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Abstract. Caminada and Amgoud have argued that logic-based argu-
mentation systems should satisfy the intuitive and natural principles of
logical closure and consistency. Prakken has developed this idea further
for a richer logic. A question arises naturally whether a general structure
guaranteeing the logical closure and consistency properties could be iden-
tified that is common for all underlying logics. We explore this question
by first defining a logic-based argumentation framework as combination
of an abstract argumentation framework with a monotonic Tarski-like
consequence operator. We then demonstrate that the logical closure and
consistency properties are rested on a simple notion of a base of argu-
ments from which the argument could be constructed in an indefeasible
way (using the monotonic consequence operator) and the only way to
attack an argument is to attack its base. We show that two natural prop-
erties of structural closure and consistency covering based on the idea of
bases of arguments indeed guarantee the logical closure and consistency
properties. We demonstrate how the properties of structural closure and
consistency covering are captured naturally in argumentation systems of
Caminada, Amgoud and Prakken as well as in assumption-based argu-
mentation.

1 Introduction

How do we know whether an argumentation framework is appropriate for its
purposes ? Caminada and Amgoud [3] have argued that for logic-based systems,
they should at least satisfy two intuitive and natural principles of logical closure
and consistency. Prakken [8] has developed this idea further for a richer logic.
But as there are many logics, Caminada, Amgoud and Prakken’s results do
not cover all of them. As argumentation is charaterized by arguments and the
attack relation between them, a natural question is whether the logical closure
and consistency principles could be captured in abstract argumentation without
associating to a specific logic?

Logic-based abstract argumentation is viewed as abstract argumentation
equipped with a general Tarski-like (monotonic) consequence operator. We de-
velop in this paper two general principles of structural closure and consistency
covering in logic-based abstract argumentation and show that they indeed cap-
ture the intuitions of the logical closure and consistency principles. The principles



of structural closure and consistency covering rest on a simple notion of a base
of arguments from which the argument could be constructed in an indefeasible
way (using the monotonic consequence operator) and the only way to attack an
argument is to attack its base. In other words the principle of logical closure boils
down to the idea that if an argument is considered to be a ”indefeasible logical
consequence” of a set of arguments then the former must be acceptable wrt the
later. The principle of consistency covering reduces the logical consistency to a
kind of a conflict-freeness.

2 Logic-Based Abstract Argumentation Theories

Argumentation is a form of reasoning, that could be viewed as a dispute resolu-
tion, in which the participants present their arguments to establish, defend, or
attack certain propositions. An abstract argumentation framework [5] is defined
simply by a pair (AR , att) where AR is a set of arguments and att is a binary
relation over AR representing the relation that an argument A attacks an argu-
ment B for (A,B) ∈ att. The semantics of abstract argumentation is determined
by the acceptability of arguments and various associated notions of extensions.
For the purpose of this paper, we introduce two of them. A set of argument S
attacks an argument A if some argument in S attacks A; S is conflict-free if
it does not attack itself. An agument A is acceptable wrt set of arguments S
if S attacks each attack against A. S is admissible if S is conflict-free and it
counter-attacks each attack against it. The characteristic function F assigns to
each set of arguments S the set of arguments that are acceptable wrt S. As F
is monotonic, F has a least fixed point. A complete extension is defined as a
fixed point of F while the grounded extension is the least fixed point of F . A
stable extension is defined as a conflict-free set of arguments that attacks every
argument not belonging to it. It is well-known that each stable extension is a
complete extension but not vice versa. Stable extensions generalize the stable
and answer set semantics of [6, 7].

Intuitively, an argument is a proof of some conclusion. In many cases, such
proofs are constructed following some proof theory of some formal logics. Such
logics could be nonmonotonic. The notion of closure is then defined accordingly
as the set of consequences following from the monotonic parts of the underlying
logics. For illustration, we use an example borrowed from [3].

Example 1. The logics in consideration consists of a set of strict rules R0 =
{→ wr; → go; b → ¬hw; m → hw} and a set of defeasible rules D = {wr ⇒
m; go ⇒ b}1. The monotonic logic is defined by the set of strict rules R0. There
are 6 arguments2:

A1 : → wr, A3 : → wr ⇒ m, A5 : → wr ⇒ m → hw.

1 wr = ”John wears something that looks like a a wedding ring”, m = ”John is mar-
ried”, hw = ”John has a wife”, go = ”John often goes out until late”, b = ”John is
a bachelor”.

2 For a precise definition see defintion 7



A2 : → go, A4 : → go ⇒ b, A6 : → go ⇒ b → ¬hw.
Arguments A3, A5, A4, A6 are also often written as A1 ⇒ m, A3 ⇒ hw,

A2 ⇒ b and A4 ⇒ ¬hw respectively.
Attack relation: A5 attacks A6 and vice versa. There are no other attacks. Let

att0 = {(A5, A6)}. The grounded extension contains arguments A1, A2, A3, A4.
Hence the conclusions of the arguments in the grounded extension are not con-
sistent wrt (monotonic) logic defined by the set of strict rules R0.

There are two preferred extensions {A1, A2, A3, A4, A5} and {A1, A2, A3, A4, A6}.
The conclusions of the arguments of neither is closed wrt (monotonic) logic de-
fined by R.

In this paper, we are interested in argumentation frameworks whose argu-
ments could be intuitively understood as proofs of some (possibly nonmonotonic)
underlying logic over a language L. The monotonic part of the underlying logic
is assummed to be represented by a Tarski-like consequence operator CN(X)
for set of sentences X over L such that following properties are satisfied:

1. X ⊆ CN(X)
2. CN(X) = CN(CN(X))
3. CN(X) =

⋃
{CN(Y ) |Y ⊆ X andY is finite }

4. A notion of contradictory is introduced by a set CONTRA of subsets of
L (CONTRA ⊆ 2L) such that if S ∈ CONTRA then each superset of
S also belongs to CONTRA. A set belonging to CONTRA is said to be
contradictory.
The set CN(∅) is not contradictory, i.e. CN(∅) 6∈ CONTRA.

A set of sentences X is said to be inconsistent wrt CN if its closure CN(X)
is contradictory. X is said to be consistent if it is not inconsistent. X is closed
if it coincides with its own closure.

The language in example 1 consists of literals whose atoms occur in the (strict
and defeasible) rules. The consequence operator CN0 is defined by the set R0

of strict rules, namely CN0(X) is the smallest (wrt set inclusion) set of literals
satisfying the propositions that X ⊆ CN0(X) and for any strict rule r ∈ R0,
if the premises of r are contained in CN0(X) than the head of r also belongs
to CN0(X). For example CN0({m}) = {wr, go,m, hw} and CN0({m, b}) =
{wr, go,m, hw, b,¬hw} and CN0(∅) = {wr, go}. A contradictory set is any set
containing a pair of literals {l,¬l}. Hence the set CN0({m, b}) is contradictory
while the set {m, b} is inconsistent wrt CN0.

Definition 1. A logic-based abstract argumentation framework over a language
L is a triple (AF,CN,Cnl) where AF is an abstract argumentation framework,
CN is a Tarski-like consequence operator over L and for each argument A,
Cnl(A) is the conclusion of A.

For a set S of arguments, Cnl(S) denotes the set of the conclusions of the
arguments in S. The Tarski-consequence operator has been employed in [1] to



give a general definition of a logic-based argument. In contrast, we use a Tarski-
like consequence operator to only specify the logical consequences of arguments
without any hint about how an argument is constructed.

From now on until the end of this section, we assume an arbitrary but fixed
logic-based abstract argumentation framework (AF,CN,Cnl) and often simply
refer to it as an argumentation framework.

Definition 2. Let (AF,CN,Cnl) be a logic-based abstract argumentation frame-
work.

1. AF is said to satisfy the logical closure-property if for each complete
extension E, Cnl(E) is closed.

2. AF is said to satisfy the logical consistency-property if for each complete
extension E, Cnl(E) is consistent.

Example 2. (Continuation of example 1) The grounded extension of the ar-
gumentation framework in example 1 is GE = {A1, A2, A3, A4}. Cnl(GE) =
{wr, go,m, b} and CN0(Cnl(GE)) = Cnl(GE) ∪ {hw,¬hw}. Hence the consid-
ered argumentation framework satisfies neither the logical consistency- nor the
closure-property.

It turns out that the properties of logical closure and consistency of argu-
mentation is based on an intuitive idea of a base of an argument.

Definition 3. Given a logic-based argumentation framework (AF,CN,Cnl). We
say that a set of arguments S is a base of an argument A if the conclusion
of A is a consequence of the conclusions of S (i.e. Cnl(A) ∈ CN(Cnl(S))) and
each attack against A is an attack against S and vice versa.

We say that a set of arguments S is a base of a set of arguments R if
Cnl(R) ⊆ CN(Cnl(S)) and each attack against R is an attack against S and
vice versa.

We say that an argument A is based in a set of arguments S if S contains
a base of A.

In example 1, though Cnl(A5) ∈ CN0(Cnl(A3)), the set {A3} is not a base
of A5 since A6 attacks A5 but A6 does not attack A3. Note that ∅ is a base of
A1 and A2 and the set {A1, A2}.

Example 3. Consider a modified version of the example 1 where the set R1 of
strict rules is obtained by adding to R0 two more strict rules ¬hw → ¬m; and
hw → ¬b. The corresponding consequence operator is denoted by CN1. There
are two more arguments: A7 : A5 → ¬b and A8 : A6 → ¬m. The attack relation
is defined by att1 = {(A7, A4), (A7, A6), (A7, A8), (A8, A3), (A8, A5), (A8, A7)}.
{A3} is now a base of A5 and A7 and {A5, A7}. It is also easy to see that {A3, A4}
is a base of {A5, A6}.

Lemma 1. Let E be a complete extension of a logic-based argumentation frame-
work LAF. Further let S be a base of a subset of E. Then S ⊆ E



Proof As each attack against S is an attack against E, each argument in S is
acceptable wrt E. Hence S ⊆ E.

The imposition of the closure and consistency-properties on an argumenta-
tion framework wrt consequence operator suggests intuitively that if a sentence
σ follows from the conclusions of a set of arguments S wrt consequence operator
CN then there exists an argument A with conclusion σ constructed from some
arguments in S using the rules of the underlying monotonic logic. In other words,
argument A is acceptable wrt S.

Definition 4. We say that a logic-based argumentation framework (AF,CN,Cnl)
is structurally closed if for each set of arguments S, for each sentence α ∈
CN(Cnl(S)) there exists an argument A based in S such that Cnl(A) = α.

The argumentation framework in example 1 is not structurally closed since
although hw ∈ CN0(Cnl(A3)) and A5 is the only argument with conclusion hw,
A5 is not based in {A3} as A6 attacks A5 but A6 does not attack A3. In contrast,
the argumentation framwork generated by the set of strict rules R1 in example
3 together with the defeasible rules in D is structurally closed.

Lemma 2. Suppose a logic-based abstract argumentation framework LAF =
(AF,CN,Cnl) is structural closed. Then LAF satisfies the logical closure-property.

Proof. Let E be a complete extension. Let α ∈ CN(Cnl(E)). Therefore from
the structural closure, there is an argument A based in E such that Cnl(A) = α

such that each attack against A is an attack against E. Because admissibility of
E, E attacks each attack against A. Hence A is acceptable wrt E, i.e. A ∈ E. E
is hence closed wrt CN.

We say that an argument A is generated by a set S of arguments if A is
based in a base of S.

In example 3, {A3} is a base of both A5 and A7. Hence A7 is generated by
{A5}.

We say that a set of arguments S implicitly attacks an argument B if there
is an argument A generated by S such that A attacks B. S is said to implictly

attack itself if S implicitly attacks an argument in S.

Consider again example 3. A base of A3, A6 is {A3, A4}. As A7 is generated
by {A3, A4} and A7 attacks A4, {A3, A6} implicitly attacks itself.

Definition 5. A logic-based argumentation framework is said to be consis-

tency covering if for each set of arguments S such that Cnl(S) is inconsistent,
S implicitly attacks itself.

In the argumentation framework in 1, for the grounded extension GE =
{A1, A2, A3, A4}, Cnl(GE) = {wr, go, b,m} is inconsistent. I is not difficlt to



see that {A3, A4} is a base of {A1, A2, A3, A4} and the arguments generated by
{A3, A4} are {A1, A2, A3, A4}. Hence GE does not implicitly attack itself. The
consistency covering property is not satisfied for this framework.

In contrast, in example 3, a base for S = {A1, A2, A3, A4} is also {A3, A4},
and a base of (A7) is {A3}. It follows that A7 is based in S. Because A7 attacks
A4, S implicitly attacks itself. Overall, the logic-based argumentation framework
of this example satisfies the consistency covering property (see section 4 for
precise proof).

Theorem 1. Let LAF be a structural closed and consistency covering argumen-
tation framework. Then LAF satisfies both the logical closure- and consistency-
properties.

Proof From lemma 2, we need to prove only the consistency property. Let E be
a complete extension of LAF . Suppose E is inconsistent. From the consistency
covering of LAF , it follows that there is an argument A generated by E attack-
ing some argument B in E. Therefore A attacks E. E hence attacks A. Since any
base of E is a subset of E (lemma 1), A is based in E. Hence any attack against
A is an attack against E. E hence attacks itself. Contradiction.

In the next sections, we present two different argumentation systems slightly
generalizing similar systems from the literature to demonstrate how to capture
the structural-closedness and consistency covering property.

3 Abstract Assumption-based Argumentation

We assume a language L, a set of assumptions A ⊆ L, a contrary operator
(.) : A −→ L, and a Tarski-like consequence operator CN with a set CONTRA
of contradictory sets. Note that we do not assume that sets containing both α

and α for an assumption α ∈ A belong to CONTRA. In case of normal logic
programming [6, 2, 5], CONTRA is empty while for extended logic programming
[7] CONTRA contains sets containing pair of literals {l,¬l} where ¬ is explicit
negation3.

An argument is a pair (X, σ) where X is a finite set of assumption X and
σ ∈ CN(X). An argument (X, σ) attacks an argument (Y, δ) if σ = α for some
α ∈ Y .

The just defined logic-based argumentation framework is referred to in the
rest of thic section as abstract assumption-based argumentation AAA.

Example 4. For illustration, consider the famous bird-fly example. Let CN be
the consequence operator defined by the following set of strict rules {→ p; p →
b; p, np → ¬f ; b, nb → f ; p → ¬nb} with np, nb (for normal penguin and
normal bird respectively) being assumptions and np = ¬np and nb = ¬nb. Let
A1 = ({np},¬f), A2 = ({},¬nb), A3 = ({nb}, f). A2 attacks A3.

3 Negation as failure is denoted by not-l



Definition 6. The consequence operator CN is said to be assumption-discriminate

if for each inconsistent set of assumptions X ⊆ A, there is α ∈ X such that
α ∈ CN(X).

The argumentation framework in example 4 is assumption-discriminate. For
illustration, the set X = {np, nb} is inconsistent and ¬nb ∈ CN(X).

Lemma 3. Suppose CN is assumption-discriminate. Then the abstract assumption-
based argumentation framework is structurally closed and consistency-covering.

Proof We first show the structural closure. Let S be a set of arguments and
σ ∈ CN(Cnl(S)). Let X be a minimal subset of Cnl(S) such that σ ∈ CN(X).
Further let SX be a minimal set of arguments from S whose conclusions belong
to X. Let A = (Y, σ) such that Y =

⋃
{Z | (Z, δ) ∈ SX}. It is obvious that A is

an argument. We show now that SX is a base of A. Suppose B is an argument
attacking SX . Then there is (X, δ) ∈ SX such that Cnl(B) = α for some α ∈ X .
Hence B attacks A. Suppose now that B attacks A. Then Cnl(B) = α for some
α ∈ Y . Hence there is (X, δ) ∈ SX such that Cnl(B) = α for some α ∈ X . B
therefore attacks SX .

We have proved that that the abstract assumption-based argumentation
framework is structurally closed. We show now that it is consistency cover-
ing. We need some new notations. For an argument A = (X, σ), let NB(A) =
{({α}, α) |α ∈ X}. It is easy to see that NB(A) is a base of A. Similarly, for a
set S of arguments, NB(S) =

⋃
{NB(A) |A ∈ S} is a base of S.

Let S be a set of arguments such that Cnl(S) is inconsistent. Let Y = NB(S)
Hence Y is inconsistent. From the assumption-discrimination of CN, it follows
that there is Z ⊆ Y such that A = (Z, α) is an argument. As NB(S) is a base of
S, A is generated by S. Since A attacks each argument having α as an assump-
tion, A attacks S. Hence S implicitly attacks itself.

It follows immediately from lemma 3 and theorem 1

Theorem 2. Suppose CN is assumption-discriminate. Then the abstract assumption-
based argumentation framework satisfies both the logical closure- and consistency-
properties.

4 Argumentation with Strict and Defeasible Rules

In this section, we apply our results developed in previous section on a defeasible
logic similar to the one studied by [3, 8, 10].

The language L is a set of literals. A set of literals is said to be contradic-
tory if it contains a pair {l,¬l}. The set of all contradictory sets is denoted by
CONTRA. Arguments are built from strict rules and defeasible rules. The set of
strict rules is denoted by Rs while the set of defeasible rules by Rd. Strict rules
are of the form l1, . . . , ln −→ h and defeasible rules of the form l1, . . . , ln ⇒ h

where l1, . . . , ln, h are literals from L.



Definition 7. Let α1, . . . , αn → α (respectively α1, . . . , αn ⇒ α) be a strict
(respectively defeasible) rule. Further suppose that A1, . . . , An , n ≥ 0, are ar-
guments with αi = Cnl(Ai), 1 ≤ i ≤ n. Then A1, . . . , An → α (respectively
A1, . . . , An ⇒ α ) is an argument with conclusion α.

Arguments of the form A1, . . . , An → α or A1, . . . , An ⇒ α are also often
viewed as proof trees with the root labelled by α and A1, . . . , An are subtrees
whose roots are children of the proof tree root.

A strict argument is an argument containing no defeasible rule.
B is a subargument of an argument A, denoted by B v A if B = A or B is a

subargument of some Ai if A is of the form A1, . . . , An → α or A1, . . . , An ⇒ α .

The consequence operator CNRs
(X) (or simply CN(X) if no misunderstand-

ing is possible) is defined by the set of conclusions of strict arguments over the
set of rules Rs(X) = Rs ∪ {→ α |α ∈ X}.

For a strict argument A over a set of rules Rs(X), the set of premises of
A, denoted by Prem(A), is the set of literals from X labelling the leaves of A
(viewed as a proof tree).

Basic arguments are arguments whose last rule is a defeasible one. For a
basic argument B, the last rule of B is denoted by Lr(B).

The following notion of attack is adopted but slightly modified from the ones
given in [3, 8–10].

An argument A attacks a argument B if one of the following conditions is
satisfied:

1. (Undercutting) B is basic and Cnl(A) = ¬Oj(Lr(B)) where for a defeasible
rule r, Oj(r) is a literal denoting that the rule is applicable.

2. (Rebutting) B is basic and Cnl(A) = ¬Cnl(B)
3. A attacks a basic subargument of B.

An example of argumenttion based on strict and defeasible rules is given in
example 3.

Definition 8. The consequence operator CNRs
is said to be discriminate if

for each inconsistent set X of literals, there is a literal σ ∈ X such that ¬σ ∈
CNRs

(X) holds.

Theorem 3. Let Rs,Rd be sets of strict and defeasible rules respetively. Let
AR be the arguments built from these rules and att be the associated attack
relation and AF = (AR, att). Then the logic-based argumentation framework
LAF = (AF,CNRs

, Cnl) is structurally closed and consistency covering if the
consequence operator CNRs

is discriminate.

Proof We first show that LAF is structurally closed. Suppose now that σ ∈
CN(Cnl(S)). Let X be a minimal subset of Cnl(S) such that σ ∈ CN(X).
Hence there is a strict argument A0 over Rs(X) with conclusion σ. Further let
SX be a minimal set of arguments from S whose conclusions belong to X. Let
A be the argument obtained by replacing each leave in A0 (viewed as a proof



tree) labelled by a literal α from X by an argument with conclusion α from SX .
It is obvious that the conclusion of A is σ. We show now that SX is a base of A.
Suppose B is an argument attacking SX . Then it is obvious that B attacks A.
Suppose now that B attacks A. Then B attacks a basic argument of A. Since A0

is a strict argument over Rs(X), B must attacks a basic subargument of some
argument in SX . Hence B attacks SX .

We have proved that that the logic-based argumentation framework LAF is
structurally closed. We show now that it is consistency covering. We need some
new notations.

Among the bases of arguments, a special kind of base called normal base plays
a key role. The normal base of argument A is defined by NB(A) = {B |B is
a basic subargument of A and for each argument C, if C 6= B and B v C v A

then C is strict }. For a set S of arguments, NB(S) is the union of the normal
bases of elements of S. The following lemma shows that a normal base is indeed
a base.

Lemma 4. For any argument A, NB(A) is a base of A.

Proof of Lemma 4 From the definition of NB(A), it is obvious that Cnl(A) ∈
CNR∫

(NB(A)). It is also obvious that each argument attacking NB(A) also
attacking A. Let B be an argument attacking A. From the definition of attack,
B attacks a basic subargument C of A. From the definition of NB(A), there is
an argument C′ ∈ NB(A) such that C v C′. Hence B attacks C′ and therefore
NB(A).
Continuation of Proof of Theorem 3 It is obvious that NB(S) is also a base
of set of arguments S. Suppose now that Cnl(S) is inconsistent. It follows im-
mediately that the set Cnl(NB(S)) is also inconsistent. Let X = Cnl(NB(S)).
From the definition 5, it follows that there is α ∈ X such that ¬α ∈ CNRs

(X).
Since α ∈ X , there is a basic argument B ∈ NB(S) with conclusion α. From the
structural closure of LAF, there is an argument A with conclusion ¬α based in
NB(S). Hence A is generated by S and A attacks B. As B ∈ NB(S), there is
C ∈ S s.t. B ∈ NB(C). Hence A attacks C. Therefore S implicitly attacks itself.

It follows immediately from theorem 1

Theorem 4. Let Rs,Rd be sets of strict and defeasible rules respectively. Then
the associated logic-based abstract argumentation framework LAF = (AF,CNRs

)
satisfies the logical closure- and consistency-properties if CNRs

is discriminate.

We next show that theorem 4 generalizes the results in Caminada and Am-
goud [3], Prakken [8].

A set of strict rules Rs is said to be closed under transposition if for each
rule α1, . . . , αn → σ in Rs, all the rules of the form

α1, . . . , αi−1,¬σ, αi+1, αn → ¬αi also belong to Rs.

A set of strict rulesRs is said to satisfy the contraposition-property if for each
set of literals X, for each argument A (with conclusion σ) wrtRs(X) and for each



α ∈ Prem(A), there is an argument whose premises is Prem(A) − {α} ∪ {¬σ}
and conclusion is ¬α.

Theorem 5. CNRs
is discriminate if the set of strict rules Rs is closed under

transposition or satisfies the contraposition-property.

Proof We first prove the following assertion.
Assertion: Let A be a strict argument overRs(X) whose conclusion is σ and ∅ 6=
Prem(A) ⊆ X . Then there is an argument B with premises in Prem(A)∪{¬σ}
and conclusion ¬α for some α ∈ Prem(A).
Proof of Assertion The assertion holds immediately ifRs satisfies the contraposition-
property.

Supoose that Rs is closed under transposition. We prove by induction on the
height of A (as a proof tree).

If the heitght of A is 1, the theorem is obvious.
Suppose A is of the form A1, . . . , An → σ where Cnl(Ai) = αi. Suppose

Prem(An) 6= ∅. From the closure under transposition, α1, . . . , αn−1,¬σ → ¬αn

also belongs to Rs. Let A0 be the argument A1, . . . , An−1,¬σ → ¬αn.
From the induction hypothesis, there is a tree C whose premises in Prem(An)∪

{¬αn} and whose conclusion is ¬α for some α ∈ Prem(An).
Let B be the tree obtained from C by replacing each occurence of premise

¬αn by the argument A0. It is clear that Prem(B) ⊆ Prem(A) ∪ {¬σ} and
Cnl(B) = ¬α. Note α ∈ Prem(A).

Continuation of Proof of Theorem 5. Let X be an inconsistent set of literals.
Hence there are two arguments A0, A1 with premises in X and conclusions σ,¬σ
respectively. From the above assertion, it follows that there exists an argument B
with conclusion ¬α for some α ∈ Prem(A0) and Prem(B) ⊆ Prem(A0)∪{¬σ}.
Let A be the argument obtained by replacing leaves labelled by ¬σ in B by trees
A1. It is clear that Prem(A) ⊆ X and the conclusion of A is labelled by ¬α for
some α ∈ X .

5 Conclusion

In general, an argumentation system could take a large number of arguments,
many of them could be redundant. For efficiency, many of the redundant argu-
ments should be avoided. In [4], principles for dealing with redundant arguments
have been studied. It would be interesting to see how such principles could be
integrated with the concepts of structural closure and consistency covering for
modeling practical argumentation.
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