Rapid 3D Visualization of Indoor Scenes Using 3D
Occupancy Grid Isosurfaces

Ran Zask and Matthew N. Dailey
Computer Science and Information Management
Asian Institute of Technology
ran@cs.ait.ac.th, mdailey @ait.ac.th

Abstract—In many mobile robotics applications involving ex-
ploration of unknown environments, it would be extremely useful
to provide human operators with a real-time 3D visualization of
the environment the robot is exploring. Although a great deal
of progress has been made in the separate fields of photore-
alistic structure from motion and realtime vision-based robot
localization and mapping (SLAM), the ultimate goal of real-
time 3D visualization of the environment a robot is exploring
has yet to be realized. In this paper, we present a simple and
efficient incremental algorithm for 3D modeling amenable to real-
time implementation. The algorithm creates a texture-mapped
polygonal mesh model of the environment from a monocular
video feed or sequence of images. The key to the algorithm’s
simplicity and efficiency is the use of the isosurface of a coarse
3D occupancy grid that is incrementally updated as new images
arrive. The isosurface-based reconstruction provides low metric
accuracy but helps to filter measurement noise and allows
rapid construction of a 3D visualization. We demonstrate the
practicality and effectiveness of the algorithm by using it to
generate an OpenGL model of a real indoor environment.

I. INTRODUCTION

Many existing systems for mobile robot navigation and
control incorporating sonar, laser, or vision sensors are able
to create 2D maps suitable for navigation of visualizing the
environment. See [1]-[3] for just a few examples. However,
although 2D maps are useful, Yanco and Drury [4] report that
even with access to a 2D map during urban search and rescue
operations, operators still tend to spend on average 30% of
their time acquiring situation awareness, that is, trying to
understand the robot’s location, surroundings, and status.

One technology that could possibly improve search and
rescue operators’ situation awareness and mission planning is
textured 3D map visualization. In this paper, we explore the
feasibility of rapidly constructing a texture mapped 3D model
of a mobile robot’s environment based on a monocular image
stream.

There is a very large literature on 3D modeling in computer
vision and robotics. Using techniques from structure from
motion (see, e.g., [5], [6]), structured lighting [7], or image-
based rendering (see, e.g., [8]) it is possible to synthesize
photorealistic views of complex real-world environments. At
the same time, towards simultaneous localization and mapping
(SLAM) for mobile robots, techniques for real-time vision-
based estimation of 3D scene structure are beginning to
emerge [9]. However, currently, the photorealistic methods
require significant amounts of offline processing, and the real

time vision-based structure estimation methods provide only
sparse information about a scene, without surface estimation
or texture maps.

In this paper, we show that if the requirement for photore-
alistic rendering is relaxed, it is possible to obtain the benefits
of both the structure-from-motion and SLAM approaches.
We construct 3D surface models, incrementally, based on
a monocular image sequence, using a simple and efficient
algorithm. We believe that the resulting models, though only
roughly accurate, would be sufficiently detailed to enhance
operators’ situation awareness during teleoperation and help
them command the robot.

There are two main ways to construct surface models:
from 3D point sets or from volumetric data. The first method
triangulates 3D point sets to obtain a polygonal mesh (see,
for example, [5]). The main alternative method, the volumetric
approach, uses a sensor model to update an occupancy grid
as images arrive. Occupancy grids represent the environment
as a set of cells that indicate the probability of occupancy
by some obstacle. The 2D occupancy grid is commonly used
with sonar and laser sensors for localization, mapping, and
navigation [1], [2], [10]), and the 3D grid is a straightforward
generalization. For example, Moravec [7] uses stereoscopic
images and structured lighting to construct a fine-scale 3D
grid then renders the resulting grid directly.

The volumetric grid-based approach has several advantages
over point-based modeling. Measurement quantization helps
to reduce noise, and incremental fusion of measurements from
different sensor positions is trivial. When the goal is to rapidly
generate a 3D model incrementally, grids offer the additional
benefit of allowing us to manipulate the tradeoff between speed
and accuracy by merely changing the cell size.

Our work is similar to some previous work using grid
isosurfaces and omnidirectional multibaseline stereo [6], but
in our work, recognizing that operator situation awareness
only requires an approximate model that represents the large-
scale structure of the environment, we incrementally construct
our 3D models from a sequence of images using a standard
monocular camera and a coarser-scale 3D occupancy grid. We
use a grid cell size small enough that the environment can be
readily visualized and explored yet large enough to make grid
updates and isosurface calculation fast.

II. OCCUPANCY GRID ISOSURFACES

Our method for incremental 3D modeling takes as input
an image sequence and returns as output a texture mapped
3D model of the scene. For each image, we extract feature
points, obtain correspondences with previous frames, estimate
3D points and camera positions, update the occupancy grid
with new 3D points, compute the grid’s isosurface, and modify
the current 3D mesh model accordingly. Here we describe
each of the important steps of the algorithm in detail then
summarize the entire algorithm in Section II-F.

A. The 3D data

After we acquire each image, we undistort it and extract
SIFT [11] features from it. To establish initial correspondences
between two sets of SIFT features, we find, for each keypoint
in one image, the most similar keypoint in the other image
according to the dot product. We accept that correspondence
if the keypoint’s similarity to the most similar keypoint is
above threshold and higher than that of the next most similar
keypoint by some ratio. After obtaining these initial corre-
spondences, we eliminate outliers using RANSAC estimation
of the fundamental matrix [12]. We then find the 3D points
and relative camera positions using an incremental bundle
adjustment procedure similar to that of Pollefeys et al. [5]
except that we use a pre-calibrated camera and undistorted
images, thus reducing the complexity of the optimization.

Although this straightforward sparse structure from motion
method is relatively slow, it could be replaced by a more
efficient real-time SLAM algorithm such as that of Davison
et al. [9] without affecting the rest of the system, so long as
sufficient care is taken to only return high-confidence points
to the 3D model construction algorithm.

B. Occupancy grid

We use two types of 3D occupancy grids: a single global
grid G that accumulates all of the occupancy information and a
local L grid for each camera position that contains the camera
position and the 3D points visible from that camera position.

For fine grids aimed at photorealistic reconstruction, so-
phisticated sensor models are necessary to add evidence of
“emptiness” to the grid cells along each ray from the camera
sensor to each detected 3D point and to add evidence of
“fullness” to the grid cells corresonding to the detected 3D
points. However, since our goal is to rapidly construct an
approximate model using a coarse grid, we find that it is
sufficient to simply “fill in” the grid cells interior to the convex
hull of the full grid cells corresponding to detected points and
the camera center. Our criterion for grid cell fullness is based
simply on the number of visible point features that map to the
given cell.

Clearly, when multiple viewpoints are considered, the filled-
in grid is not what we want. For example, the convex hull of
a set of points in an “L”-shaped corridor would not preserve
concavities in the 3D structure of the environment. This is why
we perform the filling operation in a local grid L containing
only the 3D points visible from the current camera position.

After filling, the information in the local grid for the current
camera position is combined with the current global grid by
taking the union of the filled cells in the two grids to obtain
a new global grid G that is propagated to the next iteration.

C. Isosurfaces

Isosurfaces are commonly used in computer graphics and
medical image processing to visualize volumes based on a
3D grid containing the discrete values of a density function.
For example, when working on CT and MRI images, the
grid might represent the densities of various bodily organs
and cavities. In order to visualize volumetric data effectively,
we normally need to convert it to surface form, then we can
texture map and visualize the surface. The isosurface of a
grid for a particular isovalue is the set of all points whose
interpolated density equals that isovalue. Most implementa-
tions of isosurface extraction use the marching cubes algorithm
[13] and return a tessellated triangle-based surface. We use
Matlab’s custom isosurface algorithm [14], which also returns
a triangulated surface S given a grid G but avoids patent issues
with the marching cubes algorithm.

D. Incremental modeling

When a new image introduces a new 3D point set X,
we first associate the new points with their corresponding
grid cells to get a set of voxels. When the total number of
points associated with a cell exceeds a threshold k, the cell
is deemed “occupied.” Let the set of newly occupied cells
(those previously unoccupied in G) be V"%, We create a
local grid L containing V"% along with the current camera
position C' then fill the convex hull of the resulting voxel set
as previously described. Finally, we merge L with G to obtain
a new occupancy grid G and new isosurface S.

E. Texture mapping

As we explore new regions of a given environment, the
volumetric 3D model and corresponding isosurface grows. In
general, some of the polygons (triangles) from the previous
3D model M will disappear and some new polygons will
appear. To accomplish this, we classify model triangles into
the sets “new,” “old,” and “deleted.” We project each “new”
triangle into the current image, obtain the appropriate texture
coordinates, and then add the new triangle with its texture map
to M. Similarly, we remove from M any triangles classified as
“deleted.” To facilitate search and update, we uniquely identify
each triangle by its centroid.

F. Incremental modeling algorithm summary

Here we provide a pseudocode summary of the incremental
3D modeling algorithm.

Algorithm BUILD-INCREMENTAL-MODEL
Input: image sequence
Output: 3D surface model M with texture map

‘2523
Dytn, . s
LRCREARTY

3
et 4

-

() (b)

Fig. 1. Experimental scenes with reconstructed point sets and camera
positions. (a) “L’-shaped corridor. (b) 360-degree panorama of a small office.

o P s
e I

st

1: M « ({initial 3D model}

2: G «) {initial global grid}

3: for each image I do

4: X < GET-3D-POINTS(])

5 P «— GET-CAMERA-MATRIX(])

6: C «— GET-CAMERA-CENTER(P)

7.V «— VOXELS(X, C, G)

8: V™ « GET-NEWLY-OCCUPIED-VOXELS(G, V)
9: if V™V is empty then

10: continue

11: end if

12: L + FILL-CONVEX-HULL(V, V")

132 G<—LUG

14. S <« GET-ISOSURFACE(G,1 —¢€)

15: (POl prew pdeleted) . CLASSIFY-POLYGONS(S, M)
16: M « DELETE-POLYGONS(Pd*e®d Ar)

17: T <« GET-TEXTURE-PATCHES(P™Y, P, I)

18: M <« ADD-NEW-POLYGONS(P"V, T M)

19: end for

III. EXPERIMENTAL RESULTS

We have experimented with various scenes. In this paper
we provide results for an “L’-shaped room and a 360-degree
panorama of a small office (see Fig. 1).

We extracted 3D points and camera centers following the
steps mentioned in section II-A. At every step, we automati-
cally removed any outlier points with high reprojection error
or a large distance from the centroid of the 3D points. Cur-
rently, our prototype requires that the empty grid be manually
intialized to be large enough to fit the scene of interest.

The results of the incremental model growing process can
be seen in Fig. 2, and detailed views of the final models are
shown in Fig. 3.

The approach has a few limitations that we plan to address
in future work. The first is the assumption that we can fill
the convex hull of the set of newly occupied voxels V"™V
(line 12 of Algorithm BUILD-INCREMENTAL-MODEL). This
heuristic is appropriate when new regions of the scene are
revealed gradually but can cause serious distortion of the
scene’s structure. For example, if in the very first image in
the sequence, two adjacent rooms separated by a wall are
visible, the algorithm will eliminate that wall. This problem
can be avoided either by restricting the initial view to an

(b)

Fig. 2. Incremental modeling. A model is shown after updating it with each
image of the sequence used for reconstruction. Some images have no effect,
and some cause the model to expand. (a) “L”-shaped corridor. (b) Room
panorama.

(@)

(b)

Fig. 3. Final 3D models. (a) Two views of the final “L’-shaped corridor
model. (b) Two views of the final panorama model.

Fig. 4. Texture-mapped “L’-shaped corridor model. We captured two views
from arbitrary camera positions while “flying” through the virtual OpenGL
environment. The complete texture map integrates patches from 11 of the 17
total images used for the 3D model reconstruction.

approximately convex region of the scene and ensuring that
each new image is acquired from a position very close to the
previous image (we have confirmed that planting additional
intermediate images into the sequence improves the results),
or by using a different method to obtain the local grid L from
VIICW.

Another limitation of the approach arises from the coarse-
ness of the grid. Any feature smaller than the grid cell size
(approximately 0.2m x 0.2m x 0.2m in the models of Fig. 3)
cannot be represented in the final model. When compounded
with measurement errors, this means that important features
such as a wall between two adjacent rooms could be eliminated
from the model. The algorithm should diagnose this situation
and ensure that we never “punch through” a wall without
sufficient evidence of a door or window.

Figure 4 shows the result of incrementally texture mapping
the “L”-shaped 3D model from Fig. 3(a). Although there are
distortions due to imperfections in the 3D model structure
and greedy selection of the texture patches, the model is
sufficiently accurate for a human observer to understand the
scene.

To compare these results with the state of the art, our
texture-mapped reconstructions, being based on sparse point
sets, are less accurate than those of Johnson and Kang [6].
However, whereas Johnson and Kang perform a 2D Delauney
triangulation and the iterative closest point (ICP) algorithm for
3D mesh recognition for every update, our method is much
more lightweight, directly associating point sets to the grid,
and is therefore more amenable to real time implementation.
We believe the result is sufficient to enhance teleoperation
situation awareness.

IV. CONCLUSION

In this paper, we have demonstrated the effectiveness of a
simple yet efficient method for incrementally constructing tex-
ture mapped polygonal mesh models of indoor environments
using a single camera. The resulting models are sufficiently
accurate for search and rescue situation awareness, but they
might not be appropriate for other applications.

In future work, we plan to build a complete real time im-
plementation including a user interface for high-level control
of the robot and a Kalman filter-based or particle filter-based
SLAM algorithm for camera pose and 3D point estimation.

Some of the improvements that may be required to achieve real
time performance include porting the software to a compiled
language such as C or C++ (parts of the current prototype
are implemented in Matlab), to perform bundle adjustment
only locally (in the current prototype, bundle adjustment is
performed over all images up to the current image), to work
with smaller images (e.g. 640x480 rather than the current
2048 x1536), to use a faster feature detector such as SURF
[15] instead of SIFT, to use octrees instead of uniform grids,
and to design a local version of the isosurface algorithm.

ACKNOWLEDGMENTS

We thank Sumanta Guha, Kiyoshi Honda, and the AIT
Computer Vision Group for valuable discussions and com-
ments on this work. Special thanks are due to Suwan Tong-
phu, who assisted with the implementation of the OpenGL
visualization.

REFERENCES

[11 A. Elfes, “Sonar-based real world mapping and navigation,” [EEE
Journal of Robotics and Automation, vol. 3, no. 3, pp. 249-265, 1987.

[2] S. Thrun, W. Burgard, and D. Fox, “A real-time algorithm for mobile
robot mapping with applications to multi-robot and 3D mapping,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, 2000, pp. 321-328.

[3] K. Konolige, “Large-scale map-making,” in Proceedings of the National
Conference on Artificial Intelligence (AAAI), 2004, pp. 457-463.

[4] H. Yanco and J. Drury, “*“Where am I?° Acquiring situation awareness
using a remote robot platform,” in Proceedings of the IEEE Conference
on Systems, Man and Cybernetics, vol. 3, 2004, pp. 2835-2840.

[5] M. Pollefeys, L. Van Gool, M. Vergauwen, F. Verbiest, K. Cornelis,
J. Tops, and R. Koch, “Visual modeling with a hand-held camera,”
International Journal of Computer Vision, vol. 59, no. 3, pp. 207-232,
2004.

[6] A.E. Johnson and S. B. Kang, “Registration and integration of textured
3D data,” Image and Vision Computing, vol. 17, no. 2, pp. 135-147,
1999.

[71 H. Moravec, “Robot spatial perception by stereoscopic vision and 3D
evidence grids,” Robotics Institute, Carnegie Mellon University, Tech.
Rep. CMU-RI-TR-96-34, 1996.

[8] M. Uyttendaele, A. Criminisi, S. B. Kang, S. A. J. Winder, R. Szeliski,
and R. I. Hartley, “Image-based interactive exploration of real-world
environments,” I[EEE Computer Graphics and Applications, vol. 24,
no. 3, pp. 52-63, 2004.

[9] A. Davison, I. Reid, N. Molton, and O. Stasse, “MonoSLAM: Real-
time single camera SLAM,” IEEE Transactions on Pattern Analysis and
Machine Intelligence, vol. 29, no. 6, pp. 1052-1067, 2007.

[10] R. Parr and A. Eliazar, “DP-SLAM: Fast, robust simultaneous local-
ization and mapping without predetermined landmarks,” in Proceedings
of the International Joint Conference on Artificial Intelligence (IJCAI),
2003, pp. 1135-1142.

[11] D.G. Lowe, “Distinctive image features from scale-invariant keypoints,”
International Journal of Computer Vision, vol. 60, no. 2, pp. 91-110,
2004.

[12] R. H. A. and Zisserman, Multiple View Geometry in Computer Vision,
2nd ed. Cambridge University Press, 2004.

[13] W. Lorensen and H. Cline, “Marching cubes: A high resolution 3D
surface construction algorithm,” Computer Graphics, vol. 21, no. 4, pp.
163-169, 1987.

[14] The MathWorks, “Source code for the Matlab isosurface func-
tion,” 2007, implementation located in Matlab distribution directory
toolbox/matlab/specgraph/isosurface.c.

[15] H. Bay, A. Ess, T. Tuytelaars, and L. V. Gool, “Speeded-up robust
features (SURF),” Computer Vision and Image Understanding, vol. 110,
no. 3, pp. 346-359, 2008.

