a mechanism of profiles to identify entities through a set of properties
they are called to satisfy, and an exception mechanism to deal with the impossibility
of resolving a profile, the violation of a security policy, and the failure of the network
infrastructure.

Figure 1 presents a pictorial representation of two neighborhoods with their guard-
ians and agents that communicate and move.

Coming to security, neighborhoods basically reflect administrative domains, where
components run under the control of a specific authority. In our case, the guardian acts
as an interposition interface among agents and neighborhoods: it specifies and im-
plements communication (and mobility) policies. In other words, guardians monitor
the components and limit the resources they can use. More precisely, communication
occur via the guardians that provide routing facilities to forward messages: they inter-
cept messages and decide which messages can enter or leave the neighborhood they
control, for instance because of security reasons.

The Mobadtl model itself does not embody any policy: security policies must be
explicitly specified through suitable refinement steps. In the following, we will assume
that one such policy has been specified, to give each guardian the ability to prevent a
message from being routed through a guardian that is not trusted. At the core of the
specification of this policy stays predicate trusted(G): it holds in a guardian if and only
if its own security requirements are fulfilled by G. Then, to adapt the policy we will
need to find ways to update the information encoded by the trusted predicate.

To show how, in our framework, one can approach the logic specification of an
ASI and, within it, of specific adaptive policies, we will use a simple scenario. The
infrastructure is as described in the WOLFASI call [1]. Its conceptual components are
Detector, Analyzer, and Responder:

• the Detector senses, collects, and distributes information about the security en-
vironment;

• the Analyzer processes Detector data, along with other information (e.g. security
policy, threat levels, or node trust levels) and occasionally proposes actions to
bring about a new state;

• the Responder executes the actions as directed by the Analyzer. These actions
could include adjusting preventive mechanisms, adjusting detector settings, ad-
justing internal system parameters, etc.
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In our scenario, the agents exchange messages that are routed by the guardians, each
with its own policy, expressed as a function of the trustworthiness of the guardians.
As the simplest source of information about the security environment, we imagine
that the agents can issue security warnings that question the trustworthiness of some
guardian. The warnings are intercepted by the Detector, and sent to the Analyzer,
which implements a simplistic strategy: once the number of warnings about a guardian
reaches a given threshold, it proposes to consider that guardian no longer trustworthy
to route the messages. The Responder implements this change in the policy, affecting
the other guardians consequently.

The Detector and the Responder will be specified as refinements of the generic
guardians of Mobadtl , while the Analyzer will be specified as an independent agent, al-
beit in a dedicated neighborhood for simplicity (and security). Indeed, the former ASI
components need to interfere with the Mobadtl communication infrastructure, while
the Analyzer is best seen as a functional component of the ASI.

The next two sections introduce the logic and the model, respectively. Section 4
present the formalization of the infrastructure, the example policy and discusses the
properties that can be proved. The last section discusses related work.

2 ∆DSTL(x) : a mini–tutorial

2.1 Syntax

We assume a denumerable set of component names {m,n,m1,m2, . . .}, and a de-
numerable set of variables, which includes the set of component variables, {M, N,
M1, M2, . . .}.

We introduce location modalities for each component in a system: we use com-
ponent names, with a different font. For instance, m1 is the location modality corre-
sponding to component m1, and m1Iam(m1) stands for “in component m1,
Iam(m1) holds”. We let quantifiers range over modalities, and M , N , Mi . . . are
location modality variables. Binding between location variables and regular variables
is possible. For example, saying that for all M , MIam(M) holds, means that for all
components mi, miIam(mi) holds. Quantification over modality variables is done in
a standard way, following, for instance [6].

F ::= A
∣
∣ ⊥ ∣

∣ ∼ F
∣
∣ F ∧ F ′ ∣∣ ∆F

∣
∣ MiF

φ ::= F
∣
∣ ∃F

∣
∣ F LEADS TO F ′ ∣∣ F ∵ F ′ ∣∣ F LEADS TO C F ′ ∣∣ F BECAUSE C

F ′ ∣
∣ INIT F

∣
∣ F UNLESS F ′

The first equation defines distributed state formulae, which are used to build
∆DSTL(x) formulae: A is an atom, ⊥ is the propositional constant false, ∆F is an
event. With M̄i we denote the dual of Mi , i.e., M̄iF ≡∼ Mi ∼ F . With � we
denote true, i.e. � ≡∼ ⊥. The second equation defines ∆DSTL(x) formulae. They
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are implicitly quantified, apart from those variables explicitly prefixed as existential.
Otherwise, the intended meaning is that a formula F is universally quantified over all
values of the variables appearing in the premises of F , and existentially quantified on
the remaining variables. For instance, ∃y. M∆p(x) → q(x, y), is implicitly prefixed
by ∀M,x, and M p(x)∧ q(y) LEADS TO N r(x,M, z) should be understood as prefixed
by ∀M,x, y ∃N, z. The variables in INIT are all universally quantified. A special case

of UNLESS is stability: STABLE F
def
= F UNLESS ⊥

The domain over which a variable is quantified (i.e. its sort) can be understood
from the context or explicitly defined. We assume that these domains are invariant
during time and in space.

The next sections informally present the semantics of the logic. The formal defi-
nitions are in [12, 15].

2.2 Models

The models for ∆DSTL(x) formulae are built on n–partite directed acyclic graphs
like the one in Figure 2, which describes the computation of a system with two compo-
nents. Here, p, q, . . . are the properties holding in the states, arrows from a component
to another denote communications, and arrows in one component denote local state
transitions, as the computation progresses locally.

We call Si the set of states of component mi, and S the set of all the states of the
computation. A distributed state is any subset ds of S, i.e. any set of states, and ds0

is the set of the initial states. The states represented with ◦ in the figure precede the
initial states, and are used to give semantics to the events in the initial state. We say
that ds follows ds′ if and only if each state in ds′ is followed by a state in ds, and each
state in ds is preceded by a state in ds′, where a state s follows s′ if and only if there
is a path in the model graph from s to s′.

(m)◦ p �� q

���
��

��
�� r �� u, z �� z �� z ��

(n)◦ p, t �� u �� v �� p �� w, t ��

�������

w, t ��

Figure 2: Models for ∆DSTL(x) formulae.

2.3 Semantics by examples

F, ∃F a distributed state formula is also a ∆DSTL(x) formula, with the meaning of
being an invariant: all distributed states must satisfy the formula. For instance,
∃G. (A� → Aguardedby(G)) means that, chosen an arbitrary state of an ar-
bitrary agent a, there is a guardian, g, such that in a predicate guardedby(g)
holds, i.e. all agents are always guarded by some guardian.
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In particular, a distributed state ds satisfies the distributed state formula

mF iff ds contains a (singleton) state of component m satisfying F . Consider,
in figure 2, the distributed state ds composed of the first two states of m:
ds satisfies mp, mq, and mp ∧ mq. On the contrary, ds does not satisfy
m(p ∧ q): no singleton state satisfies the conjunction.

∆F iff ds is a model for F , and there exists a state ds′ <l ds not satisfying F .
We say that ds′ <l ds if all the states in ds have a local (same component)
immediate predecessor in ds′, and all the states in ds′ have a local immedi-
ate successor in ds. By definition, the “◦” state of component m satisfies a
literal L iff the initial state of m does not satisfy L: everything is an event
in the initial state.

F LEADS TO F ′ means that F is always followed by F′: each distributed state sat-
isfying F is followed by a distributed state satisfying F′. Operator LEADS TO

expresses a liveness condition, and is similar to Unity’s 
→ (leads to). The differ-
ence with Unity is that properties can be localized to distinguished components,
and that we can express events. For instance, the formula

A ∆moveTo(G) LEADS TO A guardedby(G) ∧ G guarding(A)

is to be read as follows: for all agent a and all guardian g, each state of a where
predicate moveTo(g) becomes true, expressing the wish of a to move and go
under the control of g, is followed by a state of a satisfying guardedby(g) and
by a state of g satisfying guarding(a).

F ∵ F ′ says that F must be preceded by F′: BECAUSE is a safety operator, used to
express “only if” temporal conditions. For instance, the formula above could
have an “only if” counterpart, saying that an agent can be under the control of a
guardian g only if it previously asked to move under g’s control:

A guardedby(G) ∵ A moveTo(G)

Formally, a system satisfies F ∵ F ′ if and only if each distributed state (not in-
cluding initial states) that satisfies F is preceded by a distributed state satisfying
F ′.

FOL axioms of the 1st order logic K M̄(F → F ′) → (M̄F → M̄F ′)
DSL1 M̄(M̄F ↔ F ) DSL2 M �= N → M̄N̄⊥

MP
F F → F ′

F ′
Nec

F

M̄F

Table 1: Axioms and rules of DSL(x).
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• Necessitation. (We use 
∆DSL(x) and 
∆DSTL(x) for the sake of comprehension).

for all x1 . . . xn exists y1 . . . yn 
∆DSL(x) F
Nec


∆DSTL(x) ∃y1 . . . ynF

• Introduction and Elimination. LcI F LEADS TO C F BcI F BECAUSE C F
∆E ∆F → F

F LEADS TO C G
LI

F LEADS TO G

F BECAUSE C G
BI

F ∵ G

F
SI

STABLE F

F LEADS TO G
∆I

F∧ ∼ G LEADS TO ∆G

F LEADS TO ⊥
LE

∼ F

INIT∼F F ∵⊥
BE

∼ F

INITMF STABLE MF
SE

M̄F
MF ∵ MG STABLE MG

BSE
M̄(F → G)

• Transitivity.
F LEADS TO F ′ F ′

LEADS TO G
LTR

F LEADS TO G

F ∵ F ′ F ′∵ G
BTR

F ∵ G

• Premises and consequences strengthening and weakening. Similar rules hold
for BECAUSE, LEADS TO C, and BECAUSE C.

∃F G → F F LEADS TO F ′ ∃G′ F ′ → G′
LSW

G LEADS TO G′

F LEADS TO G F ′
LEADS TO G

LPD
F ∨ F ′

LEADS TO G

G LEADS TO F G LEADS TO F ′
LCC

G LEADS TO F ∧ F ′
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Table 2: Axioms and Rules of ∆DSTL(x). We list only those related to operators
which are new with respect to Unity and those used in the proof of the ASI specifica-
tion.

• Notification and Confluence.

F ∵ G G LEADS TO MG′
STABLE MG′

Nf
F ∧ M� LEADS TO MG′

STABLE MF STABLE MF ′
Cf

MF ∧ MF ′ → M(F ∧ F ′)

∃XM̄F (X)
ID

∃X(M� → MF (X))

∃X(M� → MF (X))
DC

∃X(MG → M(G ∧ F (X)))

• Properties of the initial state.

I1 INIT m� INIT mF
I2

INIT m̄F

INIT m̄F
I3

INIT mF

INIT F F → G
IW

INIT G

INIT F INIT F ′
IC

INIT F ∧ F ′

• Quantification.
We recall that non temporal ∆DSTL(x) formulae are implicitly universally quantified in all
variables with the exception of those explicitly bound by existential quantification.
Here, in the case of implication, with ∃G F → G we denote a formula universally quantified
in all the variables of premise F , and existentially quantified in all the remaining variables of
the consequence G.
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INIT F describes the initial state.

UNLESS F extends Unity’s UNLESS to the distributed case.

F LEADS TO C F ′, F BECAUSE C F ′ express that the consequence has to hold in a
state close to the state satisfying the premise: F LEADS TO C F′ requires F ′ to
hold in the same state in which F occurs, or in the next one; F BECAUSE C F′

requires F ′ to hold in the same state of F or in the previous one.

The ability to deal with events explicitly may enhance the expressivity and simplicity
of logical specifications, and actually the interest for event description is growing in
the literature [2, 7, 3].

The use of events proves particularly useful in distributed systems. For instance,
formula

M F LEADS TO N G

says that formula F holding in component M implies that G must hold in a future
state of component N . This means that if F is stable in M , not only G has to be
true infinitely often as it would be the case in a non–distributed setting, but also that
infinitely many communications must occur between M and N . In the practice, it is
convenient to let the specifier state a weaker assertion, namely

M ∆F LEADS TO N G

where the premise is restricted to the states where the condition is established, and a
single communication from M to N is sufficient to establish the consequence.

Finally, the use of a mix of events and conditions as in M(∆F ∧ G), offers a
straightforward way to express the premises of event–condition rules.

2.4 Design methodology and tools

Axioms and rules of the logic are presented in Tables 1 and 2. Our design methodology
is based on refinements [4], and the refinement relation between two logical theories
corresponds to logical deduction.

In the case of Mobadtl , each refinement step extends the axiomatic presentation to
specify new properties. In particular, the refinement steps of the basic model result
in models with a more elaborated structure, with respect to the network topology, the
security policies, etc. For instance, a set of refinement steps can lead to the complete
specification of the properties of the underlying middleware. Some experiments in
this direction, targeted to a specific technology, namely CORBA, are reported in [13].
More refinements can lead to actual programs [17].

MaRK, our proof assistant [9] that partially automates the verification process, is a
valuable tool supporting the refinement process, making it feasible to avoid error prone
“by hand” arguments.
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3 Mobadtl: a mini–tutorial

To describe Mobadtl , we let A, A1, A2, R, S . . . range over agent names, (we use
S and R –sender and the receiver of a message– for readability) and G, G1, G2, . . .
range over guardian names. P is a profile, and D specifies the details of an exception.

3.1 Structural properties

Each guardian holds a representation of the neighborhood it controls, encoded via
predicate guarding(A), where A is an agent in the neighborhood. The flat topology of
the network of neighborhoods is stated by axiom S1 that says that guardians cannot
control other guardians

S1: Ḡ1(¬guardedby(G2))

Location awareness is encoded in the agents’ states via predicate guardedby(G), where
G is the name of the guardian of the current neighborhood. In the initial state, every
guardian knows the agents in its neighborhood, and every agent knows the name of its
guardian, as said by axiom S2

S2: ∀A, G. INIT A(guardedby(G)) ↔ G(guarding(A))

Moreover, we require that agents are always in a neighborhood, axiom S3, and that
are not ubiquitous, i.e. they cannot be in more than a neighborhood at the same time,
axiom S4

S3: ∃G.A(True) → A(guardedby(G))

S4: Ā((guardedby(G1) ∧ guardedby(G2)) → G1 = G2)

Note that the formula in axiom S2 is false in any state that is not the initial one because
of the particular structure of our models and of the initial state itself. Our logic is such
that, apart from the initial state, it is impossible to have any form of global knowledge
about the system. This reflects the particular features or our reference setting, i.e.
asynchronous communications in the absence of a global clock.

3.2 Communication properties

We use predicate out(M,P) to represent the will of an agent to send message M to a
receiver that satisfies profile P. The request can result in a successful delivery or in an
exception:

C: S(∆out(M,P ) ∧ guardedby(G)) LEADS TO

R(∆in(M, S)) ∨ S(∆exc(msg(M,S,P ),D))
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Note that the disjunction is not exclusive: in those settings in which the network is
scarcely reliable, the message can reach its destination, and the sender receive a warn-
ing exception, saying that locally it is not known what happened to the message. This
reflects the possible lack of global knowledge, typical of asynchronous settings with
unreliable communication. To exclude the warning, a refinement should foresee that
all outgoing messages are logged, and that a ticket is sent back upon reception. Then,
the warning is not issued, if the sending guardian receives the confirmation ticket be-
fore a given deadline.
Conversely, a message is received only if it was: (i) sent; (ii) processed by the sender
guardian; (iii) processed by the receiver guardian; (iv) processed by a guardian resolv-
ing the profile. These guardians don’t need to be distinct.

C1/A2: R(in(M,S)) ∵ S∆out(M,P ) ∧
G(msgReq(M,S,P, St) ∧ guarding(S)) ∧
G1(msgReq(M,S,P, St1) ∧ guarding(R)) ∧
G2(msgReq(M,S,P, St2) ∧ satisfy({R}, P ))

The mechanism of profile resolution is defined by a simple theory stating that a profile
is specified as a set of constraints, and distinct profiles can have overlapping con-
straints. If an entity satisfies a profile, it means that it satisfies all the constraints that
define the profile. If a set of entities satisfy a profile, it means that all its element
entities satisfy the profile.

Exceptions are due to the decision of one of the guardians involved in the delivery:

C2: S(exc(msg(M,S,P ),D)) ∵
S(∆out(M,P )) ∧ G(msgReq(M,S,P, St)) ∧
G(toBeV etoed(msg(M,S,P ),D)))

A communication request is attributed to an agent only if that agent actually committed
to send a message:

Id2: G(∆msgReq(A,O,P, St) ∵ S(∆out(M,P )))

As we will see in Section 4, the Responder will be part of a guardian. So, we need to
look at some of the reference axioms for communication, which describe the internal
working of guardians, and justify the properties given above.

When an agent S wants to send a message M, it notifies a communication request
msgReq(M,S,P,u) to its guardian G, specifying the profile P the receiver must satisfy:

Cc1: S(∆out(M,P ) ∧ guardedby(G)) LEADS TO O(∆msgReq(M,S,P, i))

The last argument to msgReq models the possible state of a communication request:
either u, saying that profile P is still unresolved, rec(R), where R is the name of the
receiver, once selected.
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The agent request either triggers a communication process that leads to the identifica-
tion of a suitable recipient, or is immediately rejected for reasons that are not specified
in the reference model, but can be specified by refinements (as we will do for the
example below):

Gc1: G(∆msgReq(M,S,P, u)) LEADS TO

G1(∆msgReq(M,S,P, rec(R))) ∨ G(∆toBeV etoed(msg(M,S,P ),D))

If the request is accepted, it is routed until it is resolved (i.e. a receiver is selected).
Guardians are in charge of finding a receiver that satisfies the requested profile

Gc1 2’: G(∆msgReq(M,S,P, rec(R))) ∵
G1(msgReq(M,S,P, u) ∧ satisfy(R,P ))

and to route the communication request to the guardian of the receiver, that delivers
the message.
It can happen that no receiver satisfying P exists. Moreover, any of the involved guard-
ians can veto the request because of some policy, see Gc1. In this case an exception
is thrown and communicated to the sender. To avoid fake communication requests,
message delivery requests must be actually originated by the involved agent

Cc1 2’: G(∆msgReq(M,S,P, u) ∧ guarding(S)) ∵
S(∆out(M,P ) ∧ guardedby(G))

3.3 Trusted guardians

As we said, security policies must be explicitly specified through suitable refinements
of the general model. To specify an example policy, we have introduced the predicate
trusted(G), which holds in a guardian state when the neighborhood (guarded by) G
fulfills the guardian security requirements [8]. The refinement step strengthens axiom
Gc1 2’ as follows, and leaves the other axioms unchanged.

Tr: G(∆msgReq(M,S,P, rec(R))) ∵ G1(msgReq(M,S,P, u) ∧ trusted(G) ∧
satisfy(R,P ))

In the next section we will show how to adapt the policy: we will need to find ways to
update the information encoded by the trusted predicate.

4 Adaptive security: an example

In the first part of this section (4.1), we describe the conceptual components of the
ASI of the WOLFASI call, namely Detector, Analyzer, and Responder, as Mobadtl

entities. The Detector and the Responder are specified as refinements of the generic
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Figure 3: Describing an ASI in the Mobadtl model: Detectors, Analyzer, and Respon-
ders.

guardians of Mobadtl , while the Analyzer will be specified as an agent, living in a
dedicated neighborhood, as illustrated in Figure 3. We add a log component, living
in the Analyzer’s neighborhood, to the infrastructure. Then, in Section 4.2 we specify
how to update the set of trusted neighborhoods, as a response to an action taken by the
Analyzer on the base of the information received by the Detectors.

4.1 ASI specification

We will assume just one analyzer, the agent a, in neighborhood ag. Detection is a
function performed in each guardian. Responses may require distributed computations
involving many guardians, but will originate in the Analyzer’s guardian ag.

To allow the detection mechanism to route the security warnings to the analyzer,
we introduce the profiling tag secw, that identifies a as the target of each warning
message:

D: Ḡ(satisfy({X}, {secw}) ↔ X = a)

Axiom D is a global invariant, expressing the fact that all agents know of the possibility
of sending security warnings. However, the profile mechanism decouples the use of
the mechanism from its implementation: we could think of scenarios where there are
cooperating analyzers, but still triggered by the same messages. Note that security
warnings are transported by the normal communication mechanism: they can reach
the Analyzer only if there is a path of trusted guardians to do so.

The Responder has two parts: a generic one and one related to the specific policy.
The generic part states the relation between a and ag.

R1: āg guarding(a)

An1: ā guardedby(ag)
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Responses are triggered by messages of the Analyzer. The adapt profile tag is used by
a to identify messages that carry adaptation suggestions. The responder will intercept
all messages tagged adapt, and signal the Analyzer that it is taking actions.

The remaining part of the Responder, namely which actions it takes, is specified
per policy, according to the following pattern, where F and F′ will be side conditions
on the request and on the state of the system, and the result of the actions, respectively:

RP: ag ∆msgReq(M,a, {adapt}, u) ∧ F LEADS TO F ′

4.2 Policy adaptation

Policy adaptation has two parts: analysis and action. Analysis, in our simple scenario,
boils down to let the Analyzer maintain a counter per each guardian in the system, a
threshold, and in counting the incoming warning messages:

An2: a (∆in(demote(X,D), S)∧counter(X,Y )) LEADS TO C a (counter(X,Z)∧
Z = Y + 1)

To guarantee the correctness of the counter mechanism, we need to refine the Mobadtl

communication model by adding an axiom requiring that the messages are processed
one at a time.

Buff: R̄((∆in(M,S) ∧ ∆in(M1, S1)) → (M = M1 ∧ S = S1))

Once a counter crosses the threshold, the Analyzer proposes to demote the involved
guardian, by issuing an adaptation message:

An3: a (∆counter(X,C) ∧ threshold(M) ∧ C ≥ M) LEADS TO

a ∆out(demote(X,D), {adapt})
The action starts in the Responder ag. We instantiate pattern RP, using the side con-
dition in the premise to quantify over all locally trusted guardians. The postcondition
permits to deal with events like network failures:

R4: ag ∆msgReq(demote(X,D), a, {adapt}, St) ∧ trusted(G) LEADS TO

G∆msgReq(demote(X,D), a, {adapt}, St1) ∨
G′toBeV etoed(msg(demote(X,D), a, {adapt}), {unreachable(G)})

The next action takes part in all the Responders. We instantiate again pattern RP, using
an empty side condition:

R5: G∆msgReq(demote(X,D), a, {adapt}, u) LEADS TO G ∼ trusted(X)

The next axiom is a global invariant, used to record in the analyzer’s log all the actions
taken to adapt the policy.
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R6: satisfy({X}, {adapt}) ↔ X = log

Once this core specification is completed with a few technical axioms, e.g. stating
initial conditions, and with a small theory of counters, we can prove the following
threshold policy property TP, which, if generalized, would characterize the policy
itself. It states that two warnings against a guardian may succeed in banning it, if the
threshold is two:

TP: a threshold(2) ∧ ag trusted(G) ∧
C1∆out(demote(X,D), {secw}) ∧ C2∆out(demote(X,D′),

{secw}) ∧ C1 �= C2

LEADS TO G ∼ trusted(X) ∨
a exc(msg(demote(X,D), a, {adapt}), {unreachable(G)}) ∨
C1exc(msg(demote(X,D), C1 , {secw}), {unreachable(a)}) ∨
C2exc(msg(demote(X,D′), C2, {secw}), {unreachable(a)})

4.3 Discussion

The major problem when reasoning about distributed global systems, is to foresee,
during specification, all the possible evolutions of the system, due to the fully asyn-
chronous setting. Formal reasoning permits to highlight the wrong assumptions that
can easily be made, when stating the properties a system should satisfy. For instance,
the proof of property TP requires that the threshold is invariant. In an approach to
adaptation, this is clearly a very strong assumption, one that we would avoid. How-
ever, there is a real difficulty here, which impacts on the locality/globality of the prop-
erties we can state. TP is a global property that relates the originators of the security
warnings and the analyzer: the “synchronization” of the consequences of two events in
the originators with the threshold in the analyzer can be guaranteed only if the thresh-
old is fixed. Otherwise, when the warnings reach the Analyzer, the threshold could
be higher, in a typical race, and the property cannot be stated. A property similar to
TP can be derived, with weaker assumptions (we can drop threshold invariance), at
the price of reasoning locally in the analyzer. We only need that the incoming warn-
ings are stable. This is a technical assumption, that can be interpreted as the request
that there is a log of the incoming security warnings. The property says that an action
against X is attempted either when the threshold is 2 and the second warning against
X is logged, or when the threshold goes down to 2, and there are at least two warnings
logged against X:

LTP: ag trusted(G) ∧ C1 �= C2 ∧ (
a (threshold(2) ∧ ∆(in(demote(X,D), C1) ∧ in(demote(X,D′), C2))) ∨
a (∆threshold(2) ∧ in(demote(X,D), C1) ∧ in(demote(X,D′), C2))

LEADS TO

G ∼ trusted(X)∨ a exc(msg(demote(X,D), a, {adapt}), {unreachable(G)})
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An even more local property can refer explicitly to a counter holding the number of
logged messages regarding X. This formulation could be easily parameterized with
respect to the value of the threshold.

Looking at the policy itself, either property shows that our scenario is prone to
attacks: a sufficiently large coalition of agents could succeed in banning any chosen
guardian, even ag itself. This last event can be avoided by disregarding warnings that
refer to ag, i.e. not counting these warnings:

SR: āg counter(X,Y ) → X �= ag

More general protection could be gained by more complex behaviors of the Analyzer,
e.g. rating also how much an agent sending a security warning can be trusted.

Finally, our scenario could be generalized to have distributed analyzers. If a com-
mon policy is required, distributed consensus algorithms should be used: a formaliza-
tion in our logic is given in [12].

5 Related work

We are not aware of any ASI formulation that permits to reason on the global proper-
ties of a fully asynchronous system. On the other side, asynchronous communication
is the most used abstraction when modeling global applications, and recent initiatives
in the USA and in Europe, like that on Global Computing in the IST/FET program,
well represent the relevance of this area. Particularly timely is the interest for founda-
tional work to define theories that can support and underlie the development of Global
Computing [11].

A major benefit of ∆DSTL(x) is that the exploitation of the local theories in
the proofs of the distributed properties becomes smooth and robust. An interesting
development would be the integration in the local theories of policy specifications à
la Halpern and Weissman [10]. A further example of refinement is predicate trusted,
which could be better detailed, to capture the reasons for trustworthiness or to carry a
“policy compliance value” as in the KeyNote Trust–management System [5].
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318



Towards an Algebraic Approach to Solve Policy Conflicts∗

Cataldo Basile Antonio Lioy
Politecnico di Torino

Dip. Automatica ed Informatica
Torino - Italy

17th June 2004

Abstract

Policy-based security is one of the most innovative area in the security arena. A
policy represents the high level targets and is applied by using sets of rules. A rule
consists in a set of conditions expressing the domain of application and a set of ac-
tions that must be performed when conditions are met. One of the major problems
is the conflict management, that is the decision of the action to be executed when
more than one rule applies.

In this paper we present a formal definition of policy, policy rules (in if-con-
ditions-then-actions format) and policy conflicts and we use semi-lattices to solve
inconsistencies. These algebraic structures are helpful to convey information about
the actions to enforce when conflicts occur as well as the importance or the severity
of the actions. We also extend the semi-lattice based approach to AND-ed and OR-
ed sets of actions.

Keywords: Security Policy; Policy Conflicts.

1 Introduction

Policy-based methodologies are one of the most effective approaches to reduce the
management costs because they permit the definition of general high-level targets
without the need of a detailed specification of the environment where the policy
will be applied. Since the policy drives the behaviour of each system component,
the presence of inconsistencies may lead the system to unknown states or errors.
Another large problem area is related to rule creation. Quite often, the rules for

∗This work is part of POSITIF project, funded by the EC under contract IST-2002-002314
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access control devices, are written by many administrators at different times and in
many cases without a clear idea of who wrote what, when the rules were written
and for what purposes. The problem of inconsistencies is particularly important for
systems implementing adaptive security. In fact, to maintain the system in a well
defined state, the reactive part could autonomously change various parameters or
perform actions whose coherence with the policy must always be guaranteed.

To solve these problems, we propose an analysis of the policy rules actions
to identify and resolve conflicts in a centralized manner. Our solution relies on
two ideas: conditions can be treated with a set-based approach, and semi-lattices
are algebraic structures useful for rule selection in conflict resolution. The use of
semi-lattices is justified because we found out a necessary and sufficient condition
that a set of actions must respect in order to be used for conflict resolutions. A
semi-lattice may be viewed as a partially ordered set and it is possible to represent
it as a graph, and this may give a great impact because it enables the inheritance
of all the mathematical results and algorithms from graph theory. In addition, our
method is independent of the target syntaxes and of the layer at which the rules are
defined. In fact, we abstract the conflict resolution as the selection of a new action
to enforce when two or more rules conflict, and this process is independent of the
details that characterize a specific context.

Natural application scenarios for this theory are filtering rules where the appli-
cable actions are a priori known and their number is finite or an ordering relation
between actions is defined, e.g. IPsec or SSL/TLS rules [1, 2], group key manage-
ment [3] policies and all the contexts where an autonomous or semi-autonomous
decision mechanism must be implemented.

This paper is organized as follows: in section 2 we briefly sketch the general
background of the field by referencing other works on policy-based security; in
section 3 we define policy terminology by using mathematical notation; in section 4
we fix the concept of policy conflict and we present an example of policy rules that
enforce only one action; in sections 5 and 6 we extend our analysis to the sets
of actions connected with logical operations; finally, in section 7 we briefly draw
conclusions and give some hints for future works.

2 Background and contributions

The process of selecting a new action when conflicts may arise in security is an
interesting field of investigation. In this area, semiring-based approaches are used
[5] to define constraints and to build an infrastructure to negotiate access control
policies [6]. Other works present an algebra to compose access control policies [7],
the hierarchy of policy [8], the conflicts that may happen in their definition [9], and
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in a recent paper [10] event calculus is used to apply abductive reasoning to analyse
policy and resolve conflicts. Another, more general, field of research use logic to
solve conflicts in many areas, from databases coherence and logic programming,
to applications of artificial intelligence such as knowledge assimilation, default
reasoning, high-level goal-reduction, truth maintenance, retractability and so on
[11].

The Policy Core Information Model (PCIM) [12] is an object-oriented infor-
mation model for representing policy information as extensions to the Common
Information Model (CIM) activity within the Distributed Management Task Force
(DMTF). The RFC-3198 is a glossary of policy-related terms that defines the con-
cepts and eliminates the inconsistencies in writing documents.

The definition of policy and policy rule presented in PCIM and its extension
shown in RFC-3198 gave us the starting point to refine these concepts in a way
useful for a formal approach. The policy is defined in two ways, “a definite goal”
and “a set of rules to administer, manage, and control access to network resources”;
furthermore the “policy is applied using a set of policy rules”. The policy rules or
simply the rules are described as “the binding of a set of actions to a set of con-
ditions - where the conditions are evaluated to determine whether the actions are
performed”. And a policy conflict “occurs when the actions of two rules (that are
both satisfied simultaneously) contradict each other” and it creates a problem be-
cause “the entity implementing the policy would not be able to determine which
action to perform”. Furthermore, the same authors state that “the implementers of
policy systems must provide conflict detection and avoidance or resolution mech-
anisms to prevent this situation”.

The purpose of this paper is not to propose another declarative language but
it wants to offer formal studies and requirements to make conflicts automatically
resolvable. Note that our approach is different from the cited works because we
concentrate on the security area, in particular on rules that are directly derived
from access control, and we try to give a solution to conflicts in an algebraic man-
ner. Another important aspect that is missed in other works is the mathematical
definition of this kind of policy rules extracted from security area. These rules are
used in many applications such as firewalls, screening routers, gateways, but no
formal treatment nor mathematical interpretation is given. We expect that this pa-
per stimulates further work in this area because we try to introduce concepts and
terms not yet defined in RFC-3198 and we open the way to the formalization based
on sets and graph theory as well as algebra and lattice theory. Even if we start
from a narrow domain, the formalism and the abstraction make straightforward the
extension to every case with a finite number of actions an order relation on the set
of actions.

321



3 Formal definition of policy rules

In this section we start from definitions and interpretations of the policy terminol-
ogy to formalize them. For this purpose we will present the necessary background
required for a mathematical model of the policy conflicts. From the application
of logical operations on the set of condition we show that these can be mapped
on union, difference and intersection of sets or cartesian products. By taking ad-
vantage of the equivalence of boolean algebras and the algebra of the subsets it is
possible to apply logical or set operations in indifferent manner. The merging of
these two worlds is a relevant result; in fact, it can give improvements in compu-
tational aspects since implementations may use the most convenient one. Every
argument is dealt in two steps: firstly practical cases extracted from real world
applications are introduced in order to illustrate basic ideas and their connections
to computer science security; then a formal modeling of problems and concepts is
presented in an axiomatic way.

Our treatment starts with some examples of rules in “if-condition-then-action”
format:

if Source IP Address == 192.168.3.34 then permit connection
if TCP Destination Port > 1023 then deny connection

The first rule states that the connections from 192.168.3.34 are allowed and the
second rule denies connections to non privileged ports.

To comply with RFC-3198, we define the first model of a policy rule:

{Ci}i∈I → {Aj}j∈J (1)

in which {Ci}i∈I is a family of conditions indexed by i (that ranges over the ele-
ments of the indexing set I) and {Aj}j∈J is a family of actions (indexed by j ∈ J).
It is worth noting that the symbol “→” in formula (1) has no logical meaning and
it is only the way to represent the concept of “binding” of the RFC-3198.

Conditions express limits on specific fields and are often collected in tables
having in the same column conditions related to the same category. In fact, in a
more restricted yet concrete view, conditions cannot express abstract constraints,
but it is always possible to find a more general category, a wider set, from which
they select the piece to consider. Last ideas are summarized in table 1 by using a
simplified abstract language [14, 15]; the categories are in this case SOURCE PORT,
IP SOURCE ADDR, IP DEST ADDR, DEST PORT in IP and TCP packets. R1

states that from the subnet 192.168.1.0/24 it is possible to use HTTP services, R2

blocks connections from the same subnet between non privileged ports and R3 de-
nies telnet connection from the subnet 192.168.3/24 to the subnet 192.168.0.0/16.
The symbol “*” means that any value is admitted.
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IP SOURCE ADDR SOURCE PORT IP DEST ADDR DEST PORT ACTIONS
R1 192.168.1.* * * 80 ALLOW
R2 192.168.1.* > 1024 * > 1024 DENY
R3 192.168.3.* * 192.168.* 23 DENY
R4 192.168.* * * ¬80 DENY

Table 1: Example of filter rules

An important characteristic of these categories is that they are non overlapping,
even if they may consist of values of the same type. For example, in the field
IP SOURCE ADDR or IP DEST ADDR the conditions regard IP addresses but they
impose restrictions on different portions of the IP packet. We call the different non
overlapping categories selectors. Each selector defines the set of the acceptable
values i.e. it must be of a specific selector type, for example integers, real numbers,
strings, regular expressions or user defined types.

The evaluation of a condition consists in controlling that the value of a mon-
itored parameter belongs to the ranges imposed by each condition. For example,
the condition on the IP source address in R1 of table 1 is evaluated to true if an IP
packet comes from the 192.168.1.123 but is evaluated to false if an IP packet comes
from 192.168.4.12. This consideration enables us to state that every condition can
be viewed, via set interpretation, as a subset of a specific selector.

It is often useful to impose conditions by specifying what is not acceptable. It
is the case of negative conditions like the rule R4 in table 1 that permits just HTTP
connections. The symbol ¬ indicates that is a negative condition.

We detail the simple case of conditions belonging to the same selector, next the
more complex case of conditions that are not related to the same selector.

3.1 Conditions that belong to the same selector

We need to formalize the above ideas in order to map of policy concepts to the
set-based framework. We assume in this section that a selector is a connected set
[17], i.e. it is not composed by more, logically separated, portions.

In order to define standard terminology the concept of condition is introduced
then it is refined in basic and compound condition.

Definition 1 (condition) A condition c, in a given selector S, is a subset c of S. A
condition is basic if it is representable as a connected subset1in a given selector,
compound otherwise.

1When the selector is endowed with an order relation, connected subsets correspond to intervals
[17].
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A condition c belongs to a selector S if c ⊆ S. All the compound conditions can
be expressed as the union of non overlapping basic conditions.

Let us introduce a function to express that a condition is satisfied.

Definition 2 (Valuation function) The valuation function associated to the con-
dition c ⊆ S is the function:

χc : S −→ {0, 1}
x �−→

{
1 if x ∈ c

0 if x /∈ c

The function χc is the characteristic function associated to the subset c of S.
It assigns the value 1 (i.e. TRUE) if an element of the selector belongs to c, 0
(i.e. FALSE) otherwise. A condition c is satisfied (in S) for a given value x if
χc(x) = 1; a condition is a tautology if c = S or alternatively if χc = 1 for
each x ∈ S. An example of tautology is the “*” symbol of previous tables. In the
opposite case, a condition always false (c = ∅) is impossible or absurd.

Negative conditions may be expressed as subsets of the selector. The “nega-
tion” is a unary operation and there is a precise connection between a condition
and its negated form: in classical logic, where a condition is satisfied, it is not sat-
isfied its negation. For this reason it is possible to map the negation to set minus
operation.

Definition 3 (negative condition) The negation ¬c of a condition c belonging to
S, is the condition S \ c.

The valuation function associated to ¬c is χ¬c = χS\c.
The set of all the subsets of a given set S is a boolean algebra with respect to

the union and intersection operation, the empty set and S [18]. This property may
be used to study the behaviour of conditions joined with AND or OR. In fact, due
to this equivalence, c1 ∧ c2 = c1 ∩ c2 and c1 ∨ c2 = c1 ∪ c2 hold. In terms of
valuation functions χc1∧c2 = χc1 · χc2 and χc1∨c2 = χc1 + χc1 − χc1∩c2 = χc1 +
χc1 − χc1 · χc2 = χc1∪c2 are valid. Due to the associativity of boolean operations,
these results can be extended to more than two conditions. Two conditions may
not intersect, in this case their AND is impossible, and the union of two conditions
may cover the whole selector, that is their OR is tautological. Logical expressions
containing AND and OR can be always viewed as a unique condition, since union,
intersection and difference of subsets of the same set are another subset, that is, a
condition.
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3.2 Conditions that belong to different selectors

In this section we complete the mapping of policy related concepts to set-based
terminology. Starting from formula (1), we study a more complex example of
conditions belonging to different selectors joined by logical AND or OR operations.
These expressions can be written in the Conjunctive Normal Form

∧∨
cij (CNF),

or in Disjunctive Normal Form
∨∧

cij (DNF) [13]. We prefer the DNF:

{Ci}i∈I =
∨
o∈O

∧
a∈A

coa = (c11∧· · ·∧c1n)∨(c21∧· · ·∧c2n)∨· · ·∨(cm1∧· · ·∧cmn)

We firstly concentrate on policy rules of the form:∧
a∈A

ca → {Aj}j∈J (2)

where ca ⊆ Sa and Sa is the a-th selector. Conditions belonging to the same
selector can be collapsed to one condition with the intersection operation and we
assume that all the ca belong to different selectors, that is Sx �= Sy if x �= y.

If two conditions c1 ⊆ S1 and c2 ⊆ S2 are joined with AND operation, it is
impossible to derive a unique condition, because selectors are non overlapping. To
satisfy c1 ∧ c2 it is needed that c1 is satisfied in S1 (χc1⊆S1 = 1) and c2 is satisfied
in S2 (χc2⊆S2 = 1). In this way the space where the conditions are evaluated
is extended to the cartesian product of both selectors S1 × S2 and the complex
condition corresponds to the region c1 × c2 ⊆ S1 × S2. The valuation function
χc1∧c1 is the characteristic function of c1 × c2 in S1 × S2.

It is possible to show that, by fixing the order of selectors, formula 2 is equiva-
lent to:

C → {Aj}j∈J C ⊆ S = S1 × S2 × · · · × Sn (3)

where n represents the number of selectors. The elements C and S in formula (3)
are called respectively the selection condition of the policy rule and the policy
rules domain. We call region or area any subset of the domain S . The definitions
introduced for conditions/selectors can be extended to selection conditions/policy
rules domain:

Definition 4 (selection condition) A selection condition in S = S1×S2×· · ·×Sn,
is the cartesian product C = c1×c2×· · ·×cn of conditions c1 ⊆ S1, · · · , cn ⊆ Sn.
A selection condition is said basic if each ci is basic, compound otherwise.

Since the selection condition of a rule is obtained as cartesian product of unions
of intervals, it can be considered as the union of rectangles if the number of dif-
ferent selectors n = 2, the union of parallelepiped if n = 3 and the union of
hyper-rectangles if n > 3 (see figure 1(a) for case n = 2).
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Even in this case the valuation function associated to a selection condition C ⊆
S is the characteristic function of C in S

The policy rules domain S is a set, and it forms a boolean algebra with respect
to the union and intersection operations, the empty set, and S itself So, the mapping
of OR to union (∨ ⇔ ∪) and of AND to intersection (∧ ⇔ ∩) hold. For this reason:

{Ci}i∈I =
∨
o∈O

∧
a∈A

coa =
∨
o∈O

Co =
⋃
o∈O

Co with Co ⊆ S

Even in this case, the negation of selection conditions can be obtained by using
set minus operation.

Definition 5 (negative selection condition) The negation ¬C of a selection con-
dition C ⊆ S is the subset S \ C .

While the negation of a condition is another condition, it is not generally true
that the negation of a selection condition is another selection condition.

3.3 Policy rules set and policy function

We formalize in this section the usual fact that a policy is expressed with rules and
the rules are generally collected in tables and add to our study the actions. We may
consider that the actions that can be applied are well known and organized in a set
A, that we call actions set.

When a rule C → {Aj}j∈J is stated, the concept of “bind” is well depicted
with a function. In fact, a rule defines the mapping between the selection condition
and the power set of A (i.e. the set of all the subsets of A, normally represented
by 2A). To completely define the function in all the policy rules domain a dummy
action can be introduced, the undefined action Au. The actions set is extended to
A∪{Au}. We assume that Au cannot be used in any policy rule, i.e. {Aj}j∈J ⊆ 2A

.

Definition 6 (rule function) The rule function associated to the rule C → {Aj}j∈J
is a function

r : S −→ 2A ∪ {Au}
x �−→

{
{Aj}j∈J if x ∈ C

{Au} otherwise

A compound selection condition C =
n∨

o=1
Co can be decomposed in its basic
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parts. The corresponding rule function can be rewritten as

x �−→



{Aj}j∈J if x ∈ C1

· · ·
{Aj}j∈J if x ∈ Cn

{Au} otherwise

It is clear that the same result can be obtained by superposing n rules C1 →
{Aj}j∈J , · · · , Cn → {Aj}j∈J . The OR symbol can be therefore extracted from
condition clause in order to obtain a set of rules having the same action clause. By
extending this approach, we formally define the policy rules sets.

Definition 7 (policy rules set) A set of policy rules is defined as:∨
k∈K

(
{ci}i∈Ik

→ {Aj}j∈Jk

)
=
∨

k∈K

(
Ck → {Aj}j∈Jk

)
(4)

that is the OR of many rules (1).

The k variable defines the indexing sets Ik and Jk or Ck in case of selection con-
ditions.

Furthermore, it is possible to consider that every database or collection of rules
determines a relation between the policy rules domain and the power set of A.

Definition 8 (policy function) A policy defined by a set of rules∨
k∈K

(
Ck → {Aj}j∈Jk

)

is a function:
p : S −→ 2A ∪ {Au}

x �−→



{Aj1}j1∈J1

if x ∈ C1

. . .

{Ajs}js∈Js
if x ∈ Cs

{Au} otherwise

In practice, a Policy Analyzer should return a decision by using previous for-
mula. The assumption made here is that a policy is a function i.e. there is no
conflict between rules. An example for the case n = 2 of policy function is shown
in figure 1(b).
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IP SOURCE SOURCE IP DEST DEST ACTIONS
ADDR PORT ADDR PORT

R1 192.168.1.* ∨ * * 23 ∨ 21 DENY
192.168.2.*

IP SOURCE SOURCE IP DEST DEST ACTIONS
ADDR PORT ADDR PORT

R11 192.168.1.* * * 23 DENY
R12 192.168.1.* * * 21 DENY
R13 192.168.2.* * * 23 DENY
R14 192.168.2.* * * 21 DENY

Table 2: Example of database including OR and its expanded form

Consequently, by applying AND and OR operation to a policy rule we may
obtain a policy rules set whose rules have basic selection conditions:

{Ci}i∈I → {Aj}j∈J =

(∨
o∈O

(∧
a∈A

coa

))
→ {Aj}j∈J =

∨
o∈O

(
Co → {Aj}j∈J

)
︸ ︷︷ ︸

formula (1)︸ ︷︷ ︸
formula (4)

An example including the OR in the conditions and the corresponding expanded
database is shown in table 2.

A B Action
R1 c1 * A1

R2 * c2 A2

Figure 2: Simple representation of two conflicting rules

4 Formal definition of policy composition

The actual complexity of conflicts detection originates from the lack of formal
treatments that limits current practices to the observation of the rules simultane-
ously activated. A systematic analysis of security policies is usually not foreseen.
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In this section we concentrate on the formalization of the interactions between pol-
icy rules to understand the meaning of the conflicts and the methods to resolve
them.

The first step is the precise definition of what a policy conflict is by using the
notation introduced in section 3.

Definition 9 (Policy conflict) Given two policy rules

R1 =
(
C1 → {Aj1}j1∈J1

)
R2 =

(
C2 → {Aj2}j2∈J2

)
a policy conflict occurs if:

C∩ = C1 ∩ C2 �= ∅ and {Aj1}j1∈J1
�= {Aj2}j2∈J2

In other words, the policy conflict happens if the selection conditions of the two
rules intersect but they do not specify the same set of actions. The only region
where errors originate is C∩. Indeed, in the regions out of the intersection there
are no conflicts because it is clear which actions to apply (see figure 2). In C∩ it
is impossible to define a policy function since for each element of the domain it is
needed the association to only one element of the codomain.

An example is useful to explain a particular case that may seem in contrast with
our model. Given two policy rules, the first rule is activated when the condition c1
is satisfied on attribute A, and the second is activated when the condition c2 is
satisfied on attribute B. It may seem that the rules have no intersection but, due to
the independence of attributes A and B, it is possible that both rules are satisfied
at the same time. To solve this apparent contradiction it is necessary to think that
if a rule does not foresee limits for a given selector, a condition always true must
be implicitly assumed. Figure 2 illustrates the problem: R1 and R2 are in conflict
according to definition (9).

Different methods for conflict resolution were presented [16]: the prioritization
of the rules based on the order in the database, Deny Take Precedence (DTP), if the
actions or policy rule more restrictive are preferred and Most/Least Specific Take
Precedence (MSTP/LSTP), if the policy rule with the most/least specific condition
is preferred. We divide them in two categories: methods that solve conflict by
using only the action clause of the policy rule and methods that use the entire
rule. In this paper we focus only on the first category, i.e. we formalize resolution
strategies based only on the value of the actions imposed by the rules because for
these methods we can give a complete theory.

Next, we concentrate on the region C∩ and choose the resolution methods
based only on the action values. In that area, the resulting rule will impose a new
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action in function of the conflicting actions:

C∩ → f
(
{Aj1}j1∈J1

, {Aj2}j2∈J2

)
We start from a simple case to extend these results to more general instances.

4.1 Simple case: policy rules with action clause composed by one ac-
tion

Let us focus on conflicting rules in which the action clause is composed by only
one action, for example R1 = (C1 → A1) and R2 = (C2 → A2). Therefore, a
new policy rule is needed for C∩, that is R∩ = (C∩ → f(A1, A2)). We introduce
an abstract operation “◦” in the actions set A:

◦ : A×A −→ A
that must represent the act of choosing the action to be applied when two policy
rules conflict. With this operation R∩ becomes (C∩ → A1 ◦ A2). Let us show
by an example the application of “◦” operation. If a rule requires confidentiality
for a VPN channel by using RC4 and it is in conflict with another rule requiring
confidentiality by using DES, one of the possible solutions of this inconsistency
may be RC4 ◦ DES = 3DES.

We work now to define an algebraic structure on the set A endowed with the
“◦” operation represented as (A, ◦). The first property required from an operation
describing the interactions between rules is associativity:

∀a, b, c ∈ A a ◦ (b ◦ c) = (a ◦ b) ◦ c (SL1)

This characteristic reflects that the composition is done from a static point of view:
rules that conflicts in a particular area are identified and the action to be applied is
selected by using only the value taken by the rules in this area. Another important
property is commutativity:

∀a, b ∈ A a ◦ b = b ◦ a (SL2)

In general, commutativity does not hold for any conflict resolution mechanism.
For example, in the filtering database of routers, the action selected depends on
the order. If two rules R1 = (C1 → A1) and R2 = (C2 → A2) appear in different
order the result is different; in fact, if R1 is found before R2, then the action applied
is A1 and, if R2 is found before R1, then the action applied is A2. It may seem that
A1 ◦ A2 �= A2 ◦ A1 and that commutativity must not be required. But this kind of
resolution processes do not base their decision only on the information contained
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in the policy rules. Indeed, they make use of an external property, the order of the
database, to select the action to perform. For the resolution strategies based only on
the action clause, the commutativity is adequate in every case. For completeness,
we need to define the composition of an action with itself. We impose to the “◦”
operation the idempotence:

∀a ∈ A a ◦ a = a (SL3)

The decision of imposing the idempotence is due to the meaning of the “a ◦ a”
operation: this operation corresponds to the case of composition of rules that do
not conflict or the composition of a policy rule with itself.

In conclusion, our structure must respect the axioms SL1, SL2, SL3, that char-
acterize a well known algebraic structure: a semi-lattice [20]. It is important to
highlights that these properties are needed even when the action clause is a set.

We can conclude that every actions set used in policy description, must be
at least in the form of semi-lattice, if it should support “conflict detection and
avoidance or resolution mechanisms” based on the value of the action clause.
This condition is sufficient because, if the actions set is a semi-lattice, it is always
possible to select a new action to apply (by using the “◦” operation); it is necessary
because, to automatically select a new action for each conflict that may arise, the
composition of every couple of actions must be known.

4.2 The semi-lattice

A semi-lattice can be also viewed as a set provided of a specific order relation.
In this section we briefly sketch main definitions and results to introduce in our
treatment the connection to graph theory [19].

A partially ordered set is a system consisting of a set S and a relation “≤”
that is reflexive (∀a a ≤ a), anti-symmetric (If a ≤ b and b ≤ a then a = b) and
transitive (If a ≤ b and b ≤ c, then a ≤ c). An element u ∈ S is an upper
bound for a subset A of a partially ordered set S, if a ≤ u, for all a ∈ A. An
element u ∈ S is a least upper bound (lub) if it is an upper bound and, for all
the upper bounds v of A, the relation u ≤ v holds. Two elements a, b ∈ S are
called comparable if a ≤ b or b ≤ a holds. In general, not all the elements are
comparable.

Definition 10 (finite semi-lattice) A finite (and thus complete) semi-lattice (struc-
ture) S , is a partially ordered set that includes a finite number of elements, in which
any subset A ⊆ S , have a least upper bound in S .

Another important property of finite semi-lattice is the presence of an element
greater than all the others usually called maximum or top element. The calculation
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of the least upper bound is directly defined for more than two actions and this
property is important because it permits to resolve conflicts in regions where more
than two rules intersect.

A common representation of ordered sets is the cover graph and it is shown in
figure 3. An element a is a cover of b if and only if a ≤ b, and no element u exists
such that a ≤ u ≤ b. The cover graph is a directed acyclic graph where the edges
indicate the cover relation, and the nodes are the elements of the set.

By defining the “≤” operation on the actions set (A, ◦) with the following
binary relation:

≤⊆ A×A a1 ≤ a2 ⇐⇒ a1 ◦ a2 = a2

the definition (10) is equivalent to the three axioms SL1, SL2, SL3 [20]. The set
of actions can be completed to a semi-lattice by associating a least upper bound to
the couples of actions and, if needed, by extending the actions set with artificial
actions. In many practical cases, the actions sets do not include the top element
that must be artificially created. This is the case of IPsec.

5 More complex example of composition: the AND case

We investigated the simple cases of policy rules in order to find structures where the
conflict resolution can be applied. We examine now the behaviour of the conflict
resolution mechanisms when logical AND and OR operations are applied to the
action clause of the rules. Firstly, we study how the actions set changes if we add
AND of actions and the relations between AND-ed conditions and lest upper bounds.
Finally we show, by presenting an example, that in almost all the practical cases
these problems have an easy and natural solution.

The structure of {Aj}j∈J by using the Disjunctive Normal Form (DNF) is:

{Aj}j∈J =
∨

k∈K

∧
i∈I

aki = (a11∧· · ·∧a1n)∨(a21∧· · ·∧a2n)∨· · ·∨(am1∧· · ·∧amn)

(5)
The right side of the formula (5) means that “if the conditions are all met then
apply (a11 ∧ a12 ∧ · · · ∧ a1n) or apply (a21 ∧ a22 ∧ · · · ∧ a2n) or · · · or apply
(am1 ∧ am2 ∧ · · · ∧ amn).

Every (ak1 ∧ ak2 ∧ · · · ∧ akn) can be considered as a single non-atomic action,
i.e. a sequence or a parallel execution of the actions aki. Further studies must be
done in order to characterize the resolution processes for more complex type of
actions in practical applications. We study the behaviour of a conflict resolution
process, if we take into account, for each couple of actions a, b ∈ A, a new action
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z = a ∧ b and we extend the previous definition to the general case of
∧

i∈I ai. In
practical applications, it is not needed to consider all the n-tuples, but it suffices
to restrict the attention to those that appear in the set of rules. In this way, A is
enlarged to A∧ including all the considered n-tuples. The actions set A is a semi-
lattice and this algebraic structure changes when it is extended to A∧. The action
z = a ∧ b can be considered greater than the starting actions because imposes not
only a or b but both2. So the problem is to relate the action z = a ∧ b with the
least upper bound l = lub{a, b} (see figure 4 or figure 5). Moreover, it must be
considered the relation of a∧ b with other elements of A. It is impossible to define
a systematic technique to select the correct mode of interconnecting z and l, and
this decision must be taken in function of the policy management strategy. The
result of this task is a rearrangement of the starting semi-lattice that maintains the
form of a partially ordered set. But in order to make A∧ a semi-lattice it is needed
to add missing least upper bounds.

Previous problem may appear difficult to solve and too abstract to be interesting
for practical applications. But is rarely needed to consider them in detail. In fact,
actions often concern separated domains of application. This is the case of many
cryptographic actions where three categories may be identified: hash, cipher and
compression. These kind of actions are implicitly combined by using AND connec-
tion. We introduce abstract non overlapping categories, A1,A2, . . . ,An, endowed
with a partial order (Ai,≤i), e.g. RC2-40 < DES < 3DES < AES. Since all the
actions in the same category are mutually exclusive, they are obtained by AND-ing
elements that belong to different categories. For this reason, the structure of A is
the cartesian product of partially ordered sets Aπ = A1 ×A2 × · · · × An. It can
be shown that the cartesian product of partially ordered sets is another partially
ordered set with the “≤” defined by the relation a1 ≤ a2 ⇐⇒ a1i ≤i a2i,∀i ≤ n
where a1 = (a11, a12, . . . , a1n) ∈ Aπ, a2 = (a21, a22, . . . , a2n) ∈ Aπ. Aπ must
be a semi-lattice, but, if ai ∈ Ai and aj ∈ Aj , with i < j, it is possible to write
ai = (∅, . . . , ∅, ai, ∅, . . . , ∅) ∈ Aπ, aj = (∅, . . . , ∅, ∅, aj , ∅, . . . , ∅) ∈ Aπ

and ai ∧ aj = (∅, . . . , ∅, ai, ∅, . . . , ∅, aj , ∅, . . . , ∅). We note that ai ∧ aj is also
the least upper bound lub{ai, aj} and we no rearrangement is needed.

2This is not true when the “◦” operation abstracts a conflict resolution strategy that selects less
restrictive actions. However, these methods can be reduced to the examined case by defining the “≤”
operations as a1 ≤ a2 ⇔ a1 ◦ a2 = a1 and the actions in a negative form, i.e. “do not apply a1”,
“do not apply a2” and so on.
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6 More complex example of composition: the OR case

After having analysed the single components of formula (5), we will now consider
the case of

∨
k∈K ak with ak ∈ A∧. The first step consists in assigning to the “∨”

logical operation the meaning of the union in the sets. In fact, if a rule imposes
a1 or a2 or . . . or an, it means that it is possible to choose the action in a set of
allowed actions. It is important to distinguish the OR case from a conflict. In fact,
a policy rule having more than one action in the action clause expresses the will of
allowing different actions; conversely a conflict is in general non expected. This
type of rules is found in all the SSL browsers where it is possible to choose between
different Cipher Suites (e.g. RSA+SHA1+RC4-128 or AES+RSA+DH+SHA1).

Let us introduce an internal operation “∗” that represents the conflict resolution
process in 2A∧

:
∗ : 2A∧ × 2A∧ −→ 2A∧

Sa ∗ Sb �−→ S∗

with S∗ = {a ◦ b,∀a ∈ Sa,∀b ∈ Sb}. In other words, the composition of two
subsets of actions gives another subset constituted by all the compositions in A∧ of
elements in Sa with elements in Sb. (2A∧

, ∗) must be a semi-lattice, i.e. associative,
commutative and idempotent.

Associativity (Sa ∗ (Sb ∗ Sc) = (Sa ∗ Sb) ∗ Sc) and commutativity (Sa ∗ Sb =
Sb ∗ Sa) are trivially verified since they derive from SL1 and SL2 in A∧.

The idempotence is in general non valid. It is possible to choose a, b ∈ Sa

and a ◦ b /∈ Sa and this demonstrates that Sa ∗ Sa �= Sa. The construction of a
subset of the subsets of A∧ in which the idempotence holds (i.e. a subsets S ⊆ A∧

such that S ∗ S = S or, equivalently, ∀ a, b ∈ S ⇒ a ◦ b ∈ S), means
that the “◦” operation must be closed in S. Since associativity, commutativity,
idempotence and closure hold in S, S is a sub-semi-lattice. We call A∨ the set of
the sub-semi-lattices of A∧.

The requirement of action clauses in form of sub-semi-lattice is not so restric-
tive. In fact, single actions of A∧ and intervals in a semi-lattice are sub-semi-
lattices. The union of intervals or, in general, the union of sub-semi-lattices is not a
sub-semi-lattice, but it is easy to show that the subset obtained by adding the least
upper bound of the involved elements is a sub-semi-lattice.

We conclude that the action set A∨, needed to use the logical OR operation in
the action clause, must be the set of all the sub-semi-lattices of the semi-lattice A∧.
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7 Conclusions and future work

In this paper we presented a formal model to describe policy rules and policy sets.
We formalized a mathematical background needed to define policy conflicts and to
solve them with methods that use only the value of the action clause. We deduced
that every actions set must be a semi-lattice in order to be used for conflict resolu-
tion. We analysed a simple case where action clauses are composed only by one
action, and we extended it to action clauses formed by actions connected with log-
ical AND and OR operations. We listed a series of activities and tasks that must be
considered by the policy management to assure that the policy conflict resolution
mechanism works.

The results obtained in this paper can be extended to the case of policy rules that
include the NOT operation for actions. It is also possible to add logical constraints
between actions that modify the actions set. The application of the semi-lattice
based approach must be investigated for more complex resolution strategies. In
addition, we are working to an object-oriented application for policy conflict reso-
lution simulations. Moreover, we think that it is straightforward to use this model
for IPsec channels or web applications protected with SSL.

References

[1] S. Kent, R. Atkinson, “IP Encapsulating Security Payload (ESP)”, RFC-2406

[2] T. Dierks, R. Atkinson, “The TLS Protocol – Version 1.0”, RFC-2246
[3] M. Baugher, B. Weis, T. Hardjono, H. Harney, “The Group Domain of Inter-

pretation”, RFC-3547
[4] Westerinen et al., “Terminology for Policy-Based Management”, RFC-3198
[5] S. Bistarelli, U. Montanari, F. Rossi, “Semiring-Based Constraint Solving

and Optimization”, Journal of ACM, vol.44, n.2, pp. 201-236, 1997
[6] V.G. Bharadway, J.S. Baras “Towards Automated Negotiation of Access Con-

trol Policies”, in Policy 2003: Workshop on Policies for Distributed Systems
and Networks, pp. 111-119 June 04 - 06, 2003 Lake Como, Italy

[7] P. Bonatti, S. de Capitani di Vimercati, P. Samarati, “An Algebra for Com-
posing Access Control Policies”, ACM Transactions on Programming Lan-
guages and Systems, Vol. 5, Issue 1, pp. 1-35, 2002

[8] J. Moffet, M.S. Sloman, “Policy Hierarchies for Distributed System Manage-
ment”, IEEE JSAC, Vol. 11, n.9, 1993

[9] E.C. Lupu, M.S. Sloman, “Conflicts in Policy-Based Distributed Systems
Management”, in IEEE Transactions on Software Engineering, vol. 25, Issue
6, pp. 852-869, 1999

335



[10] A.K. Bandara, E.C. Lupu, A. Russo, “Using Event Calculus to Formalise
Policy Specification and Analysis”, in Policy 2003: Workshop on Policies for
Distributed Systems and Networks, pp. 26-41, June 04 - 06, 2003 Lake Como,
Italy

[11] A.c. Kakas, R.A. Kowalski and F. Toni, The role of abduction in logic pro-
gramming, in Handbook of logic in Artificial Intelligence and Logic Pro-
gramming 5, 5, pp. 235-324, Oxford University Press, 1998.

[12] Moore et al., “Policy Core Information Model – Version 1 Specification”,
RFC-3060

[13] S.C. Kleene, “Mathematical Logic”, John Wiley & Sons Inc., 1967
[14] J. Jason, L. Rafalow, E. Vyncke, “IPsec Configuration Policy Information

Model”, RFC-3585
[15] Check Point Software L.T.D., “Firewall-1 Access Control”,

www.checkpoint.com/products/protect/firewall-1 access.html
[16] S. Castano, M. Fugini, G. Martella, P. Samarati, “Database Security”, Addi-

son Wesley, 1994
[17] N. Bourbaki, “General Topology”, Springer-Verlag, 1971
[18] F. M. Brown, “Boolean Reasoning”, Dover Publications Inc., 1990
[19] G. Birkhoff, “Lattice theory”, Amer. Math. Soc. Colloquium publication 25,

3rd edition, 1967
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(a)

(b)

Figure 1: (a) simple rule expressed as direct product of two functions; (b) policy
function
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Figure 3: An example of representation of
partial odered set

Figure 4: Example of cover
graph if z ≤ l

Figure 5: Example of cover
graph if l ≤ z
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Performance-sensitive Real-time Risk Management is
NP-Hard

Ashish Gehani
Department of Computer Science, Duke University

Abstract

This paper introduces a formal model for quantifying host-based risk, and
two classes of primitives that can be utilized to manage it. The performance
overhead introduced by selecting a set of response primitives to manage the risk
is also factored into the framework. The resulting problem, of managing risk
while minimizing the impact on performance is shown to be NP-hard. Since the
goal is real-time response, a heuristic is described that allows the first primitive
to be chosen in constant time (which is frequently sufficient to disrupt an attack).

1 Introduction

If a system is simple, its properties can be completely ascertained, either analytically or
empirically. When a system is complex, analytical tools can not address all issues and
empirical techniques require more resources than can typically be devoted to the task
of verification. To secure an information processing system, it is necessary to ensure
that it obeys a set of rules and maintains a set of properties. Modern computing systems
are complex. This makes it infeasible to address the task empirically. Analytical
techniques can alleviate the issue, but they can not resolve it completely [Harrison76].
In this context, risk serves as a measure of the extent to which the security of the
system is likely to be violated.

Early approaches to computer security risk management employed static strate-
gies, such as the use of passwords, discretionary or mandatory access control, and
encrypted network connections [Fletcher95]. These approaches did not provide the
flexibility needed to allow risk managers to alter the levels of risk they were willing to
tolerate in exchange for commensurate costs. Hence, techniques to dynamically vary
the risk were developed. Inherent in the new approach was the need for risk analysis
to quantify the level of risk present in each configuration of a system.

Large data processing centers started to use the Annual Loss Expectancy (ALE)
metric [FIPS31], [FIPS65]. To compute it, the set of all possible hazards that could
impact the system over the course of a year was enumerated as H = {h1, h2, . . . , hn}.
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The loss associated with each hazard hα was denoted by l(hα) and the frequency with
which it was likely to occur was denoted by f(hα). The risk was then calculated using:

ALE =
α=n∑

α=1

f(hα) × l(hα) (1)

The utilization of the paradigm by a number of commercial tools [NIST91] cou-
pled with a focused research effort [CSRMMBW88], [CSRMMBW89],
[CSRMMBW90],[CSRMMBW91] resulted in a number of improvements. The hazard
construct was decomposed into threat and vulnerability components. The likelihood
of a threat being present was added as a factor, replacing the hazard frequency. Each
vulnerability was coupled with an associated safeguard. The loss from a hazard’s
occurrence was modeled as a set of consequences that could affect each asset under
consideration. Finally, risk management was formulated as the maintenance of a set
of requirements framed as constraints on the aforementioned factors [NIST800-12].

This paper contributes specific semantics in the operating system paradigm for the
generic risk analysis concepts of threats, likelihoods, exposures, safeguards, assets and
consequences. These are then utilized to construct a model for managing a host’s risk
in real-time.

2 Runtime Risk Management

The primary goal of an intrusion response system is to guard against attacks. Primitives
that address specific threats have been developed. However, invoking these arbitrarily
may safeguard part of the system but leave other weaker areas exposed. Thus, to
effect a rational response, it is necessary to weigh all the possible alternatives. A
course of action must then be chosen which will result in the least damage, while
simultaneously assuring that cost constraints are respected. This is the very problem
that risk management addresses.

2.1 Response Primitives

Two types of response primitives are required. They need modifications of the access
control subsystem and the filesystem, respectively. The first type institutes further run-
time checks before granting specific permissions, in order to reduce the host exposure.
The second type requires data to be stored in a protected state, and allows the rapid
disabling of transparent decryption, signing of modifications and remote replication
of specific files, in order to curtail the consequences of an attack. An instance of ei-
ther type can be chosen as a response at any time. Choosing a primitive imposes an
overhead on system performance that is proportional to the frequency with which the
primitive is used in a typical workload.

340



Threat

Vulnerabilities

Assets

Risk

Risk

Threshold
Consequences

Safeguards

Likelihood

YesReconfigure

Figure 1: Risk can be analyzed as a function of the threats, their likelihood, the vul-
nerabilities, the safeguards, the assets and the consequences. Risk can be managed by
using the safeguards to control the exposure of vulnerabilities and manipulating the
assets to limit the consequences.

2.2 Risk Factors

Analyzing the risk that a system is faced with requires knowledge of a number of
factors. Below we describe each of these factors along with its associated semantics.
We define these in the context of the operating system paradigm since our goal is
host-based response.

The paradigm assumes the existence of an operating system with a trusted refer-
ence monitor that mediates access by subjects to objects in the system. In addition,
the file system and auditing subsystem are assumed to be trusted components in the
operating system. Finally, a host-based intrusion detection system is assumed to be
present and operational.

Threats A threat is an agent that can cause harm to an asset in the system. We define
a threat to be a specific attack against any of the application or system software
that is running on the host. It is characterized by an intrusion detection signa-
ture. The set of threats is denoted by T = {t1, t2, . . .}, where tα ∈ T is an
intrusion detection signature. Since tα is a host-based signature, it is comprised
of an ordered set of events S(tα) = {s1, s2, . . .}. If this set occurs in the order
recognized by the rules of the intrusion detector, it signifies the presence of an
attack.

Likelihood The likelihood of a threat is the hypothetical probability of it occurring. If
a signature has been partially matched, the extent of the match serves as a pre-
dictor of the chance that it will subsequently be completely matched. A function
µ is used to compute the likelihood of threat tα. µ can be threat specific and will
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depend on the history of system events that are relevant to the intrusion signa-
ture. Thus, if E = {e1, e2, . . .} denotes the ordered set of all events that have
occurred, then:

T (tα) = µ(tα, E
≺
∩ S(tα)) (2)

where
≺
∩ yields the set of all events that occur in the same order in each input

set.

Assets An asset is an item that has value. We define the assets to be the data stored in
the system. In particular, each file is considered a separate object oβ ∈ O, where
O = {o1, o2, . . .} is the set of assets. A set of objects A(tα) ⊆ O is associated
with each threat tα. Only objects oβ ∈ A(tα) can be harmed if the attack that is
characterized by tα succeeds.

Consequences A consequence is a type of harm that an asset may suffer. Three types
of consequences can impact the data. These are the loss of confidentiality, in-
tegrity and availability. If an object oβ ∈ A(tα) is affected by the threat tα, then
the resulting costs due to the loss of confidentiality, integrity and availability are
denoted by c(oβ), i(oβ), and a(oβ) respectively. Any of these values may be 0
if the attack can not effect the relevant consequence. However, all three values
associated with a single object can not be 0 since in that case oβ ∈ A(tα) would
not hold. Thus, the consequence of a threat tα is:

C(tα) =
∑

oβ∈A(tα)

c(oβ) + i(oβ) + a(oβ) (3)

By removing an asset from the system, the consequences it faces can be cur-
tailed [Gehani03]. In the case of data availability, replication serves this pur-
pose, while in the case of confidentiality and integrity, cryptographic operations
can be used. For the purpose of estimating risk, a consequence curtailment ef-
fectively removes the asset from the analysis.

Vulnerabilities A vulnerability is a weakness in the system. It results from an error
in the design, implementation or configuration of either the operating system or
application software. The set of vulnerabilities present in the system is denoted
by W = {w1, w2, . . .}. W (tα) ⊆ W is the set of weaknesses exploited by the
threat tα to subvert the security policy.

Safeguards A safeguard is a mechanism that controls the exposure of the system’s
assets. The reference monitor’s set of permission checks P = {p1, p2, . . .}
serve as safeguards in an operating system. Since the reference monitor medi-
ates access to all objects, a vulnerability’s exposure can be limited by denying
the relevant permissions. The set P (wγ) ⊆ P contains all the permissions that
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are requested in the process of exploiting vulnerability wγ . The static config-
uration of a conventional reference monitor either grants or denies access to a
permission pλ. This exposure is denoted by v(pλ), with the value being either
0 or 1. An active reference monitor 1 [Gehani03] can reduce the exposure of a
statically granted permission to v′(pλ), a value in the range [0, 1]. This reflects
the nuance that results from evaluating predicates as auxiliary safeguards.)

Thus, if all auxiliary safeguards are utilized, the total exposure to a threat tα is:

V(tα) =
∑

pλ∈P̂ (tα)

v(pλ) × v′(pλ)
|P̂ (tα)|

(4)

where:
P̂ (tα) =

⋃

wγ∈W (tα)

P (wγ) (5)

2.3 Risk Analysis

The risk to the host is the sum of the risks that result from each of the threats that it
faces. The risk from a single threat is the product of the chance that the attack will
occur, the exposure of the system to the attack, and the cost of the consequences of the
attack succeeding [NIST800-12]. Thus, the cumulative risk faced by the system is:

R =
∑

tα∈T

T (tα) × V(tα) × C(tα) (6)

2.4 Risk Management

If the risk posed to the system is to be managed, the current level must be continuously
monitored. When the risk rises past the threshold that the host can tolerate, the sys-
tem’s security must be tightened. Similarly, when the risk decreases, the restrictions
can be relaxed to improve performance and usability. This process is elucidated below.

The system’s risk can be reduced either by reducing the exposure of vulnerabilities
or limiting the consequences to the data in the event of a successful attack. The former
is effected through the use of auxiliary safeguards prior granting a permission. The
latter is realized by cryptographically protecting threatened files. Additionally, both
approaches may be used simultaneously. Similarly, if the threat reduces, the restrictive
permission checks and data protection can be relaxed.

1An active reference monitor allows each permission to be associated with an independent set of
constraints which are verified at runtime prior to granting the permission. By limiting the circumstances
under which the permission will be granted, the exposure of the resource being protected is reduced by a
pre-determined fraction.
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2.4.1 Managed Risk

The set of permissions P is kept partitioned into two disjoint sets, Ψ(P ) and Ω(P ),
that is Ψ(P ) ∩ Ω(P ) = φ and Ψ(P ) ∪ Ω(P ) = P . The set Ψ(P ) ⊆ P contains the
permissions for which auxiliary safeguards are currently active. The remaining per-
missions Ω(P ) ⊆ P are handled conventionally by the reference monitor, using only
static lookups rather than evaluating associated predicates prior to granting these per-
missions. Similarly, the set of files O is kept partitioned into two disjoint sets, Ψ(O)
and Ω(O), where Ψ(O) ∩ Ω(O) = φ and Ψ(O) ∪ Ω(O) = O. The set Ψ(O) ⊆ O
contains the files that are currently inaccessible and unmodifiable due to their cryp-
tographic encapsulation. The remaining files Ω(O) ⊆ O are transparently accessible
and modifiable.

At any given point, when safeguards Ψ(P ) and curtailments Ψ(O) are in use, the
current risk R′ is calculated with:

R′ =
∑

tα∈T

T (tα) × V ′(tα) × C′(tα) (7)

where:

V ′(tα) =
∑

pλ∈P̂ (tα)∩Ω(P )

v(pλ)
|P̂ (tα)|

+
∑

pλ∈P̂ (tα)∩Ψ(P )

v(pλ) × v′(pλ)
|P̂ (tα)|

(8)

and:
C′(tα) =

∑

oβ∈A(tα)∩Ω(O)

c(oβ) + i(oβ) + a(oβ) (9)

2.4.2 Risk Tolerance

While the risk must be monitored continuously, there is a computational cost incurred
each time it is recalculated. Therefore, the frequency with which the risk is estimated
must be minimized to the extent possible. Instead of calculating the risk synchronously
at fixed intervals in time, we exploit the fact that the risk level only changes when the
threat to the system is altered.

An intrusion detector is assumed to be monitoring the system’s activity. Each time
it detects an event that changes the extent to which a signature has been matched, it
passes the event e to the intrusion response subsystem. The level of risk Rb before e
occurred is noted, and then the level of risk Ra after e occurred is calculated. Thus,
Ra = Rb + ε, where ε denotes the change in the risk. Since the risk is recalculated
only when it actually changes, the computational cost of monitoring it is minimized.

Each time an event e occurs, either the risk decreases, stays the same or increases.
Each host is configured to tolerate risk upto a threshold, denoted by R0. After each
event e, the system’s response guarantees that the risk will return to a level below
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this threshold. As a result, Rb < R0 always holds. If ε = 0, then no further risk
management steps are required.

If ε < 0, then Ra < R0 since Ra = Rb + ε < Rb < R0. At this point, the
system’s security configuration is more restrictive than it needs to be. To improve
system usability and performance, the response system must deactivate appropriate
safeguards and curtailments, while ensuring that the risk level does not rise past the
threshold R0.

If ε > 0 and Ra ≤ R0, then no action needs to be taken. Even though the
risk has increased, it is below the threshold that the system can tolerate, so no further
safeguards or curtailments need to be introduced. In addition, the system will not be
able to find any set of unused safeguards and curtailments whose removal will increase
the risk by less than R0−Rb− ε, since the presence of such a combination would also
mean that the set existed before e occurred. It is not possible that such a combination
of safeguards and curtailments existed before e occurred since they would also have
satisfied the condition of being less than R0−Rb and would have been utilized before
e occurred in the process of minimizing the impact on performance in the previous
step.

If ε > 0 and Ra > R0, then action is required to reduce the risk to a level below
the threshold of tolerance. The response system must search for and implement a set
of safeguards and curtailments to this end.

2.4.3 Recalculating Risk

When the risk is calculated the first time, Equation 6 is used. Therefore, the cost
is O(|T | × |P | × |O|). Since the change in the risk must be repeatedly evaluated
during real-time reconfiguration of the runtime environment, it is imperative the cost
is minimized. This is achieved by caching all the values V′(tα) × C′(tα) associated
with threats tα ∈ T during the evaluation of Equation 6. Subsequently, when an event
e occurs, the change in the risk ε = δ(R′, e) can be calculated with cost O(|T |) as
described below.

The ordered set E refers to all the events that have occurred in the system prior to
the event e. The change in the likelihood of a threat tα due to e is:

δ(T (tα), e) = µ(tα, (E ∪ e)
≺
∩ S(tα)) − µ(tα, E

≺
∩ S(tα)) (10)

The set of threats affected by e is denoted by ∆(T, e). A threat tα ∈ ∆(T, e) is
considered to be affected by e if δ(T (tα), e) �= 0, that is its likelihood changed due to
the event e. The resultant change in the risk level is:

δ(R′, e) =
∑

tα∈∆(T,e)

δ(T (tα), e) × V ′(tα) × C′(tα) (11)
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2.5 Cost/Benefit Analysis

After an event e occurs, if the risk level Ra increases past the threshold of risk tol-
erance R0, the goal of the response engine is to reduce the risk by δg ≥ Ra − R0

to a level below the threshold. To do this, it must select a subset of permissions
ρ(Ω(P )) ⊆ Ω(P ) and a subset of objects ρ(Ω(O)) ⊆ Ω(O), such that adding safe-
guards and curtailments respectively to the two sets will reduce the risk to the desired
level. By ensuring that the permissions in ρ(Ω(P )) are granted only after relevant
predicates are verified and files in ρ(Ω(O)) are cryptographically protected, the result-
ing risk level is reduced to:

R′′ =
∑

tα∈T

T (tα) × V ′′(tα) × C′′(tα) (12)

where the new vulnerability measure, based on Equation 4, is:

V ′′(tα) =
∑

pλ∈(P̂ (tα)∩Ω(P )−ρ(Ω(P )))

v(pλ)
|P̂ (tα)|

+
∑

pλ∈(P̂ (tα)∩Ψ(P )∪ρ(Ω(P )))

v(pλ) × v′(pλ)
|P̂ (tα)|

(13)
and the new consequence measure, based on Equation 3, is:

C′′(tα) =
∑

oβ∈(A(tα)∩Ω(O)−ρ(Ω(O)))

c(oβ) + i(oβ) + a(oβ) (14)

Instead, after an event e occurs, if the risk level Ra decreases, the goal of the
response engine is to allow the risk to rise by δg ≤ R0 − Ra to a level below the
threshold of risk tolerance R0. To do this, it must select a subset of permissions
ρ(Ψ(P )) ⊆ Ψ(P ) and a subset of objects ρ(Ψ(O)) ⊆ Ψ(O), such that removing the
safeguards and curtailments currently in use for these two sets will yield the maxi-
mum improvement to runtime performance. After the safeguards and curtailments are
relaxed, the risk level will rise to:

R′′ =
∑

tα∈T

T (tα) × V ′′(tα) × C′′(tα) (15)

where the new vulnerability measure, based on Equation 4, is:

V ′′(tα) =
∑

pλ∈P̂ (tα)∩Ω(P )∪ρ(Ψ(P ))

v(pλ)
|P̂ (tα)|

+
∑

pλ∈P̂ (tα)∩Ψ(P )−ρ(Ψ(P ))

v(pλ) × v′(pλ)
|P̂ (tα)|

(16)
and the new consequence measure, based on Equation 3, is:

C′′(tα) =
∑

oβ∈A(tα)∩Ω(O)∪ρ(Ψ(O))

c(oβ) + i(oβ) + a(oβ) (17)
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There are O(2(|P |+|O|)) ways of choosing subsets ρ(Ω(P )) ⊆ Ω(P ) and ρ(Ω(O))
⊆ Ω(O) for risk reduction or subsets ρ(Ψ(P )) ⊆ Ψ(P ) and ρ(Ψ(O)) ⊆ Ψ(O) for
risk relaxation. When selecting from the possibilities, the primary constraint is the
maintenance of the bound R′′ < R0, where R′′ = Ra−δg in the case of risk reduction,
and R′′ = Ra + δg in the case of risk relaxation.

The choice of safeguards and curtailments also impacts the performance of the
system. Evaluating predicates prior to granting permissions introduces latency in sys-
tem calls. Cryptographically protecting objects decreases usability. Hence, the choice
of subsets ρ(Ω(P )) and ρ(Ω(O)) or subsets ρ(Ψ(P )) and ρ(Ψ(O)) is subject to the
secondary goal of minimizing the overhead introduced.

The adverse impact of a safeguard or curtailment is proportional to the frequency
with which it is utilized in the system’s workload. Given a typical workload, we can
count the frequency f(pλ) with which permission pλ is requested in the workload.
Similarly, we can count the frequency f(oβ) with which file oβ is accessed in the
workload. This can be done for all permissions and files. The cost of utilizing subsets
ρ(Ω(P )) and ρ(Ω(O)) for risk reduction can then be calculated with:

ζ(ρ(Ω(P )), ρ(Ω(O))) =
∑

pλ∈ρ(Ω(P ))

f(pλ) +
∑

oβ∈ρ(Ω(O))

f(oβ) (18)

Similarly, if the safeguards of subset ρ(Ψ(P )) and the curtailments of consequences
to assets in subset ρ(Ψ(O)) are relaxed, the resulting reduction in runtime cost can be
calculated with:

ζ(ρ(Ψ(P )), ρ(Ψ(O))) =
∑

pλ∈ρ(Ψ(P ))

f(pλ) +
∑

oβ∈ρ(Ψ(O))

f(oβ) (19)

The ideal choice of safeguards and curtailments will minimize the safeguards’ and
curtailments’ impact on performance, while simultaneously ensuring that the risk re-
mains below the threshold of tolerance. Thus, for risk reduction we wish to find:

min ζ(ρ(Ω(P )), ρ(Ω(O))), R′′ ≤ R0 (20)

In the context of risk relaxation, we wish to find:

max ζ(ρ(Ψ(P )), ρ(Ψ(O))), R′′ ≤ R0 (21)

2.6 Complexity

We note that the semantics of risk management require that at each step the risk must
be reduced below the threshold of tolerance. This precludes optimization strategies
such as minimizing a weighted sum of risk and runtime performance. We conclude
that runtime risk management is a 0−1 integer non-linear programming problem with
a linear objective function and quadratic constraint. The decision problem that corre-
sponds to the aforementioned optimization problem is NP-hard [Garey79] as argued
below.
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2.6.1 Optimization Problem

Risk reduction can viewed as selecting a set of vertices in a vertex-weighted, edge-
weighted bipartite graph, such that the sum of the weights of the vertices selected is
minimized, subject to the constraint that the sum of the weights of the edges present
in the subgraph induced by the selected vertices is greater than a fixed threshold. The
vertices in one partition correspond to the set of unsafeguarded permissions Ω(P ),
while the vertices in the other partition correspond to the set of objects whose access
is uncurtailed Ω(O). The weight of each vertex pλ ∈ Ω(P ) is f(pλ), the frequency of
the permission in the workload, while the weight of each vertex oβ ∈ Ω(O) is f(oβ),
the frequency of the object in the workload.

The weight of an edge (pλ, oβ) between a permission pλ and an object oβ is the
contribution to the total risk that results from the exposure of the corresponding per-
mission and the cost of the corresponding object’s security being subverted. Thus the
weight of the edge is:

w(pλ, oβ) =
∑

tα∈T : pλ∈P̂ (tα)∩Ω(P ) ∧ oβ∈A(tα)∩Ω(O)

T (tα) × v(pλ) × v′(pλ)
|P̂ (tα)|

× c(oβ) + i(oβ) + a(oβ) (22)

The fixed threshold is the risk tolerance, R0. Risk relaxation is similar, with the
exception that the sum of weights of the chosen vertices (which are from the sets Ψ(P )
and Ψ(O) instead of sets Ω(P ) and Ω(O)) must be maximized, while the sum of the
weights of the edges in the induced subgraph must remain below a fixed threshold.
The two optimization problems are equivalent.

2.6.2 Decision Problem

The decision problem for risk reduction takes as input: (i) a bipartite graph of the form
described above, (ii) a fixed threshold which is the risk tolerance, and (iii) the sum of
the weights of the subset of vertices to be chosen, which corresponds to the runtime
cost of the primitives in a proposed response. The output is only true if the algorithm
is able to find a subset of vertices whose weights add up to the specified total, while
the sum of the weights of the edges in the induced subgraph is at least the specified
threshold.

2.6.3 NP-Hard

Given an algorithm for the risk reduction optimization problem, the decision problem
can be solved by checking if the target sum of vertices’ weights is less than, equal or
greater than the minimum cost output by the optimization algorithm.

Given a decision algorithm for risk reduction, we can solve the maximum edge
biclique problem which takes a bipartite graph and a threshold as inputs and outputs
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whether the graph includes a biclique that is the size of the threshold or larger. The
problem is known to be NP-complete [Peeters03].

To solve the maximum edge biclique problem, we repeatedly invoke the risk re-
duction decision algorithm. The number of invocations is bounded above by the size
of the vertex set in the graph. The input is the bipartite graph (with all vertices and
edges weighted 1), the threshold and a target number of vertices that ranges during
invocations from 1 to the total number of vertices in the bipartite graph. The first time
the output is true, we stop and output true for the maximum edge biclique problem.

Since the risk reduction decision algorithm output true, the sum of the weights
of the vertices (which is equal to the number of vertices since all the weights were set
to 1) is the least possible such that the sum of the weights of the edges (which is equal
to the number of edges since the weights of all the edges were set to 1) was at least the
threshold specified. The total number of edges in a biclique is the maximum possible
for a subset of vertices of the biclique’s size. Thus, the smallest subset of vertices that
will contain a specified number of edges is a biclique.

If all the invocations of the risk reduction decision problem produced an output of
false, then the output for the maximum edge biclique problem is also false. This
completes the reduction. If the risk reduction decision problem were tractable, then
the maximum edge biclique problem would also be tractable, but it is known to be
NP-complete. Therefore, the risk reduction (and risk relaxation since it is analogous)
decision problems are NP-hard.

2.7 Response Selection

Determining the optimal choice of safeguards and curtailments for risk management
corresponds to an NP-hard problem, as argued in Section 2.6. Additionally, there is ev-
idence that the maximum edge biclique problem is difficult to approximate [Kogan04].
Since the choice is to be made in real-time, we will use a heuristic which guarantees
that the risk threshold is maintained. The heuristic uses the greedy strategy of picking
the response primitive with the highest benefit-to-cost ratio repeatedly till the con-
straint is satisfied. By maintaining the choices in a heap data structure keyed on the
benefit-to-cost ratio, the first primitive in the response set can be chosen in O(1) time.
This is significant since implementing a single response primitive is often sufficient
for disrupting an attack in progress.

Since the benefit associated with each unutilized safeguard or curtailment is the
degree to which the risk will be reduced if it is used, this is a function of other safe-
guards or curtailments related to the threats that it affects. Similarly, since the loss
of benefit associated with each currently utilized safeguard or curtailment is the de-
gree to which the risk will increase if it is used, this is also a function of the other
safeguards or curtailments associated with the threats that it affects. As a result, the
benefit of adding or removing each safeguard or curtailment must be recalculated each
time other safeguards or curtailments are added or removed.
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2.7.1 Risk Reduction

We outline the algorithm for the case where the risk needs to be reduced. The first two
steps constitute pre-processing and therefore only occur during system initialization.

Step 1 The benefit-to-cost ratio of each candidate safeguard permission pλ ∈
Ω(P ) can be calculated by:

κ(pλ) =

∑

tα:pλ∈(P̂ (tα)∩Ω(P ))

T (tα) × v(pλ) × (1 − v′(pλ))
|P̂ (tα)|

× C′(tα)

f(pλ)
(23)

Step 2 Similarly, the benefit-to-cost ratio of protecting an object oβ ∈ Ω(O)
can be calculated by:

κ(oβ) =

(c(oβ) + i(oβ) + a(oβ)) ×
∑

tα:oβ∈(A(tα)∩Ω(O))

T (tα) × V ′(tα)

f(oβ)
(24)

Step 3 The response sets are defined as empty, that is ρ(Ω(P )) = ρ(Ω(O)) =
φ.

Step 4 The single risk reducing measure with the highest benefit-to-cost can be
selected, that is:

max pmax, omax where : (25)

pmax = max κ(pλ), pλ ∈ Ω(P )
omax = max κ(oβ), oβ ∈ Ω(O)

If it is a permission it is added to ρ(Ω(P )) and if it is an object it can be
added to ρ(Ω(O)).

Step 5 If the choice was a permission pλ, then the value κ(oβ) must be recalcu-
lated for all objects oβ that are affected by threats which utilize pλ in the
course of their attacks. Thus, each κ(oβ) must be updated if:

oβ ∈
⋃

tα:pλ∈P̂ (tα)

A(tα) (26)

Instead, if the choice was an object oβ , then the value κ(pλ) must be
recalculated for all permissions pλ that are utilized in the course of an
attack that affects object oβ . Thus, each κ(pλ) must be updated if:

pλ ∈
⋃

tα:oβ∈A(tα)

P̂ (tα) (27)
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Step 6 The risk before the candidate responses were utilized is Ra. If the re-
sponses were activated the resulting risk R′′ is given by:

R′′ = Ra −
∑

pλ∈ρ(Ω(P ))

κ(pλ)×f(pλ) −
∑

oβ∈ρ(Ω(O))

κ(oβ)×f(oβ) (28)

This is equivalent to using Equations 12, 13 and 14. While the worst case
complexity is the same, when few protective measures are added the cost
of the above calculation is significantly lower.

Step 7 If R′′ > R0 then the system repeats the above from Step 4 onwards.
However, if R′′ ≤ R0 then the set of safeguards ρ(Ω(P )) and the set
consequence curtailing measures ρ(Ω(O)) must be applied. ρ(Ω(P ))
should be transferred from Ω(P ) to Ψ(P ) and ρ(Ω(O)) should be trans-
ferred from Ω(O) to Ψ(O). Then the response sets should be reset so
ρ(Ω(P )) = ρ(Ω(O)) = φ.

The time complexity is:

O((ρ(Ω(P )) + ρ(Ω(O))) × (log |P | + log |O| +
∑

tα∈T

(|P̂ (tα)| + |A(tα)|))) (29)

In the worst case, this is O(|P | + |O|)2. Unless a large variety of attacks are simul-
taneously launched against the target, the first factor will remain small. Additionally,
if there is a strong correlation between the exposures and the consequences, then the
second factor will also remain small. Thus, in practice it is likely to achieve acceptable
results.

2.7.2 Risk Relaxation

In the case of risk relaxation, the algorithm becomes:

Step 1 For pλ ∈ Ψ(P ) calculate:

κ(pλ) =

∑

tα:pλ∈(P̂ (tα)∩Ψ(P ))

T (tα) × v(pλ) × (1 − v′(pλ))
|P̂ (tα)|

× C′(tα)

f(pλ)
(30)

Step 2 For oβ ∈ Ψ(O) calculate:

κ(oβ) =

(c(oβ) + i(oβ) + a(oβ)) ×
∑

tα:oβ∈(A(tα)∩Ψ(O))

T (tα) × V ′(tα)

f(oβ)
(31)
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Step 3 Set ρ(Ψ(P )) = ρ(Ψ(O)) = φ.

Step 4 Find the safeguard or curtailment which yields the least risk reduction
per instance of use:

min pmin, omin where : (32)

pmin = min κ(pλ), pλ ∈ Ψ(P )
omin = min κ(oβ), oβ ∈ Ψ(O)

Add it to ρ(Ψ(P )) if it is a permission. Instead, add it to ρ(Ψ(O)) if it is
a file.

Step 5 Update κ(oβ) if:
oβ ∈

⋃

tα:pλ∈P̂ (tα)

A(tα) (33)

or update κ(pλ) if:
pλ ∈

⋃

tα:oβ∈A(tα)

P̂ (tα) (34)

depending on whether a permission or a file was chosen in the previous
step.

Step 6 Calculate R′′:

R′′ = Ra +
∑

pλ∈ρ(Ψ(P ))

κ(pλ)×f(pλ) +
∑

oβ∈ρ(Ψ(O))

κ(oβ)×f(oβ) (35)

Step 7 If R′′ < R0, repeat from Step 4. If R′′ = R0, proceed to next step. If
R′′ > R0, undo last iteration of Step 4.

Step 8 Relax all measures in ρ(Ψ(P )) and ρ(Ψ(O)) and transfer them to Ω(P )
and Ω(O), respectively. Set ρ(Ψ(P )) = ρ(Ψ(O)) = φ.

3 Related Work

3.1 Intrusion Response

Frameworks have previously been proposed for adding response capabilities. DCA
[Fisch96] introduced a taxonomy for response and a tool to demonstrate the utility of
the taxonomy. EMERALD’s [Porras97] design allows customized responses to be in-
voked automatically, but does not define them by default. AAIR [Carver01] describes
an expert system for response based on an extended taxonomy.

Our approach creates a framework for systematically choosing a response in real-
time. This allows an attack to be contained automatically instead of being limited to
raising an alarm, and does not require a new response subsystem to be developed for
each new class of attack discovered.
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3.2 Risk Management

Risk analysis has been utilized to manage the security of systems for several decades
[FIPS31]. However, its use has been limited to offline risk computation and manual
response. [SooHoo02] proposes a general model using decision analysis to estimate
computer security risk and automatically update input estimates. [Bilar03] uses reli-
ability modeling to analyze the risk of a distributed system. Risk is calculated as a
function of the probability of faults being present in the system’s constituent compo-
nents. Risk management is framed as an integer linear programming problem, aiming
to find an alternate system configuration, subject to constraints such as acceptable risk
level and maximum cost for reconfiguration.

In contrast to previous approaches, we use the risk computation to drive changes
in the operating system’s security mechanisms. This allows risk management to occur
in real-time and reduces the window of exposure.

The model described has been realized in a prototype, as described in [Gehani03].
It includes the following: an implementation of a state transition [Ilgun95] based intru-
sion detector; an extension of the Java access control subsystem to support predicated
permissions; the ability to specify the exposure reduction resulting from each predi-
cate’s evaluation; a modification of the Java file input/output facilities to allow explicit
guarantees about the confidentiality, integrity and availability of the data; the ability to
explicitly associate costs for the loss of each of the security characteristics of any file;
a risk manager that coordinates the other subsystems. The modified platform was able
to respond and contain a suite of synthetic attacks against a web server running on it.
This was expected since the configuration had been manually tuned. Further work is
needed to automate the process of configuring the system.

4 Conclusion

This paper addresses the issue of modeling the detection and response process by
equating the insecurity of a system with the risk it faces. The risk is defined formally
in terms of known threats, exposures and consequences. Each threat is characterized
using a host-based intrusion detection signature. Its likelihood is estimated by the cur-
rent extent of the signature’s match when a system is running. The system’s exposure
to a threat is a function of the permissions requested in the course of the attack and
the auxiliary checks being performed before they are granted. The consequence of a
threat is calculated as a function of the data that can lose confidentiality, integrity or
availability when the attack is successful. The products of each threat’s likelihood,
the system’s exposure to it and its consequence, contribute additively to form the total
known risk of the host.

Two types of responses are utilized. One type performs further runtime checks
before granting specific permissions, while the other allows disabling of transparent
decryption, signing of modifications and remote replication of specific protected files.
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Intrusion response is framed as maintaining the risk below a threshold of tolerance with
a simultaneous goal of minimizing the impact of the selected responses on runtime
performance. This requires minimizing a particular linear objective function with a
quadratic constraint, which we have shown is NP-hard. Given that the response must
be chosen in real-time, an optimal choice is ruled out. Instead, a greedy heuristic
is used. It allows the first response primitive to be chosen in constant time, which
is frequently sufficient to disrupt an attack. The remaining primitives, required to
adequately manage the risk, are selected in quadratic time.
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